Skip to main content

Origin and evolution of a new gene expressed in the Drosophila sperm axoneme

  • Chapter
Origin and Evolution of New Gene Functions

Part of the book series: Contemporary Issues in Genetics and Evolution ((CIGE,volume 10))

Abstract

Sdic is a new gene that evolved recently in the lineage of Drosophila melanogaster. It was formed from a duplication and fusion of the gene AnnX, which encodes annexin X, and Cdic, which encodes the intermediate polypeptide chain of the cytoplasmic dynein. The fusion joins AnnX exon 4 with Cdic intron 3, which brings together three putative promoter elements for testes- specific expression of Sdic: the distal conserved element (DCE) and testesspecific element (TSE) are derived from AnnX, and the proximal conserved element (PCE) from Cdic intron 3. Sdic transcription initiates within the PCE, and translation is initiated within the sequence derived from Cdic intron 3, continuing through a 10 base pair insertion that creates a new splice donor site that enables the new coding sequence derived from intron 3 to be joined with the coding sequence of Cdic exon 4. A novel protein is created lacking 100 residues at the amino end that contain sequence motifs essential for the function of cytoplasmic dynein intermediate chains. Instead, the amino end is a hydrophobic region of 16 residues that resembles the amino end of axonemal dynein intermediate chains from other organisms. The downstream portion of Sdic features large deletions eliminating Cdic exons v2 and v3, as well as multiple frameshift deletions or insertions. The new protein becomes incorporated into the tail of the mature sperm and may function as an axonemal dynein intermediate chain. The new Sdic gene is present in about 10 tandem repeats between the wildtype Cdic and AnnX genes located near the base of the X chromosome. The implications of these findings are discussed relative to the origin of new gene functions and the process of speciation.

The authors Jose María Ranz and Ana Rita Ponce contributed equally to this work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

Abbreviations

dynein IC:

dynein intermediate polypeptide chain

DCE:

distal conserved element

PCE:

proximal conserved element

TSE:

testes-specific element

References

  • Aniento, F., N. Emans, G. Griffiths & J. Gruenberg, 1993. Cytoplasmic dynein-dependent vesicular transport from early to late endosomes. J. Cell Biol. 123: 1373–1387.

    Article  PubMed  CAS  Google Scholar 

  • Aravin, A.A., N.M. Naumova, A.V. Tulin, V.V. Vagin, Y.M. Rozovsky & V.A. Gvozdev, 2001. Double-stranded RNA-mediated silencing of genomic tandem repeats and transpos-able elements in the D. melanogaster germline. Curr. Biol. 11: 1017–1027.

    Google Scholar 

  • Atlan, A., H. Mercot, C. Landre & C. Montchampmoreau, 1997. The sex-ratio trait in Drosophila simulans: geographical distribution of distortion and resistance. Evolution 51: 1886–1895.

    Article  Google Scholar 

  • Balakireva, M.D., Y.Y. Shevelyov, D.I. Nurminsky, K.J. Livak & V.A. Gvozdev, 1992. Structural organization and diversification of Y-linked sequences comprising Su(Ste) genes in Drosophila melanogaster. Nucl. Acids Res. 20: 3731–3736.

    Article  PubMed  CAS  Google Scholar 

  • Barton, G.J., R.H. Newman, P.S. Freemont & M.J. Crumpton, 1991. Amino acid sequence analysis of the annexin super-gene family of proteins. Eur. J. Biochem. 198: 749–760.

    Article  PubMed  CAS  Google Scholar 

  • Begun, D.J., 1997. Origin and evolution of a new gene descended from alcohol dehydrogenase in Drosophila. Genetics 145: 375–382.

    PubMed  CAS  Google Scholar 

  • Bozzetti, M.R., S. Massari, P. Finelli, F. Meggio, L.A. Pinna, B. Boldyreff, O.G. Issinger, G. Palumbo, C. Ciriaco, S. Bonaccorsi & S. Pimpinelli, 1995. The Ste locus, a component of the parasitic cry-ste system of Drosophila melanogaster, encodes a protein that forms crystals in primary spermatocytes and mimics properties of the beta subunit of casein kinase. Proc. Natl. Acad. Sci. USA 92: 6067–6071.

    Article  PubMed  CAS  Google Scholar 

  • Civetta, A. & R.S. Singh, 1995. High divergence of reproductive tract proteins and their association with postzygotic reproductive isolation in Drosophila melanogaster and Drosophila virilis group species. J. Mol. Evol. 41: 1085–1095.

    Article  PubMed  CAS  Google Scholar 

  • Corthesy-Theulaz, I., A. Pauloin & S.R. Rfeffer, 1992. Cytoplasmic dynein participates in the centrosomal localization of the Golgi complex. J. Cell. Biol. 118: 1333–1345.

    Article  PubMed  CAS  Google Scholar 

  • Coulthart, M.B. & R.S. Singh, 1988. High level of divergence of male-reproductive-tract proteins between Drosophila melanogaster and its sibling species, D. simulans. Mol. Biol. Evol. 5: 182–191.

    PubMed  CAS  Google Scholar 

  • Dillman, J.F., L.P. Dabney & K.K. Pfister, 1996. Cytoplasmic dynein is associated with slow axonal transport. Proc. Natl. Acad. Sci. USA 93: 141–144.

    Article  PubMed  CAS  Google Scholar 

  • Geisow, M.J., 1991. Annexins: forms without function but not without fun. Trends Biotechnol. 9: 180–181.

    Article  Google Scholar 

  • Gilbert, W., 1978. Why genes in pieces? Nature 271: 501.

    Article  PubMed  CAS  Google Scholar 

  • Jeffs, P.S., E.C. Holmes & M. Ashburner, 1994. The molecular evolution of the alcohol dehydrogenase and alcohol dehydrogenase-related genes in the Drosophila melanogaster species subgroup. Mol. Biol. Evol. 11: 287–304.

    PubMed  CAS  Google Scholar 

  • King, S.M., E. Barbarese, J.F. Dillman, R.S. Patel-King, J.H. Carson & K.K. Pfister, 1996. Brain cytoplasmic and flagellar outer arm dyneins share a highly conserved Mr 8,000 light chain. J. Biol. Chem. 271: 19358–19366.

    Article  PubMed  CAS  Google Scholar 

  • Laurie, C.C., 1997. The weaker sex is heterogamatic: 75 years of Haldane’s rule. Genetics 147: 937–951.

    PubMed  CAS  Google Scholar 

  • Livak, K.J., 1990. Detailed structure of the Drosophila melanogaster Stellate genes and their transcripts. Genetics 124: 303–316.

    PubMed  CAS  Google Scholar 

  • Long, M., 2001. Evolution of novel genes. Curr. Opin. Genet. Dev. 11:673–680.

    Article  PubMed  CAS  Google Scholar 

  • Long, M. & C.H. Langley, 1993. Natural selection and the origin of jingwei, a chimeric processed functional gene in Drosophila. Science 260: 91–95.

    Article  PubMed  CAS  Google Scholar 

  • Long, M., C. Rosenberg & W. Gilbert, 1995. Intron phase correlations and the evolution of the intron/exon structure of genes. Proc. Natl. Acad. Sci. USA 92.

    Google Scholar 

  • Luque, T., G. Marfany & R. Gonzàlez-Duarte, 1997. Characterization and molecular analysis of Adh retrosequences in species of the Drosophila obscura group. Mol. Biol. Evol. 14: 1316–1325.

    Article  PubMed  CAS  Google Scholar 

  • Ma, S., L. Trivinos-Lagos, R. Graf & R.L. Chisholm, 1999. Dynein intermediate chain mediated dynein-dynactin interaction is required for interphase microtubule organization and centrosome replication and separation in Dictyostelium. J. Cell Biol. 147: 1261–1273.

    Article  PubMed  CAS  Google Scholar 

  • Martinez-Cruzado, J.C., C. Swimmer, M.G. Fenerjian & F.C. Kafatos, 1988. Evolution of the autosomal chorion locus in Drosophila. I. General organization of the locus and sequence comparisons of genes s15 and s19 in evolutionary distant species. Genetics 199: 663–677.

    Google Scholar 

  • Mazumdar, M., A. Mikami, M.A. Gee & R.B. Vallee, 1996. In vitro motility from recombinant dynein heavy chain. Proc. Natl. Acad. Sci. USA 93: 6552–6556.

    Article  PubMed  CAS  Google Scholar 

  • McClean, J.R., C.J. Merrill, P.A. Powers & B. Ganetzky, 1994. Functional identification of the segregation distorter locus of Drosophila melanogaster by germline transformation. Genetics 137:201–209.

    Google Scholar 

  • Mckee, B.D. & M.T. Satter, 1996. Structure of the Y chromosomal Su(Ste) locus in Drosophila melanogaster and evidence for localized recombination among repeats. Genetics 142: 149–161.

    PubMed  CAS  Google Scholar 

  • Michiels, F., A. Gasch, B. Kaltschmidt & R. Renkawitz-Pohl, 1989. A 14bp promoter element directs the testis specificity of the Drosophila beta 2 tubulin gene. EMBO J. 8: 1559–1565.

    PubMed  CAS  Google Scholar 

  • Nurminsky, D.I., E.N. Moriyama, E.R. Lozovskaya & D.L. Haiti, 1995. Molecular phylogeny and genome evolution in the Drosophila virilis group: duplications of the alcohol dehydrogenase gene. Mol. Biol. Evol. 13: 132–149.

    Article  Google Scholar 

  • Nurminsky, D.I., E.V. Benevolenskaya, M.V. Nurminskaya, Y.Y. Shevelyov, D.L. Haiti & V.A. Gvozdev, 1998a. Cytoplasmic dynein intermediate chain isoforms with different targeting properties created by tissue-specific alternative splicing. Mol. Cell. Biol. 18:6816–6825.

    PubMed  CAS  Google Scholar 

  • Nurminsky, D.I., M.V. Nurminskaya, D. De Aguiar & D.L. Hartl, 1998b. Selective sweep of a newly evolved sperm-specific gene in Drosophila. Nature 396: 572–575.

    Article  PubMed  CAS  Google Scholar 

  • Nurminsky, D., D. De Aguiar, C.D. Bustamante & D.L. Hartl, 2001. Chromosomal effects of rapid gene evolution in Drosophila melanogaster. Science 291: 128–130.

    Article  PubMed  CAS  Google Scholar 

  • Palumbo, G., S. Bonaccorsi, L.G. Robbins & S. Pimpinelli, 1994. Genetic analysis of stellate elements of Drosophila melanogaster. Genetics 138: 1181–1197.

    PubMed  CAS  Google Scholar 

  • Paschal, B.M., A. Mikami, K.K. Pfister & R.B. Vallee, 1992. Homology of the 74-kD cytoplasmic dynein subunit with a flagellar dynein polypeptide suggests an intracellular targeting function. J. Cell Biol. 118: 1133–1143.

    Article  PubMed  CAS  Google Scholar 

  • Petrov, D.A. & D.L. Haiti, 1997. Trash DNA is what gets thrown away: high rate of DNA loss in Drosophila. Gene 205: 279–289.

    Article  PubMed  CAS  Google Scholar 

  • Petrov, D.A. & D.L. Haiti, 1998. High rate of DNA loss in the D. melanogaster and D. virilis species groups. Mol. Biol. Evol. 15: 293–302.

    Article  PubMed  CAS  Google Scholar 

  • Petrov, D.A., E.R. Lozovskaya & D.L. Hartl, 1996. High intrinsic rate of DNA loss in Drosophila. Nature 384: 346–349.

    Article  PubMed  CAS  Google Scholar 

  • Robin, C., R.J. Russell, K.M. Medveczky & J.G. Oakeshott, 1996. Duplication and divergence of the genes of the esterase cluster of D. melanogaster. J. Mol. Evol. 43: 241–252.

    Article  PubMed  CAS  Google Scholar 

  • Russell, S.R.H. & K. Kaiser, 1994. A Drosophila melanogaster chromosome-2L repeat is expressed in the male germ line. Chromosoma 103: 63–72.

    Article  PubMed  CAS  Google Scholar 

  • Schroer, T.A., E.R. Steuer & M.P. Sheetz, 1989. Cytoplasmic dynein is a minus end-directed motor for membranous organelles. Cell 7:331–343.

    Google Scholar 

  • Snyder, M. & N. Davidson, 1983. Two gene families clustered in a small region of the Drosophila genome. J. Mol. Biol. 166: 101–118.

    Article  PubMed  CAS  Google Scholar 

  • Steffen, W., S. Karki, K.T. Vaughan, R.B. Vallee, E.L.F. Holzbaur, D.G. Weiss & S.A. Kuznetsov, 1997. The involvement of the intermediate chain of cytoplasmic dynein in binding the motor complex to membranous organelles of Xenopus oocytes. Mol. Biol. Cell 8: 2077–2088.

    PubMed  CAS  Google Scholar 

  • Steinemann, M. & S. Steinemann, 1990. Evolutionary changes in the organization of the major Lcp gene cluster during sex chromosomal differentiation in the sibling species Drosophila persimilis, D. pseudoobscura and D. miranda. Chromosoma 99: 424–431.

    Article  CAS  Google Scholar 

  • Thomas, S. & R.S. Singh, 1992. A comprehensive study of genetic variation in natural population of Drosophila melanogaster. VII. Varying rates of genic divergence as revealed by two-dimensional electrophoresis. Mol. Biol. Evol. 9: 507–525.

    PubMed  CAS  Google Scholar 

  • Ting, C.T., S.C. Tsaur & C.I. Wu, 2000. The phylogeny of closely related species as revealed by the genealogy of a speciation gene, Odysseus. Proc. Natl. Acad. Sci. USA 97: 5313–5316.

    Article  PubMed  CAS  Google Scholar 

  • Ting, C.T., S.C. Tsaur, M.L. Wu & C.I. Wu, 1998. A rapidly evolving homeobox at the site of a hybrid sterility gene. Science 282: 1501–1504.

    Article  PubMed  CAS  Google Scholar 

  • Vaisberg, E.A., M.P. Koonce & J.R. McIntosh, 1993. Cytoplasmic dynein plays a role in mammalian mitotic spindle formation. J. Cell Biol. 123:849–858.

    Article  PubMed  CAS  Google Scholar 

  • Vieira, C.P., J. Vieira & D.L. Hartl, 1997. The evolution of small gene clusters: evidence for an independent origin of the maltase gene cluster in D. virilis and D. melanogaster. Mol. Biol. Evol. 14: 985–993.

    Article  PubMed  CAS  Google Scholar 

  • Wang, W., J.M. Zhang, C Alvarez, A. Llopart & M. Long, 2000. The origin of the Jingwei gene and the complex modular structure of its parental gene, yellow emperor, in Drosophila melanogaster. Mol. Biol. Evol. 17: 1294–1301.

    Article  PubMed  CAS  Google Scholar 

  • Wilkerson, C.G., S.M. King, A. Koutoulis, G.J. Pazour & G.B. Witman, 1995. The 78,000 M(r) intermediate chain of Chlamydomonas outer arm dynein is a WD-repeat protein required for arm assembly. J. Cell Biol. 129: 169–178.

    Article  PubMed  CAS  Google Scholar 

  • Wu, C.-I. & A.W. Davis, 1993. Evolution of postmating reproductive isolation: the composite nature of Haldane’s rule and its genetic bases. Am. Nat. 142: 187–212.

    Article  PubMed  CAS  Google Scholar 

  • Wu, C.-I., N.A. Johnson & M.F. Palopoli, 1996. Haldane’s rule and its legacy: why are there so many sterile males? Trends Ecol. Evol. 11:281–284.

    Article  PubMed  CAS  Google Scholar 

  • Wu, C.-I., T.W. Lyttle, M.-L. Wu & G.-F. Lin, 1988. Association between a satellite DNA sequence and the Responder of Segregation Distorter in D. melanogaster. Cell 54: 179–189.

    Article  PubMed  CAS  Google Scholar 

  • Xiang, X., S.M. Beckwith & N.R. Morris, 1994. Cytoplasmic dynein is involved in nuclear migration in Aspergillus nidulans. Proc. Natl. Acad. Sci. USA 91: 2100–2104.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

M. Long

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Ranz, J.M., Ponce, A.R., Hartl, D.L., Nurminsky, D. (2003). Origin and evolution of a new gene expressed in the Drosophila sperm axoneme. In: Long, M. (eds) Origin and Evolution of New Gene Functions. Contemporary Issues in Genetics and Evolution, vol 10. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0229-5_12

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0229-5_12

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-3982-6

  • Online ISBN: 978-94-010-0229-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics