Skip to main content

Superposition of electric fields

  • Chapter
Teaching Physics
  • 442 Accesses

Abstract

On moving from contact interactions to interactions at a distance, two things change. Because there is no point of contact between the two interacting objects, specifying the object on which a given force is acting becomes much less ambiguous: a clear choice has to be made of the object concerned. That is an advantage. But the situation is complicated by the fact that a given object becomes capable of interacting with another regardless of their respective locations. The whole of space is involved twice over. When analysing such situations, we must expect to have to add forces “created”, as we often say, by a large number of objects; the principle of superposition comes into play, which is discussed in more detail later. On a macroscopic scale, it may be possible to summarise all the actions1 exerted on a body at a distance quite simply in terms of a kind of equivalent point of application; gravity is an example of this2. The situation can also be considerably simplifed in the case of the inverse square forces (proportional to 1/r2) involved in conditions of spherical symmetry3.

In association with Sylvie Rainson, the main author of the study

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Andersson, B. 1986. The experiential Gestalt of Causation: a common core to pupils’ preconceptions in science. European Journal of Science Education,. 8(3), pp. 151–171.

    Google Scholar 

  • Barbas, A. & Psillos, D. 1993. Designing a computer-based course on basic electricity for prospective primary school teachers. In P. Lijnse (Ed.): European Research in Science Education. Proceedings of the first PhD Summer school, Utrecht: Cdß Press, pp. 215–223.

    Google Scholar 

  • Benseghir, A. & Closset, J.L. 1993. Transition électrostatique electrocinétique: points de vue historique et didactique, Didaskalia, no2, pp. 31–47.

    Google Scholar 

  • Benseghir, A. & Closset, J.-L. 1996. The electrostatics-electrokinetics transition. Historical and educational difficulties, International Journal of Science Education, 18(2), pp. 179–192.

    Article  Google Scholar 

  • Chabay, R.W. & Sherwood, B.A. 1995. Electric and Magnetic Interactions, New York: John Wiley & Sons.

    Google Scholar 

  • Chauvet, F. 1994. Construction d’une compréhension de la couleur intégrant sciences, techniques et perception: principes d’élaboration et evaluation d’une séquence d’enseignement, Thesis, University of Paris 7 “Denis Diderot”.

    Google Scholar 

  • Chauvet, F. 1996a. Un instrument pour évaluer un état conceptuel: exemple du concept de couleur, Didaskalia, no8, pp. 61–79.

    Google Scholar 

  • Chauvet, F. 1996b. Teaching colour: designing and evaluation of a sequence, European Journal of Teacher Education, 19(2), pp. 119–134.

    Article  Google Scholar 

  • Debru, C. 2002. Causalité, Temporalité, Fonction — Kant, Helmoltz, Mach. Meeting: Causalité et relation fonctionnelle, Ecole Doctorale Savoirs Scientifiques, University of Paris 7 “Denis Diderot”.

    Google Scholar 

  • De Kleer, J. & Brown, J. S. 1981. Mental models of physical mechanisms and their acquisition. In R.J. Anderson (Ed.), Cognitive skills and their Acquisition, Hillsdale, NJ: Lawrence Erlbaum.

    Google Scholar 

  • Driver, R., Guesnes, E. & Tiberghien, A. 1985. Some features of Children’s Ideas and their Implications for Teaching, in Driver, R., Guesne, E. & Tiberghien, A. (Eds): Children’s Ideas in Science. Milton Keynes: Open University Press, pp. 193–201.

    Google Scholar 

  • Driver, R. 1989. Changing conceptions. In P. Adey et al. (Eds): Adolescent Development and School Science, London: Falmer Press, pp. 141–162.

    Google Scholar 

  • Eylon, S. & Ganiel, U. 1990. Macro-micro relationships: the missing link between electrostatics and electrodynamics in students’ reasoning, International Journal of Science Education, 12(1), pp 79–94.

    Article  Google Scholar 

  • Gutierrez, R. & Ogborn, J. 1992. A causal framework for analysing alternative conceptions, International Journal of Science Education, 14(2), pp. 201–229.

    Article  Google Scholar 

  • Härtel, H. 1993. New approach to introduce Basic Concepts in Electricity. In M. Caillot (Ed.), Learning Electricity and Electronics with Advanced Educational Technology, NATO ASI Series F, vol. 115, Berlin: Springer-Verlag, pp. 5–21.

    Google Scholar 

  • Johsua, S. 1995. Réponse au point de vue de P.J. Lijnse paru dans Didaskalia no3: “La recherche-développement: une voie vers une “structure didactique” de la physique empiriquement fondée”. Didaskalia no6, pp. 133–135.

    Google Scholar 

  • Johsua, S. & Dupin, J.J. 1989. Représentations et modélisations: le débat scientifique dans la classe et l’apprentissage de la physique, Berne: Peter Lang, 1989.

    Google Scholar 

  • Kant, E. 1963. Critique de la Raison Pure, traduction A. Tremesaygues & B. Pacaud, Paris: Presses Universitaires de France.

    Google Scholar 

  • Lijnse, P.L. 1994. La recherche-développement: une voie vers une “structure didactique” de la physique empiriquement fondée, Didaskalia no3, pp. 93–108.

    Google Scholar 

  • Millar, R. 1989. Constructive criticisms, International Journal of Science Education, Special issue, 11(5), pp. 587–596.

    Article  Google Scholar 

  • Ogborn, J. 1993. Approches théorique et empirique de la causalité, Didaskalia 1(1), pp. 29–477.

    Google Scholar 

  • Ogborn, J., Kress, G. Martins, I. & McGillicuddy, K. 1996. Explaining Science in the Classroom. Buckingham: Open University Press.

    Google Scholar 

  • Psillos, D. 1995. Adapting Instruction to Students’ Reasoning. In D. Psillos (Ed.). “European Research in Science Education”. Proceedings of the second PhD Summerschool. Leptokaria, Thessaloniki: Art of Text, pp. 57–71.

    Google Scholar 

  • Rainson, S. 1995. Superposition des champs électriques et causalité: Etude de raisonnements, élaboration et évaluation d’une intervention pédagogique en classe de Mathématiques Spéciales Technologiques, Thesis, University of Paris 7 “Denis Diderot”.

    Google Scholar 

  • Rainson, S., Tranströmer, G. & Viennot, L. 1994. Students’ understanding of superposition of electric fields. American Journal of Physics, 62(11), pp. 1026–1032.

    Article  Google Scholar 

  • Rainson, S. & Viennot, L. 1998. Charges et champs électriques: difficultés et éléments de stratégies pédagogiques en Mathématiques Spéciales Technologiques. Didaskalia no12, pp. 31–59.

    Google Scholar 

  • Rozier, S. & Viennot, L. 1991. Students’ reasoning in thermodynamics, International Journal of Science Education, 13(2), pp 159–170.

    Article  Google Scholar 

  • Sherwood, B.A. & Chabay, R.W. 1993. Electrical Interactions and the Atomic Structure of Matter. In M. Caillot (Ed.), Learning Electricity and Electronics with Advanced Educational Technology, NATO ASI Series F, vol. 115, Berlin: Springer-Verlag pp. 23–35.

    Google Scholar 

  • Viennot, L. & Rainson, S. 1992. Students’ reasoning about the superposition of electric fields, International Journal of Science Education, 14(4), pp. 475–487.

    Article  Google Scholar 

  • Viennot, L. & Rainson, S. 1999. Design and evaluation of a research-based teaching sequence: The superposition of electrics fields. International journal of Science Education, Special issue: Conceptual Development in Science Education (continued), 21(1), pp. 1–16.

    Google Scholar 

  • Viennot L 1993. Temps et causalité dans les raisonnements des étudiants, Didaskalia 1(1), pp 13–27

    Google Scholar 

  • Viennot, L. 1994. A multidimensional approach in characterising a conceptual state in students: the role played by questions. In D. Psillos (Ed.), European Research in Science Education II, Art of Text Thessaloniki, pp. 178–187.

    Google Scholar 

  • Viennot, L. 1996. Raisonner en Physique, la part du sens commun. Bruxelles: De Boeck (ou 2001: Reasoning in Physics, the Part of Common Sense, Dordrecht: Kluwer).

    Google Scholar 

  • White, B.Y., Frederiksen, J.R. & Spoehr, K.T. 1993. Conceptual models for Understanding the behavior of Electrical circuits. In M. Caillot (Ed.), Learning Electricity and Electronics with Advanced Educational Technology, NATO ASI Series F, vol. 115, Berlin: Springer-Verlag, pp.77–95.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Viennot, L. (2003). Superposition of electric fields. In: Viennot, L. (eds) Teaching Physics. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0121-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0121-2_5

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-1276-1

  • Online ISBN: 978-94-010-0121-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics