Skip to main content

Isotopic Equilibrium/Disequilibrium and Diffusion Kinetics in Feldspars

  • Chapter
Feldspars and their Reactions

Part of the book series: NATO ASI Series ((ASIC,volume 421))

Abstract

The use of isotopes as tracers in diffusion kinetics measurements on feldspars is discussed with particular emphasis on oxygen and cations. The effect of feldspar composition, temperature, fugacity of water, ftigacity of oxygen, anisotropy of diffusion, and sub-sclidus phases are treated, with a view toward understanding the diffusion mechanisms and to predict diffusion coefficients where measured data are lacking. The strong dependence of oxygen diffusion on fH2O is suggested to derive from having H+ act to aid in breaking the Si-O bonds, and H2O aid in the transport through the crystal. The lack of such dependence by cations, together with their systematic behavior as a function of cation charge, and, secondarily, on ionic radius has led to a diffusion model utilizing a vacancy mechanism for most of the cations in feldspars, with Na transport being by an interstitial mechanism. The ionic porosity prediction model can predict oxygen diffusion under hydrothermal conditions, but fails for cations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bailey, A. (1971) Comparison of low-temperature with high-temperature diffusion of sodium in albite. Geochim. Cosmochim. ncta, v. 35, p. 1073–1081.

    Article  Google Scholar 

  • Barrer, R.M. (1951) Diffusion in and Through Solids Cambride Univ. Press, 464 pp.

    Google Scholar 

  • Behrens, H., Johannes, W. and Schmalzried, H. (1990) On the mechanisms of cation diffusion processes in ternary feldspars. Phys. Chem, Minerals 17, 62–78.

    Article  Google Scholar 

  • Brady, J.B. (1975) Reference frames and diffusion coefficients. Amer. Jour. Sci., v. 275, p. 954–983.

    Article  Google Scholar 

  • Brady, J. (in press) Diffusion data for silicate minerals, glasses, and liquids, in AGU Handbook of Physical Constants, Ahrens, T.H. ed.

    Google Scholar 

  • Christoffersen, R., Yund, R.A., and Tullis, J. A. (1983) Inter-diffusion of K and Na in alkali feldspars. Amer. Min., v. 68, p. 1126–1133.

    Google Scholar 

  • Chemiak, D.K., Lanford, W.A., and Ryerson, R.J. (1991) Lead diffusion in apatite and zircon using ion implantation and Rutherford backscattering techniques. Geochim. Cosmochim. Acta, v. 55, p. 1663–1673.

    Article  Google Scholar 

  • Chemiak, D.K. and Watson, E.B. (1992) A study of strontium diffusion inK-feldspar, Na-K feldspar and anorthite using Rutherford backscattering sprctroscopy. Earth Planet. Sci. Lett., v. 411–425.

    Google Scholar 

  • Crank, J. (1967) The Mathematics of Diffusion, Oxford Univ. Press, London, 347 pp.

    Google Scholar 

  • Dodson, M.H. (1973) Closure temperature in cooling geochronological and petrological systems. Contrib. Mineral. Petrol. v. 40, 259–274.

    Article  Google Scholar 

  • Dodson, M.H. (1986) Closure profiles in cooling systems. Materials Sci. Forum, v. 7, p. 145–154.

    Article  Google Scholar 

  • Dowty, E. (1980) Crystal-chemical factors affecting the modbility of ions in minerals. Amer. Min., v. 65, p. 174–182.

    Google Scholar 

  • Eiler, J.M., Baumgartner, L.P., and Valley, J. W., (1992) Intercrystalline stable isotope diffsion: a fast grain boundary model. Contrib. Mineral. Petrol., v. 112, p. 543–547.

    Article  Google Scholar 

  • Elphick S.C., Dennis, P.F., and Graham, C.M. (1986) An experimental study of the diffusion of oxygen in albite using an overgrowth technique. Contrib. Mineral. Petrol. v. 92, p. 322–330.

    Article  Google Scholar 

  • Elphick S.C. and Graham, C.M. (1988) The effect of hydrogen on oxygen diffusion in quartz: evidence for fast proton transients? Nature v. 335, p. 243–245.

    Article  Google Scholar 

  • Elphick, S.C., Graham, C.M., and Dennis, P.F. (1988) An ion microprobe study of anhydrous oxygen diffusion in anorthite: a comparison of hydrothrmal data and some geological implications. Contrib. Mineral. Petrol., v. 100, 490–495.

    Article  Google Scholar 

  • Farver, J.R. (1989) Oxygen self-diffusion in diopside with application to cooling rate determinations. Earth Planet. Sci. Lett. 92, 386–396.

    Article  Google Scholar 

  • Farver, J.R. and Yund, R.A. (1992) Oxygen diffusion in a fine-grained quartz aggregate with wetted and nonwetted microstructures. Jour. Geophys. Res. v. 97, p. 14017–14029.

    Article  Google Scholar 

  • Farver, J.R. and Yund, R.A. (1990) The effect of hydrogen, oxygen, and water fugacity on oxygen diffusion in alkali feldspar. Geochim. Cosmochim. Acta 54, 2953–2964.

    Article  Google Scholar 

  • Faure, G. (1986) Principles of isotope Geology, 2nd ed., John Wiley & Sons, New York, p. 117–ff.

    Google Scholar 

  • Foland, K.A., (1974a) Alkali diffusion in orthoclase. in Geochemical Transport and Kinetics, Hofmann, A.W., Giletti, B.J., Yoder, H.S., and Yund, R.A., eds., Carnaegie Inst. Washington, pub., p. 77–98.

    Google Scholar 

  • Foland, K.A. (1974b) Ar40 diffusion in homogeneous orthoclase and an interpretation of Ar diffusion in K-feldspars. Geochim. Cosmochim. Acta 38, 151–166.

    Article  Google Scholar 

  • Forüer, S,R. (1991) Empirical models for predicting diffusion kinetics in silicate minerals and the thermal history of the South Mountains metamorphic core complex, Arizona, derived from oxygen isotope and diffusion data. PhD Thesis, Brown Univ.,.

    Google Scholar 

  • Fortier, S. R. and Giletti, B. J. (1989) An empirical model for predicting diffusion coefficients in silicate minerals. Science, v. 245, p. 1481–1484.

    Article  Google Scholar 

  • Freer, R. (1981) Diffusion in silicate minerals and glasses: a data digest and guide to the literature. Contrib. Mineral. Petrol, v. 76, p. 440–454.

    Article  Google Scholar 

  • Frey, M., Hunziker, J.C., O’Neil, J.R., and Schwander, H.W., (1976) Equilibrium-disequilibrium re-lations in the Monte Roxa granite, western Alps: petrological, Rb-Sr and stable isotope data. Contrib. Mineral. and Petrol. v. 55, p. 147–179.

    Article  Google Scholar 

  • Giletti, B. J. (1974) Diffusion related to geochronology. in Geochemical Transport and Kinetics, Hofmann, A. W., Giletti, B. J., Yoder, H.S., and Yund, R. A., eds., Carnegie Inst. Washington, Publ. 634, 61–76.

    Google Scholar 

  • Giletti, B.J. (1986) Diffusion effects on oxygen isotope temperatures of slowly cooled igneous and metamorphic rocks. Earth Planet. Sci. Lett. 77, 218–228.

    Article  Google Scholar 

  • Giletti, B. J. (1991) Rb and Sr diffusion in alkali feldspars, with, implications for cooling histories of rocks. Geochim. Cosmochim. Acta 55, 1331–1343.

    Article  Google Scholar 

  • Giletti, B.J. (in prep.) Systematics and mechanisms of cation diffusion in feldspars.

    Google Scholar 

  • Giletti, B. J. and Casserly, J.E.D. (submitted) Sr diffusion kinetics in plagioclase feldspars. Geochim. Cosmochim. Acta.

    Google Scholar 

  • Giletti, B.J., Semet, M.P., and Yund, R.A. (1978) Studies in diffusion-III: an ion microprobe determination. Geochim. Cosmochim. Acta, v. 42, p. 45–57.

    Article  Google Scholar 

  • Giletti, B.J., Yund, R.A., and Semet, M. (1976) Silicon diffusion in quartz. Geol. Soc. Amer., Abstracts with Programs, v. 8, p. 883–884.

    Google Scholar 

  • Girifalco, L.A. (1964) Atomic migration in crystals. Blaisdell Publ. Co., N.Y. 162 pp.

    Google Scholar 

  • Goldsmith, J.R. (1988) Enhanced Al/Si diffusion in KAlSi3O8 at high pressures: the effect of hydrogen. Jour. Geol. v. 96, p. 109–124.

    Article  Google Scholar 

  • Graham, C.M. and Elphick S.C. (1991) Some experimental constraints on the role of hydrogen in oxygen and hydrogen diffusion and Al-Si interdiffusion i silicates, in Diffusion, Atomic Ordering, and Mass Transport: Selected Problems in Geochemistry. Ganguly, J. ed., Springer-Verlag, New York, p. 248–285.

    Chapter  Google Scholar 

  • Griggs, D.T. (1967) Hydrolytic weakening of quartz and other silicates. Geophys. Jour. Roy. Astron. Soc, v. 14, p. 19–32.

    Article  Google Scholar 

  • Griggs, D.T. (1974) A model of hydrolytic weakening in quartz. Jour. Geophys. Res., v. 79, p. 1653–1661.

    Article  Google Scholar 

  • Hart, S.R. (1981) Diffusion compensation in natural silicates. Geochim. Cosmochim. Acta, v. 45, p. 279–291.

    Article  Google Scholar 

  • Jenkin, G. (in press) Oxygen isotope exchange in cooling rocks and oxygen isotope closure temperatures.

    Google Scholar 

  • Jensen, M.L. (1952) Solid diffusion of radioactive sodium in perthite. Amer. Jour. Sci. v. 250, p. 808–821.

    Article  Google Scholar 

  • Kasper, R.B. (1975) Cation and oxygen diffusion in albite. PhD Thesis, Brown University.

    Google Scholar 

  • Manning, J.R. (1968) Diffusion Kinetics for Atoms in Crystals. Van Norstrand, Princeton, N.J., 257 pp.

    Google Scholar 

  • McNaughton, N.J. and Wilson, A.F. (1980) Problems in oxygen isotope geohermometry in mafic granulite facies rocks from near Einasleigh, northern Queensland. Precambrian Res. v. 13, p. 77–86.

    Article  Google Scholar 

  • Merigoux, H., 1968, Etude de la mobilite de l’oxygene dans les feldspaths alcalins, Bull. Soc. Francaise Mineral. Crystallzgr,, v. 91, p. 51–64.

    Google Scholar 

  • Misra, N.K. and Venkatasubramanian V.S. (1977) Strontium diffusion in feldspars-a laboratory study. Geochim. Cosmochim. Acta 41, 837–838.

    Article  Google Scholar 

  • Muehlenbachs and Kushiro (1974) Oxygen isotope exchange and equilibrium of silicates with CO2 or O2. Carnegie Inst. Washington Ybk., v. 73, p. 232–236.

    Google Scholar 

  • Nagy, K.L. and Giletti, B.J. (1986) Grain boundary diffusion of oxygen in a macroperthitic feldspar. Geochim. Cosmochim. Acta v. 50, p.1151–1158.

    Article  Google Scholar 

  • Petrovic, R. (1972) Alkali ion diffusion in alkali feldspars. PhD Thesis, Yale University, 131 pp.

    Google Scholar 

  • Petrovic, R. (1974) Diffusion of alkali ions in alkali feldpsars. in The Feldspars. NATO Advanced Study Institute, Mackenzie, W.S. and Zussman, J. eds., Manchester Univ. Press, p. 174–182.

    Google Scholar 

  • Shewmon, P.G. (1963) Diffusion in Solids. McGraw-Hill, New York, 202 pp.

    Google Scholar 

  • Sipple, R.F. (1963) Sodium self-diffusion in natural minerals. Geochim. Cosmochim. Acta, v. 27, p. 107–120.

    Article  Google Scholar 

  • Snow, E. and Kidman, S. (1991) Effect of fluorine on solid-state alkali interdiffusion rates in feldspar. Nature, v. 349. p. 231–233.

    Article  Google Scholar 

  • Snow,E. andSherman,S. (in prep.) The effect offluorine on cation diffusion in feldspar: implications for microstructural development.

    Google Scholar 

  • Taylor, H,P. and Epstein, S. (1962) Relationship between Ol8/O16 ratios in coexisting minerals of igneous and metamorphic rocks. Part I: Principles and experimental results. Bull. Geol. Soc. Amen v. 73, p. 461–480.

    Article  Google Scholar 

  • Whittaker, EJ.W. and Muntus, R. (1970) Ionic radii for use in geochemistry. Geochim. Cosmochim. Acta, v. 34, p. 945–956.

    Article  Google Scholar 

  • Winchell, P. (1969) The compensation law for diffusion in silicates. High Temp. Sci. v. 1, p. 200–215.

    Google Scholar 

  • Yund, R.A. (1984) Alkali feldspar exsolution: kinetics and dependence on alkali interdiffusion. in Feldspars and Feldspathoids, Structures, Properties and Occurrences. Brown, W.L., ed., NATO ASI Series, p. 281–315 D. Reidel Publ. Co., Dordrecht/Boston/Lancaster.

    Google Scholar 

  • Yund, R.A. and Anderson, T.F. (1974) Oxygen isotope exchange between potassium feldspar and KC1 solution. in Geochemical Transportand Kinetics, Hofmann A.W., Giletti, B.J., Yoder, H.S., and Yund, R.A., eds., Carnegie Inst. Washington Publ. 634, p. 99–105.

    Google Scholar 

  • Yund, R.A. and Anderson, T.F. (1978) The effect of fluid pressure on oxygen isotope exchange be-tween feldspar and water. Geochim. Cosmochim. Acta 42, 235–239.

    Article  Google Scholar 

  • Zhang, Y., Stolper, E.M., and Wasserburg, G.J. (1991) Diffusion of a multi-species component and its role in oxygen and water transport in silicates. Earth Planet. Sci. Lett. v. 103, p. 228–240.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Giletti, B.J. (1994). Isotopic Equilibrium/Disequilibrium and Diffusion Kinetics in Feldspars. In: Parsons, I. (eds) Feldspars and their Reactions. NATO ASI Series, vol 421. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-1106-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-1106-5_9

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4483-7

  • Online ISBN: 978-94-011-1106-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics