Skip to main content

Space and time distribution of zooplankton in a Mediterranean lagoon (Etang de Berre)

  • Conference paper

Part of the book series: Developments in Hydrobiology ((DIHY,volume 104))

Abstract

In the Berre lagoon, a large brackish and shallow area near Marseille, the environmental factors (temperature, salinity, oxygen, suspended particulate matter and chlorophyll) generally display strong space and time variations. The rotifer Brachionus plicatilis and the copepod Acartia tonsa constitute the bulk of the zooplankton population during all the year. Their space and time distributions were studied in 23 stations distributed all over the lagoon, during four seasonal cruises (February, June, October, November), at surface and bottom layers. There is no marked difference in the horizontal and vertical distribution of the two species, (except in November when rotifers were prevailing in surface and copepods at depth) and in their time occurrence. When the four series of data are pooled, correlation analysis show that A. tonsa is positively correlated with temperature, salinity and seston and negatively to oxygen and chlorophyll. B. plicatilis is positively correlated with temperature and seston, but also with chlorophyll, while salinity has a negative effect. The specific eggs number of both species is chlorophyll dependent. Considering seasonal cruises separately, some differences appear in the sense or the significance of these different correlations. The respective distribution of the two species is only partly dependent on the variation of the environmental factors: most of the variance remains unexplained, as indicated by the result of a stepwise multiple regression analysis using the most significant factors (temperature, salinity and oxygen explain 33 to 42% of the variance in Acartia, while temperature and salinity explain 27 to 28% of the variance in Brachionus). Thus, internal behavioral factors could also play a role in the distribution of organisms, particularly in some cases of aggregations of organisms observed during this study. As the two species occupied the same space habitat most of the year, they are potentially in competition for food. A way to optimize the food utilization could be the time separation of their feeding activity, nocturnal in Acartia and diurnal in Brachionus. Another way could be selective feeding upon food particles depending on their size (Brachionus being able to use finer particles than Acartia) or their quality (Brachionus being more herbivorous than Acartia) as demonstrated in some grazing experiments carried out in parallell.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Amanieu, M. & G. Lasserre, 1982. Organisation et évolution des populations lagunaires. Actes du Symposium International sur les lagunes côtieres, SCOR/IABO/UNESCO, Bordeaux, 8-14 septembre 1981, Oceanologica Acta, N° Sp: 201–213.

    Google Scholar 

  • Arfi, R., 1989. Annual cycles and budget of nutrients in Berre Lagoon (Mediterranean Sea, France). Int. Revue ges. Hydrobiol. 74: 29– 49.

    Article  CAS  Google Scholar 

  • Arfi, R., R. Gaudy, P. Kerambrun &M. Pagano, 1990. Plasticité écologique des populations planctoniques à 1’interface terre-mer-Conditions naturelles, effets anthropiques in R. E. Quellenec, E. Ercolani &G. Michou (eds), Littoral 90, Eurocast c/o BRGM, Marseille, France: 356–360.

    Google Scholar 

  • Arndt, H., 1988. Dynamics and production of a natural population of Brachionus plicatilis (Rotatoria, Monogononta) in a eutroph-icated inner coastal water of the Baltic. Kieler Meeresforsch., Sonderh. 6: 147–153.

    Google Scholar 

  • Arndt, H. &R. Heerkloss, 1989. Diurnal variations in feeding and assimilation rates of planktonic rotifers and its possible ecological significance. Int. Revue ges. Hydrobiol. 74: 261–272.

    Article  Google Scholar 

  • Blanchot, J. &R. Pourriot, 1982. Influence de trois facteurs de l’environnement, lumière, température et salinité, sur l’éclosion des oeufs de durée d’un clone de Brachionus plicatilis (O. F. Müller), Rotifère. C.r. Acad. Sci., Paris 295, ser. III: 243– 246.

    Google Scholar 

  • Cahoon, L. B., 1981. Reproductive aspects of Acartia tonsa to vari-ations in food ration and quality. Deep Sea Res. 28A: 1215–1221.

    Google Scholar 

  • Chotiyaputta, C. &K. Hirayama, 1978. Food selectivity of the rotifer Brachionus plicatilis feeding on phytoplankton. Mar. Biol. 45: 105–111.

    Article  Google Scholar 

  • Castel, J. &CI. Courtiès, 1982. Composition and differential dis-tribution of zooplankton in Arcachon Bay. J. Plankton Res. 4: 417–433.

    Article  Google Scholar 

  • Dagg, M., 1977. Some effects of patchy food environments on copepods. Limnol. Oceanogr. 22: 99–107.

    Article  Google Scholar 

  • Durbin, G. A., G. E. Durbin &E. Wlodarczyk, 1990. Diel feeding behavior in the marine copepod Acartia tonsa in relation to food availability. Mar. Ecol. Prog. Ser. 68: 23–45.

    Article  Google Scholar 

  • Gaudy, R., 1984. Structure et fonctionnement de l’écosystème zoo-planctonique de 1’interface terre-mer en Méditerranée Occiden-tale. Oceanis 10: 367–383.

    Google Scholar 

  • Gaudy, R., 1989. The role of zooplankton in the nitrogen cycle of a Mediterranean brackish lagoon. Scient. mar. 52: 609– 616.

    Google Scholar 

  • Gaudy, R. &M. Vinas, 1985. Premiere signalisation en Méditerranée du copépode pélagique Acartia tonsa Rapp. Comm. int. Mer Médit. 219: 227–229.

    Google Scholar 

  • Gonzalez, J. G., 1974. Critical thermal maxima and upper lethal temperature of the calanoid copepods Acartia tonsa and A. clausi. Mar. Biol. 27: 219–223.

    Article  Google Scholar 

  • Guelorget, O. &J. P. Perthuisot, 1983. Le domaine paralique: expression géologique, biologique et économique du confine-ment. Presses Ecole Normale, S4, Paris, 136 pp.

    Google Scholar 

  • Hirayama, K. &H. Funamoto, 1983. Supplementary effect of several nutrients on nutritive deficiency of baker’s yeast for population growth of the rotifer Brachionus plicatilis. Bull. Jap. Soc. Sci. Fish. 49: 505–510.

    Article  CAS  Google Scholar 

  • Jeffries, H. P., 1962. Succession of two Acartia species in estuaries. Limnol. Oceanogr. 7: 354–364.

    Article  Google Scholar 

  • Konnur, R. &J. Azariah, 1987. Distribution of rotifer brines in the estuarine region of river Adyar with special reference to suspend-ed particulate matter. J. mar. biol. Ass. India, 29: 286–290.

    Google Scholar 

  • Lance, J., 1963. The salinity tolerance of some estuarine planktonic copepods. Limnol. Oceanogr. 8: 440–449.

    Article  Google Scholar 

  • Lee, W. Y. &B. J. McAlice, 1979. Seasonal succession and breeding cycles of three species of Acartia (Copepoda: Calanoida) in a Maine estuary. Estuaries 2: 228–235.

    Article  Google Scholar 

  • Omori, M. &W. M. Hammer, 1982. Patchy distribution of zooplank-ton: behavior, population assessment and sampling problems. Mar. Biol. 72: 193–200.

    Article  Google Scholar 

  • Pascual, E. &M. Yufera, 1983.Crecimiento en cultivo de una cepa de Brachionus plicatilis O. F. Muller en funcion de la temperatura y la salinidad. Inv. Pesq. 47: 151–159.

    Google Scholar 

  • Patriti, G., 1992. Les migrations nychthémérales du copépode Acar-tia tonsa Dana 1949. C.r. Acad. Sci. Paris, t 314 Ser III: 75–78.

    Google Scholar 

  • Pourriot, A., 1977. Food and feeding habits of rotifer. Arch. Hydro-biol. Beih. Ergebn. Limnol. 8: 243–260.

    Google Scholar 

  • Robertson, J.R., 1983. Predation by estuarine zooplankton on tintin-nid ciliates. Estuar. coast. Shelf Sci. 16: 27–36.

    Article  Google Scholar 

  • Roman, M. R., 1984. Utilization of detritus by copepod Acartia tonsa. Limnol. Oceanogr. 24: 949–959.

    Article  Google Scholar 

  • Rothhaupt, K. O., 1990. Change of the functional responses of the rotifers Branchionus rubens and B. calyciflorus with particle size. Limnol. Oceanogr. 35: 24–32.

    Article  Google Scholar 

  • Stearns, D. E. &R. B. Forward Jr., 1984. Copepod photobehavior in a simulated natural light environment and its relation to noctural vertical migration. Mar. Biol. 82: 91–100.

    Article  Google Scholar 

  • Stottrup, J. G &J. Jensen, 1990. Influence of algal diet on feeding and egg-production of the calanoid copepod Acartia tonsa Dana. J. exp. mar. Biol. Ecol. 141: 97–105.

    Article  Google Scholar 

  • Vargo, S. &A. N. Sastry, 1977. Interspecific differences in toler-ance of Eurytemora affinis and Acartia tonsa from an estuarine anoxic basin to low dissolved oxygen and hydrogen sulfide. In D. S. McMusky &A. J. Berry (eds), Physiology and behaviour of marine organisms, Pergamon press, Oxford: 219–226.

    Google Scholar 

  • White, J. R. &M. R. Roman, 1992. Egg production by the calanoid copepod Acartia tonsa in the mesohaline Cheseapeake Bay: the importance of food resources and temperature. Mar. Ecol. Prog. Ser. 86: 239.

    Article  Google Scholar 

  • Woodmansee, R. A., 1958. The seasonal distribution of the zoo-plankton of Chicken Bay, Florida. Ecology 39: 247–262.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Gérard Balvay

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Gaudy, R., Verriopoulos, G., Cervetto, G. (1995). Space and time distribution of zooplankton in a Mediterranean lagoon (Etang de Berre). In: Balvay, G. (eds) Space Partition within Aquatic Ecosystems. Developments in Hydrobiology, vol 104. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-0293-3_20

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-0293-3_20

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4129-4

  • Online ISBN: 978-94-011-0293-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics