Skip to main content

Phenotypic plasticity of fish muscle to temperature change

  • Chapter
Fish Ecophysiology

Part of the book series: Chapman & Hall Fish and Fisheries Series ((FIFI,volume 9))

Abstract

The swimming performance of teleost fish is highly dependent on temperature. Natural selection has acted to adjust locomotory performance to particular thermal environments involving selective changes at the level of the genome. Johnston and co-workers have investigated muscle contraction associated with escape behaviour in teleosts from polar, temperate and tropical environments (Johnston, 1990). Force production shows perfect temperature compensation, whereas rate parameters, including force development, cross bridge cycle times and relaxation are significantly slower in Antarctic than tropical species (Johnston and Altringham, 1985; Johnson and Johnston, 1991a). It would appear that constraints to the adaptation of muscle proteins in low-temperature environments limit the maximum swimming speeds that can be attained (Johnston et al, 1991). Specialized biochemical adaptations to particular temperature regimes restrict the geographical ranges of polar and tropical species. Some, mostly temperate species, experience large seasonal changes in water temperature. In these species, phenotypic adaptations to temperature enable swimming performance to be adjusted to local conditions within certain limits (Johnston and Dunn, 1987). A fall in water temperature during the winter months may result in a dramatic reduction in the availability of prey species.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alexander, R. McN. (1969) The orientation of muscle fibres in the myomeres of fishes. J. mar. biol. Ass. U.K., 49, 263–90.

    Article  Google Scholar 

  • Altringham, J.D. and Johnston, L.A. (1990) Modelling muscle power output in a swimming fish. J. exp. Biol, 148, 395–402.

    Google Scholar 

  • Bone, Q. (1978) Locomotor muscle, in Fish Physiology, Vol. VII (eds W.S. Hoar and D.J. Randall), Academic Press, New York, pp. 361–424.

    Google Scholar 

  • Bottinelli, R., Schiaffino, S. and Reggiani, C. (1991) Force-velocity relations and myosin heavy chain isoform compositions of skinned fibres from rat skeletal muscle. J. Physiol, Lond., 437, 655–72.

    PubMed  CAS  Google Scholar 

  • Calvo, J. and Johnston, I. (1992) Influence of rearing temperature on the distribution of muscle fibre types in the turbot (Scopthalmus maximus) at metamorphosis. J. exp. Mar. Biol. Ecol. (in press).

    Google Scholar 

  • Crockford, T. and Johnston, L.A. (1990) Temperature acclimation and the expression of contractile protein isoforms in the skeletal muscles of the common carp (Cyprinus carpio L.).J. comp. Physiol, 160B, 23–30.

    Google Scholar 

  • Curtin, N.A. and Woledge, R.C. (1988) Energetic cost of power output by isolated fibre bundles from dogfish white muscle. J. Physiol, Lond, 407, 74P.

    Google Scholar 

  • Egginton, S. and Sidell, B.D. (1989) Thermal acclimation induces adaptive changes in subcellular structure offish skeletal muscle. Am. J. Physiol, 256, R1–9.

    PubMed  CAS  Google Scholar 

  • Fleming, J.R., Altringham, J.D. and Johnston, L.A. (1990) The effects of temperature acclimation on muscle relaxation in the carp: a mechanical, biochemical and ultrastructural study. J. exp. Zool, 255, 286–95.

    Article  Google Scholar 

  • Fletcher, G.L., King, M.H., Kao, M.H. and Shears, M.A. (1989) Anti-freeze proteins in the urine of marine fish. Fish Physiol. Biochem., 6, 121–7.

    Article  CAS  Google Scholar 

  • Fry, F.E.J, and Hart, J.S. (1948) Cruising speed of goldfish in relation to water temperature. J. Fish. Res. BdCan., 7, 175–99.

    Google Scholar 

  • Gerlach, G.-F., Turay, L., Malik, K.T.A., Li da, J., Scutt A. and Goldspink, G. (1990) Mechanisms of temperature acclimation in the carp: a molecular biology approach. Am. J. Physiol, 259, R237–44.

    PubMed  CAS  Google Scholar 

  • Greaser, M.L., Moss, R.L. and Reiser, P.J. (1988) Variations in contractile properties of rabbit single muscle fibres in relation to troponin T isoforms and myosin light chains. J. Physiol, Lond., 406, 85–98.

    PubMed  CAS  Google Scholar 

  • Guderley, H. (1990) Functional significance of metabolic responses to thermal acclimation in fish muscle. Am. J. Physiol, 259, R245–52.

    PubMed  CAS  Google Scholar 

  • Guderley, H. and Blier, P. (1987) Thermal acclimation in fish: conservative and labile properties of swimming muscle. Can. J. Zool, 66, 1105–15.

    Article  Google Scholar 

  • Guderley, H. and Foley, L. (1990) Anatomic and metabolic responses to thermal acclimation in the ninespine stickleback, Pungitius pungitius. Fish Physiol. Biochem., 8, 465–74.

    Article  Google Scholar 

  • Hazel, J.R. and Prosser, C.L. (1974) Molecular mechanisms of temperature compensation in poikilotherms. Physiol. Rev., 54, 620–77.

    PubMed  CAS  Google Scholar 

  • Heap, S.P., Watt, P.W. and Goldspink, G. (1985) Consequences of thermal change on the myofibrillar ATPase of 5 freshwater teleosts. J. Fish Biol, 26, 733–8.

    Article  CAS  Google Scholar 

  • Heap, S.P., Watt, P.W. and Goldspink, G. (1986) Myofibrillar ATPase activity in the carp (Cyprinus carpio): interactions between starvation and environmental temperature. J, exp. Biol, 123, 373–82.

    CAS  Google Scholar 

  • Hess, F. and Videler, J.J. (1984) Fast continuous swimming of saithe (Pollachius virens): a dynamic analysis of bending movements and muscle power. J. exp. Biol, 109, 229–51.

    Google Scholar 

  • Hwang, G.C., Watabe, S. and Hashimoto, K. (1990) Changes in carp myosin ATPase induced by temperature acclimation. J. comp. Physiol, 160B, 233–9.

    Google Scholar 

  • Jankowsky, H.D. and Korn, H. (1965) The influence of acclimation temperature on the mitochondrial content offish muscle. Naturwissenschaften, 52, 642.

    Google Scholar 

  • Johnson, T.P. and Johnston, L.A. (1991a) Temperature adaptation and the contractile properties of live muscle fibres from teleost fish. J. comp. Physiol, 161, 27–36.

    Google Scholar 

  • Johnson, T.P. and Johnston, L.A. (1991b) Power output offish muscle fibres performing oscillatory work: effects of acute and seasonal temperature change. J. exp. Biol, 157, 409–23.

    Google Scholar 

  • Johnston, L.A. (1979) Calcium regulatory proteins and temperature acclimation of actomyosin from a eurythermal fish (Carassius auratus L.). J. comp. Physiol, 129, 163–7.

    CAS  Google Scholar 

  • Johnston, L.A. (1982) Capillarisation, oxygen diffusion distances and mitochondrial content of carp muscles following acclimation from summer to winter temperatures. Cell Tissue Res., 222, 579–96.

    Article  PubMed  Google Scholar 

  • Johnston, L.A. (1990) Cold adaptation in marine organisms. Phil. Trans. R. Soc, 326B, 655–67.

    Google Scholar 

  • Johnston, L.A. and Altringham, J.D. (1985) Evolutionary adaptation of muscle power output to environmental temperature: force-velocity characteristics of skinned fibres isolated from Antarctic, temperate and tropical marine fish. Pflugers Arch. ges. Physiol, 405, 136–40.

    Article  CAS  Google Scholar 

  • Johnston, L.A. and Altringham, J.D. (1988) Muscle function in locomotion. Nature. Lond., 335(6193), 767–8.

    Article  PubMed  CAS  Google Scholar 

  • Johnston, L.A. and Altringham, J.D. (1991) Movement in water: constraints and adaptations, in Biochemistry and Molecular Biology of Fishes, Vol. 1 (eds P.W. Hochachka and T. Mommsen), Elsevier, Amsterdam, pp. 249–68.

    Google Scholar 

  • Johnston, L.A. and Dunn, J. (1987) Temperature acclimation and metabolism in ectotherms with particular reference to teleost fish, in Temperature and Animal Cells (ed. K. Bowler), Soc. Exp. Biol Symp., XXXI, 67–93.

    Google Scholar 

  • Johnston, L.A. and Lucking, M. (1978) Temperature induced variation in the distribution of different types of muscle fibres in the goldfish (Carassius auratus). J. comp. Physiol, 124, 111–16.

    Google Scholar 

  • Johnston, L.A. and Maitland, B. (1980) Temperature acclimation in crucian carp: a morphometric study of muscle fibre ultra-structure. J. Fish Biol, 17, 113–25.

    Article  Google Scholar 

  • Johnston, L.A., Davison, W. and Goldspink, G. (1975) Adaptations in myofibrillar ATPase activity induced by temperature acclimation. FEBS Lett, 50. 293–5.

    PubMed  CAS  Google Scholar 

  • Johnston, I.A., Davison, W. and Goldspink, G. (1977) Energy metabolism of carp swimming muscles. J. comp. Physiol, 114, 203–16.

    CAS  Google Scholar 

  • Johnston, L.A., Fleming, J.R. and Crockford, T. (1990) Thermal acclimation and muscle contractile properties in cyprinid fish. Am. J. Physiol, 259, R231–6.

    PubMed  CAS  Google Scholar 

  • Johnston, L.A., Johnson, T.P. and Battram, J.C. (1991) Low temperature limit burst swimming performance in Antarctic fish, in The Biology of Antarctic Fish (eds B. di Prisco, B. Maresca and B. Tota), Springer-Verlag, Berlin, Heidelberg, 179–90.

    Google Scholar 

  • Johnston, I.A., Sidell, B.D. and Driedzic, W.R. (1985) Force-velocity characteristics and metabolism of carp muscle fibres following temperature acclimation. J. exp. Biol, 119, 239–49.

    PubMed  CAS  Google Scholar 

  • Jones, P.L. and Sidell, B.D. (1982) Metabolic responses of striped bass (Morone saxatilis) to temperature acclimation II. Alterations in metabolic carbon sources and distributions of fibre types in locomotory muscle. J. exp. Zool, 219, 163–71.

    Article  CAS  Google Scholar 

  • Kleckner, N.W. and Sidell, B.D. (1985) Comparisons of maximal activities of enzymes from tissues of thermally-acclimated and naturally-acclimatized chain pickerel (Esox niger). Physiol. Zool, 58, 18–28.

    CAS  Google Scholar 

  • Langfeld, K.S., Crockford, T.C. and Johnston, L.A. (1991) Temperature acclimation in the common carp: force-velocity characteristics and myosin subunit composition of slow muscle fibres. J. exp. Biol, 155, 291–304.

    Google Scholar 

  • Leeuwen, J.L. van (1991) Optimum power output and structural design of sarcomeres. J. theor. Biol, 149, 229–56.

    Article  PubMed  Google Scholar 

  • Leeuwen, J.L. van, Lankheet, M.J.M., Akster, H.A. and Osse, J.W.M. (1990) Function of red axial muscles of carp (Cyprinus carpio): recruitment and normalized power output during swimming in different modes. J. Zool, Lond., 220, 123–45.

    Article  Google Scholar 

  • Lemons, D.E. and Crawshaw, L.I. (1985) Behavioural and metabolic adjustments to low temperatures in the largemouth bass (Micropterus salmoides). Physiol. Zool, 58, 175–80.

    Google Scholar 

  • Libera, L.D., Carpene, E., Theibert, J. and Collins, J.H. (1991) Fish myosin alkali light chains originate from two different genes. J. Muscle Res. Cell Motil, 12, 366–71.

    Article  PubMed  Google Scholar 

  • Moerland, T.S. and Sidell, B.D. (1986) Biochemical responses to temperature in the contractile protein complex of striped bass (Morone saxatilis). J. exp. Biol, 238,287–95.

    CAS  Google Scholar 

  • Nabeshima, Y., Fujii-kuriyama, Y., Muramatsu, M. and Ogata, K. (1984) Alternative transcription and two modes of splicing result in two myosin light chains from one gene. Nature, Lond., 308, 333–8.

    Article  CAS  Google Scholar 

  • Penney, R.K. and Goldspink, G. (1980) Temperature adaptation of sarcoplasmic reticulum offish muscle. J. therm. Biol, 5, 63–8.

    Article  CAS  Google Scholar 

  • Rome, L.C. and Sosnicki, A.A. (1991) The influence of temperature on mechanics of red muscle in carp. J. Physiol, Lond., 427, 151–69.

    Google Scholar 

  • Rome, L.C, Loughna, P.T. and Goldspink, G. (1984) Muscle fibre recruitment as a function of swim speed and muscle temperature in carp. Am. J. Physiol, 247, R272–9.

    PubMed  CAS  Google Scholar 

  • Rome, L.C, Loughna, P.T. and Goldspink, G. (1985) Temperature acclimation: improved sustained swimming performance at low temperature. Science, Wash. D.C., 228, 194–6.

    Article  CAS  Google Scholar 

  • Rome, L.C, Funke, R.P., Alexander, R. McN., Lutz G., Aldridge, H.D.J.N., Scott, F. and Freadman, M. (1988) Why animals have different muscle fibre types. Nature, Lond., 355, 824–7.

    Article  Google Scholar 

  • Rome, L.C, Funke, R.P. and Alexander, R. McN. (1990) The influence of temperature on muscle velocity and sustained swimming performance in swimming carp. J. exp. Biol, 154, 163–78.

    PubMed  CAS  Google Scholar 

  • Sidell, B.D. and Hazel, J.R. (1987) Temperature affects the diffusion of small molecules through cytosol offish muscle. J. exp. Biol. 129, 191–203.

    PubMed  CAS  Google Scholar 

  • Sidell, B.D. and Johnston, L.A. (1985) Thermal sensitivity of contractile function in chain pickerel, (Esox niger). Can. J. Zool, 63, 811–16.

    Article  CAS  Google Scholar 

  • Sidell, B.D., Johnston, L.A., Moerland, T.S. and Goldspink, G. (1983) The eurythermal myofibrillar protein complex of the mummichog (Fundulus heteroclitus): adaptation to a fluctuating thermal environment. J. comp. Physiol, 153B, 167–73.

    Google Scholar 

  • Sisson, J.E. and Sidell, B.D. (1987) Effect of thermal acclimation on muscle fibre recruitment of swimming striped bass (Morone saxatilis). Physiol. Zool, 60, 310–20.

    Google Scholar 

  • Thillart, G. van den and Modderkolk, J. (1978) The effect of acclimation temperature on the activation energies of state m respiration and on the unsaturation of membrane lipids of goldfish mitochondria. Biochem. biophys. Acta, 510, 38–51.

    Article  PubMed  Google Scholar 

  • Tyler, S. and Sidell, B.D. (1984) Changes in mitochondrial distribution and diffusion distances in muscle of goldfish (Carassius auratus) upon acclimation to warm and cold temperatures. J. exp. Zool, 232, 1–10.

    Article  Google Scholar 

  • Vieira, V.L.A. and Johnston, L.A. (1992) Influence of temperature on muscle fibre development in larvae of the herring (Clupea harengus) L. Mar. Biol, 112, 331–41.

    Article  Google Scholar 

  • Wainwright, S.A. (1983) To bend a fish, in Fish Biomechanics (eds P.W. Webb and D. Weihs), Praeger, New York, pp. 69–91.

    Google Scholar 

  • Walsh, P.J. and Moon, T.W. (1982) The influence of temperature on extracellular and intracellular pH in the American eel, Anguilla rostrata (Leseueur). Respir. Physiol, 50, 129–40.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Chapman & Hall

About this chapter

Cite this chapter

Johnston, I.A. (1993). Phenotypic plasticity of fish muscle to temperature change. In: Rankin, J.C., Jensen, F.B. (eds) Fish Ecophysiology. Chapman & Hall Fish and Fisheries Series, vol 9. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-2304-4_13

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-2304-4_13

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-412-45920-7

  • Online ISBN: 978-94-011-2304-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics