Skip to main content

Part of the book series: NATO Science Series ((NAII,volume 95))

  • 686 Accesses

Abstract

The perception of time is given by the happening of some events that determines a variation in the state of the observed system. In this sense a computation, i.e. a set of well defined transformations that, starting from an initial state (the input) brings to a final state (the output), can be considered a time generator. Each ticking of the clock corresponds to the computer changes of its states. The speed of computation leads to a different perception of time as well as traveling by airplanes changed the perception of spatial distances.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. von Neumann, J. (1946) The principles of large-scale computing machines, reprinted from Annals History Computers 3 (3), 263.

    Article  Google Scholar 

  2. Landauer, R. (1961) Irreversibility and heat generation in the computing processes, IBM Journal Research Device 5, 183.

    Article  MathSciNet  MATH  Google Scholar 

  3. Toffoli, T. (1981) Bicontinuous extensions of invertible combinatorial functions, Mathematical Systems Theory 14, 13.

    Article  MathSciNet  MATH  Google Scholar 

  4. Hillis, W.D. (1985) The Connection Machine, MIT Press, Cambridge, MA.

    Google Scholar 

  5. Feynman, R.P. (1996) Feynman Lectures on Computation, ABP, Perseus Books.

    Google Scholar 

  6. Deutsch, D. (1985) Quantum theory, the Church-Turing principle, and the universal quantum computer, Proceedings of the Royal Society of London A 400, 97.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  7. Deutsch, D. (1989) Quantum computational networks, Proceedings of the Royal Society of London A 425, 73.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  8. Turing, A. (1936) On computable numbers, with an application to the Entscheidungsproblem, Proceedings of London Mathematical Society (Series 2) 42, 230.

    Article  MathSciNet  Google Scholar 

  9. Gill, J. (1977) Computational complexity of probabilistic Turing machines, SIAM Journal Computer 6, 675.

    Article  MATH  Google Scholar 

  10. Bernstein, E. and Vazirani, U. (1997) Quantum complexity theory, SIAM Journal Computer 26 (5), 1411.

    Article  MathSciNet  MATH  Google Scholar 

  11. Berthiaume, A. and Brassard, G. (1992) The quantum challenge to structural complexity, Proceedings of the 7th Annual IEEE Conference on Structure in Complexity, 132.

    Google Scholar 

  12. Chaitin, G.J. (1987) Information, Randomness and Incompleteness, 2nd edition, World Scientific, Singapore.

    Book  MATH  Google Scholar 

  13. Linden, N. and Popescu, S. (1998) The halting problem for quantum omputers, quant-ph/0104062.

    Google Scholar 

  14. Örner, B. (1998) A Procedural Formalism for Quantum Computing, Master-thesis, Technical University of Vienna.

    Google Scholar 

  15. Di Gesù, V. and Jaroszkiewicz, G. (2001) On the role of interval discrete function in quantum computing, preprint #101-01, School of Mathematical Sciences, University of Nottingham.

    Google Scholar 

  16. Deutsch, D., Barrenco, A., and Ekert, A. (1995) Universality in quantum computation, Proceedings of the Royal Society of London A 449, 669.

    Google Scholar 

  17. Bennet, C., Brassard, G., Crepeau, C., Jozsa, R., Peres A., and Wootters, W. (1993) Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channel, Physical Review Letters 49, 1895.

    Article  ADS  Google Scholar 

  18. Bouwmeester, D., Pan, J.-W., Mattle, K., Eibl, M., Weinfurter, H., and Zeilinger, A. (1997) Experimental quantum teleportation, Nature 390, 575.

    Google Scholar 

  19. Boschi, D., Branca, S., De Martini, F., Hardy, L., and Popescu, S. (1998) Experimental relation of teleporting an unknown pure quantum state via dual classical and Einstein-Podolski-Rosen channels, Physical Review Letters 80, 1121.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  20. Shor, P.W. (1994) Algorithms for quantum computation: discrete logarithm and factoring, Proceedings of the 35th Annual Symposium on the Foundation of Computer Science.

    Google Scholar 

  21. Rivest, R., Shamir, A., and Adelman, L. (1978) A method for obtaining digital signatures and public key cryptoSystems, Communication of the ACM 21, 120.

    Article  MATH  Google Scholar 

  22. Durr, C. and Hoyer, P. (1996) A quantum algorithm for finding the minimum, Los Alamos preprint archive, http://xxx.lanl.gov/archive/quant-ph/9607014.

  23. Grover, L. (1996) A fast quantum-mechanical algorithm for database search, Proceedings of the 28th annual ACM Symposium on the theory of computing, 212.

    Google Scholar 

  24. Macchiavello, C., Palma, G.M., and Zeilinger, A. (Eds.) (2001) Quantum computation and quantum information theory, World Scientific, Singapore.

    Book  MATH  Google Scholar 

  25. Ekert, A., and Josza, R. (1996) Quantum computation and Shor’s factoring algorithm, Review Modern Physics 68, 733.

    Article  ADS  Google Scholar 

  26. Jozsa, R. (1998) Geometric issues in the foundations of science, in S. Huggett, L. Mason, K.P. Tod, S.T. Tsou and N.M.J. Woodhouse (eds.), The Geometric Universe, Oxford University Press, Oxford; also at quant-ph/9707034.

    Google Scholar 

  27. Bennett, C.H. and Wiesner, S.J. (1992) Communication via one-and two-particle operators on Einstein-Podolsky-Rosen states, Physical Review Letters 69, 2881–2884.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  28. Di Vincenzo, D.P. (1997) Topics in quantum computers, in L.L. Sohn, L.P. Kouwenhoven and G. Schön (eds.), Mesoscopic Electron Transport (NATO AST Series E), Kluwer Academic Publishers, Dordrecht, also cond-mat/9612126.

    Google Scholar 

  29. Fazio, R., Palma, G.M., and Siewert, J. (1999) Fidelity and leakage of Josephson qubits, Physical Review Letters 83, 5385.

    Article  ADS  Google Scholar 

  30. Palma, G.M., Suominen, K.-A., and Ekert, A.K. (1996) Quantum computers and dissipation, Proceedings of the Royal Society of London A 452, 567.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  31. Kempe, J., Bacon, D., Lidar, D.A., and Whaley, K.B. (2001) Theory of decoherencefree fault-tolerant universal quantum computation, Physical Review A 63 (4), 2307.

    ADS  Google Scholar 

  32. Zeilinger, A. (1999) Experiment and the foundations of quantum physics, Review Modern Physics 71 (2), 288.

    Article  ADS  Google Scholar 

  33. Knill, E., Laflamme, R., and Milburn, G.J. (2001) A scheme for efficient quantum computation with linear optics, Nature 409, 49.

    Article  ADS  Google Scholar 

  34. Raimond, J.M., Brune, M., and Haroche, S. (2001) Manipulating quantum entanglement with photons and atoms in a cavity, Review Modern Physics 73, 656.

    Article  MathSciNet  Google Scholar 

  35. Cirac, J.I. and Zoller, P. (1995) Quantum computations with cold trapped ions, Physical Review Letters 74, 4091.

    Article  ADS  Google Scholar 

  36. Duan, M.-M, Cirac, J.I., and Zoller, P. (2001) Geometric manipulation of trapped ions for quantum computation, Science 292, 1695.

    Article  ADS  Google Scholar 

  37. Makhlin, Y., Schön, G., and Shnirman, A. (1999) Josephson junction qubits with controlled couplings, Nature 398, 305.

    Article  ADS  Google Scholar 

  38. Makhlin, Y., Schön, G., and Shnirman, A. (2001) Quantum state engeneering with Josephson junction devices, Review Modern Physics 73, 357.

    Article  ADS  Google Scholar 

  39. Falci, G., Fazio, R., Palma, G.M., Siewert, J., and Vedral, V. (2000) Detection of geometric phases in superconducting nanostructures, Nature 403, 869.

    Article  Google Scholar 

  40. Nakamura, Y., Pashkin, Yu.A., and Tsai, J.S. (1999) Coherent control of macroscopic quantum states in a single-Cooper-pair box, Nature 398, 786.

    Article  ADS  Google Scholar 

  41. Vion, D., Aassime, A., Cottet, A., Jovez, P., Pothier, H., Urbina, C., Esteve, D., and Devoret, M.H. (2002) Manipulating the quantum state of an electrical circuit, Science 296, 886.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Gesù, V.D., Palma, G. (2003). Quantum Computing: A Way to Break Complexity?. In: Buccheri, R., Saniga, M., Stuckey, W.M. (eds) The Nature of Time: Geometry, Physics and Perception. NATO Science Series, vol 95. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0155-7_21

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0155-7_21

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-1201-3

  • Online ISBN: 978-94-010-0155-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics