Skip to main content

Functional genomics and cell wall biosynthesis in loblolly pine

  • Chapter
Book cover Plant Cell Walls

Abstract

Loblolly pine (Pinus taeda L.) is the most widely planted tree species in the USA and an important tree in commercial forestry world-wide. The large genome size and long generation time of this species present obstacles to both breeding and molecular genetic analysis. Gene discovery by partial DNA sequence determination of cDNA clones is an effective means of building a knowledge base for molecular investigations of mechanisms goveming aspects of pine growth and development, including the commercially relevant properties of secondary cell walls in wood. Microarray experiments utilizing pine cDNA clones can be used to gain additional information about the potential roles of expressed genes in wood formation. Different methods have been used to analyze data from first-generation pine microarrays, with differing degrees of success. Disparities in predictions of differential gene expression between cDNA sequencing experiments and microarray experiments arise from differences in the nature of the respective analyses, but both approaches provide lists of candidate genes which should be further investigated for potential roles in cell wall formation in differentiating pine secondary xylem. Some of these genes seem to be specific to pine, while others also occur in model plants such as Arabidopsis, where they could be more efficiently investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

AGP:

arabinogalactan protein

APRP:

adhesive proline-rich protein

EST:

expressed sequence tags

GRP:

glycine-rich protein

OMT:

O-methyltransferase

PHY:

phytocyanin

PRP:

proline-rich protein

XET:

xyloglucan endotransglycosylase

References

  • Allona, I., Quinn, M., Shoop, E., Swope, K, St. Cyr, S., Carlis, J., Riedl, J., Retzel, E., Campbell, M.M., Sederoff, R. and Whetten, R. 1998. Analysis of xylem formation in pine by cDNA sequeneing. Proc. Natl. Aead. Sci. USA 95: 9693–9698.

    Google Scholar 

  • Altsehul, S.F., Madden, T.L., Sehaffer, A.A., Zhang, J., Zhang, Z., Miller, Wand Lipman, D.J. 1997 Gapped BLAST and PSI-BLAST a new generation of protein database search programs. Nucl. Acids Res. 25: 3389–3402.

    Google Scholar 

  • Audie, S. and Claverie, J.M. 1997 The signifieanee of digital gene expression profiles. Genome Res. 7: 986–995. Software available through http://igs-server.enrs-mrs.fr

    Google Scholar 

  • Bennett, M.D. and Leiteh, L.J. 1995. Nuclear DNA amounts in angiosperms. Ann. Bot. 76: 113–176.

    Google Scholar 

  • Biermann, C.J. 1993. Essentials of pulping and papermaking. Academic Press, San Diego, CA.

    Google Scholar 

  • Chapple, C. and Carpita, N. 1998. Plant cell walls as targets for bioteehnology. Curr. Opin. Plant Biol. 1: 179–185.

    Google Scholar 

  • Diatehenko, L., Lau, Y.F., Campbell, A.P., Chenehik, A., Moqadam, F., Huang, B., Lukyanov, S., Lukyanov, K, Gurskaya, N., Sverdlov, E.D. and Siebert P.D. 1996. Suppression subtractive hybridization: a method for generating differentially regulated or tissue-specific cDNA probes and libraries. Proc. Natl. Acad. Sci. USA 93: 6025–6030.

    Google Scholar 

  • Dhugga, K.S., Tiwari, S.C. and Ray, P.M. 1997. A reversibly glyeosylated polypeptide (RGPI) possibly involved in plant cell wall synthesis: purifieation, gene cloning, and trans-Golgi loealization. Proc. Natl. Acad. Sci. USA 94: 7679–7684.

    Google Scholar 

  • Dunnett, C.W. 1955. A multiple comparison proeedure for comparing several treatments with a control. J. Am. Statist. Ass. 50: 1096–1121.

    Google Scholar 

  • Eisen, M.B., Spellman, P.T., Brown, P.O. and Botstein, D. 1998. Cluster analysis and display of genome-wide expression patterns. Proc. Natl. Acad. Sci. USA 95: 14863–14868.

    Google Scholar 

  • Ewing, B. and Green, P. 1998. Base-calling of automated sequencer traces using phred. II. Error probabilities. Genome Res 8: 186–194.

    Google Scholar 

  • Friedman, N., Linial, M., Nachman, I. and Pe’er, D. 2000. Using Bayesian networks to analyze expression data. J. Comput. Biol., in press.

    Google Scholar 

  • Harada, H. and Côté, W.A. 1985. The strueture of wood. In: T. Higuehi (Ed.) Biosynthesis and Biodegradation of Wood Components, Academic Press, Orlando, FL, pp. 1–42.

    Google Scholar 

  • Higuchi, T. 1997. Biochemistry and Molecular Biology of Wood. Springer-Verlag, Berlin.

    Google Scholar 

  • Kamm, A., Doudrick, R.L., Heslop-Harrison, J.S. and Schmidt, T. 1996. The genomic and physical organization of Tyl-copia-like sequences as a eomponent of large genomes in Pinus elliottii var. elliottii and other gymnosperms. Proc. Natl. Acad. Sci. USA 93: 2708–2713.

    Google Scholar 

  • Kerr, M.K. and Churchill, G.A. 2000. Experimental design for gene expression microarrays. Submitted; manuseript available at http://www.jax.org/research/churchill/pubs/index.html.

    Google Scholar 

  • Kerr, M.K., Martin, M. and Churchill, G.A. 2000. Analysis of variance for gene expression microarray data. Submitted; manuscript available at http://www.jax.org/research/churchill/pubs/index.html.

    Google Scholar 

  • Kinlaw, C.S., Ho, T., Gerttula, S.M., Gladstone, E. and Harry, D.E. 1996. Gene discovery in loblolly pine through cDNA sequencing. In: Somatie Cell Genetics and Molecular Genetics of Trees (Forestry Seienees vol. 49), Kluwer Academic Publishers, Dordrecht, Netherlands, pp. 175–182.

    Google Scholar 

  • Kinlaw, C. and Neale, D. 1997. Complex gene farnilies in pine genomes. Trends Plant Sci. 2: 356–359.

    Google Scholar 

  • Kossaek, D. 1989. The IFG eopia-like element: eharaeterization of a transposable element present in high eopy number in Pinus and a history of the pines using IFG as a marker. Ph.D. dissertation, University of California at Davis, CA

    Google Scholar 

  • Kossaek, D.S. and Kinlaw, C.S. 1999 IFG, a gypsy-like retrotransposon in Pinus (Pinaceae), has an extensive history in pines. Plant Mol. Biol. 39: 417–426.

    Google Scholar 

  • Kriebel, H.B. 1985. DNA Sequence components of Pinus strobus nuclear genome. Can. J. For. Res. 15: 1–4.

    Google Scholar 

  • Lewin, M. and Goldstein, I.S. 1991. Wood Structure and Composition. Marcel Dekker, New York.

    Google Scholar 

  • Loopstra, C.A. and Sederoff, R.R. 1995. Xylem-specific gene expression in loblolly pine. Plant Mol. Biol. 27: 277–291.

    Google Scholar 

  • Loopstra, C.A., Puryear, J.D. and No, E.G. 2000. Purification and cloning of an arabinogalactan-protein from xylem of loblolly pine. Planta 210: 686–689.

    Google Scholar 

  • Megraw, R.A. 1985. Wood Quality Factors in Loblolly Pine: the influence of tree age, position in tree, and cultural practice on wood specific gravity, fiber length, and fibril angle. TAPPI Press, Atlanta, GA

    Google Scholar 

  • Mellerowicz, E.J., Baucher, M., Sundberg, B. and Boerjan, W. 2001. Unravelling cell wall formation in the woody dicot stem. Plant Mol. Biol., this issue.

    Google Scholar 

  • Meyer-Berthaud, B., Scheckler, S.E. and Wendt, J. 1999. Archacopteris is the earliest known modem tree. Nature 398: 700–701.

    Google Scholar 

  • Murray, B.G. 1998. Nuclear DNA amounts in gymnosperms. Ann. Bot. 82: 3–15.

    Google Scholar 

  • Newton, M.A., Kendziorski, C.M., Richmond, C.S., Blattner, E.R. and Tsui, K.W. 2000. On differential variability of expression ratios: Improving statistical inference about gene expression changes from microarray data. J. Comput. Biol., in press.

    Google Scholar 

  • O’Malley, D., Whetten, R., Bao, W, Chen, C.-L. and Sederoff, R.R. 1993. The role oflaccase in lignification. Plant J. 4: 751–757.

    Google Scholar 

  • O’Malley, D.M., Grattapaglia, D., Chaparro, J.X., Wilcox, P.L., Amerson, H.V., Liu, B.-H., Wbetten, R., McKeand, S.E., Kuhlman, E.G., McCord, S., Crane, B. and Sederoff, R.R. 1996. Molecular markers, forest genetics and tree breeding. In: J.P Gustafson and R.B. Flavell (Eds.) Genomes of Plants and Animals: Proceedings of the 21st Stadler Symposium (Columbia, MO), Plenum, New York, pp. 87–102.

    Google Scholar 

  • Ralph, J., MacKay, J.J., Hatfield, R.D., O’Malley, D.M., Wbetten, R.W. and Sederoff, R.R. 1997. Abnormal lignin in a loblolly pine mutant. Science 277: 235–239.

    Google Scholar 

  • Reiter, W.D. 1998. The molecular analysis of cell wall components. Trends Plant Sci. 3: 27–32.

    Google Scholar 

  • Saltrnan, D., Thompson, L. and Bennett, K.M. 1998. Pulp and Paper Primer. TAPPI Press, Atlanta, GA.

    Google Scholar 

  • Schouten, J., de Kam, R.J., Fetter, K. and Hoge, J.H. 2000. Over-expression of Arabidopsis thaliana SKPI homologues in yeast inactivates the Migl repressor by destabilising the F-box protein Grr1. Mol. Gen. Genet. 263: 309–319.

    Google Scholar 

  • Sederoff, R., Campbell, M., O’Malley, D. and Whetten, R. 1994. Genetic regulation of lignin biosynthesis and the potential modification of wood by genetic engineering in loblolly pine. Rec. Adv. Phytochem. 28: 313–355.

    Google Scholar 

  • Somerville, C. and Somerville, S. 1999. Plant functional genomics. Science 285: 380–383.

    Google Scholar 

  • Somssich, I.E., Wernert, P., Kiedrowski, S. and Hahlbrock, K. 1996. Arabidopsis thaliana defense-related protein ELI3 is an aromatic alcohol:NADP(+) oxidoreductase. Proc. Natl. Acad. Sci. USA 93: 14199–14203.

    Google Scholar 

  • Sterky, E., Regan, S., Karlsson, J., Hertzberg, M., Rohde, A., Holmberg, A., Amini, B., Bhalerao, R., Larsson, M., Villarroel, R., Van Montagu, M., Sandberg, G., Olsson, O., Teeri, T.T., Boerjan, W., Gustafsson, P., Uhlen, M., Sundberg, B. and Lundeberg, J. 1998. Gene discovery in the wood-forming tissues of poplar: analysis of 5692 expressed sequence tags. Proc. N atl. Acad. Sci. USA 95: 13330–13335.

    Google Scholar 

  • Timell, T.E. 1986 Compression Wood in Gymnosperms (3 vols.). Springer-Verlag, Berlin.

    Google Scholar 

  • Wakarniya, I., Newton, R.J., Johnston, J.S. and Price, H.J. 1993. Genome size and environmental factors in the genus Pinus. Am. J. Bot. 80: 1235–1241.

    Google Scholar 

  • Winzeler, E.A, Schena, M. and Davis, R.W. 1999. Fluorescence-based expression monitoring using microarrays. Meth. Enzymol. 306: 3–18.

    Google Scholar 

  • Wojtaszek, P. 2000. Genes and plant cell walls: a difficult relationship. Biol. Rev. Camb. Phil. Soc. 75: 437–475.

    Google Scholar 

  • Wolfinger, R.D., Gibson, G., Wolfinger, E.D., Bennett, L., Hamadeh, H., Bushel, P., Afshari, C. and Paules, R.S. 2000. Assessing gene significance from cDNA microarray expression data via mixed models. Manuscript available from http://statgen.ncsu.edu/ggibson/Publications/WGetc.pdf

    Google Scholar 

  • Zhang, Y., Sederoff, R.R. and Allona, I. 2000. Differential expression of genes encoding cell wall proteins in vascular tissues from vertical and bent pine trees. Tree Physiol 20: 457–466.

    Google Scholar 

  • Zobel, B.J. and Sprague, J.R. 1998. Juvenile Wood in Forest Trees. Springer-Verlag, Berlin.

    Google Scholar 

  • Zobel, B.J. and van Buitenen, J. P. 1989. Wood Variation: Its Causes and Control. Springer-Verlag, Berlin.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Whetten, R., Sun, YH., Zhang, Y., Sederoff, R. (2001). Functional genomics and cell wall biosynthesis in loblolly pine. In: Carpita, N.C., Campbell, M., Tierney, M. (eds) Plant Cell Walls. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0668-2_16

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0668-2_16

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-3861-4

  • Online ISBN: 978-94-010-0668-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics