Skip to main content

Wall Effects on the Motion of a Single Particle

  • Chapter
Low Reynolds number hydrodynamics

Part of the book series: Mechanics of fluids and transport processes ((MFTP,volume 1))

Abstract

The effect of containing walls on the rate of settling of a particle is, in many ways, similar to the effect of a second particle, discussed in Chapter 6. In order to treat the behavior of a group of particles settling in a container, it is necessary first to establish the effect of walls on the particles separately. These effects may then be combined with those due to particle interaction by an extension of the method of reflections discussed in Section 8–3. Rapid convergence appears to be obtained when the dimensions of the particle are small compared with those of the containing wall, and when the wall effect can be developed for each reflection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. Bart, E., M. S. Thesis, New York University, 1959.

    Google Scholar 

  2. Belinfante, D. C, Proc. Camb. Phil. Soc. 58 (1962), 405.

    Article  ADS  MATH  Google Scholar 

  3. Bohlin, T., Trans. Roy. Inst. Technol. (Stockholm), No. 155 (1960); see also comments by

    Google Scholar 

  4. see also comments by H. Faxen, Kolloid Z. 167 (1959), 146.

    Article  Google Scholar 

  5. Brenner, H., Chem. Eng. Sci. 17 (1962), 435.

    Article  Google Scholar 

  6. —, J. Fluid Mech. 12 (1962), 35.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  7. —, and J. Happel, J. Fluid Mech. 4 (1958), 195.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  8. —, Chem. Eng. Sci. 16 (1961), 242.

    Article  Google Scholar 

  9. —, Appl. Sci. Res. (ser. A) 13 (1964), 81.

    Article  MATH  Google Scholar 

  10. —, J. Fluid Mech. 18 (1964), 144.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  11. —, and R. M. Sonshine, Quart. J. Mech. Appl. Math. 17 (1964), 55.

    Article  MATH  Google Scholar 

  12. Citron, S. J., J. Appl. Mech. 29 (1962), 188.

    Article  MATH  Google Scholar 

  13. Craig, F. F., Ph. D. Thesis, Univ. Pittsburgh, 1951; see Univ. Pittsburgh Bull. 48, No. 10 (1952).

    Google Scholar 

  14. Famularo, J., D. Eng. Sci. Thesis, New York University, 1962.

    Google Scholar 

  15. —, Private communications (1963).

    Google Scholar 

  16. Faxen, H., Arkiv. Mat. Astron. Fys. 17, No. 27 (1923); dissertation, Uppsala Univ., 1921; see also Oseen’s46 treatise.

    Google Scholar 

    Google Scholar 

  17. —, Arkiv. Mat. Astron. Fys. 20, No. 8 (1927).

    Google Scholar 

    Google Scholar 

  18. —, Ann. Phys. 68 (1922), 89; the term in (a/l)4 has been added only recently (Faxen, H., private communication, 1964).

    Article  Google Scholar 

  19. —, Arkiv. Mat. Astron. Fys. 18, No. 29 (1924).

    Google Scholar 

    Google Scholar 

  20. —, Arkiv. Mat. Astron. Fys. 19, No. 22 (1925).

    Google Scholar 

    Google Scholar 

  21. —, and H. Dahl, Arkiv. Mat. Astron. Fys. 19A, No. 13 (1925).

    Google Scholar 

    Google Scholar 

  22. —, Neuvième Congrès des Mathemeticiens Scandinaves, Helsingfors (1938).

    Google Scholar 

  23. —, H., Proc. Roy. Swedish Inst. Eng. Res. (Stockholm), No. 187 (1946).

    Google Scholar 

  24. Fayon, A. M., and J. Happel, A. I. Ch. E. Jour. 6 (1960), 55.

    Google Scholar 

  25. Goldsmith, H. L., and S. G. Mason, J. Coll. Sci. 17 (1962), 448.

    Article  Google Scholar 

  26. Fidleris, V., and R. L. Whitmore, Brit. J. Appl. Phys. 12 (1961), 490.

    Article  ADS  Google Scholar 

  27. Ghildyal, C. D., Z. Angew. Math. Mech. 42 (1962), 508.

    MATH  Google Scholar 

  28. Haberman, W. L. and R. M. Sayre, David Taylor Model Basin Report No. 1143. Washington, D.C.: U. S. Navy Dept., 1958.

    Google Scholar 

  29. —, David Taylor Model Basin Report No. 1563. Washington, D.C.: U.S. Navy Dept., 1961.

    Google Scholar 

  30. —, David Taylor Model Basin Report No. 1578. Washington, D.C.: U.S. Navy Dept., 1961.

    Google Scholar 

  31. Happel, J., and B. J. Byrne, Ind. Eng. Chem. 46 (1954), 1181

    Article  Google Scholar 

  32. corrections-Ind. Eng. Chem. 49 (1957), 1029.

    Article  Google Scholar 

  33. Happel, J., and H. Brenner, A.I.Ch.E. Jour. 3 (1957), 506; also supplement deposited as document 5441 with the American Documentation Institute, Library of Congress, Washington, D.C.

    Google Scholar 

  34. —, and P. A. Ast, Chem. Eng. Sci. 11 (1960), 286.

    Google Scholar 

  35. Howland, R. C. J., and R. C. Knight, Proc. Cambr. Phil. Soc. 29 (1933), 277.

    Article  ADS  MATH  Google Scholar 

  36. Takaisi, Y., J. Phys. Soc. Japan 10 (1955), 407

    Article  MathSciNet  ADS  Google Scholar 

  37. Takaisi, Y., J. Phys. Soc. Japan 11 (1956), 1004.

    Article  Google Scholar 

  38. Jeffery, G. B., Proc. Roy. Soc. A102 (1922), 161.

    ADS  Google Scholar 

  39. —, Proc. Lond. Math. Soc. 14 (1915), 327.

    Google Scholar 

  40. Kochin, N. E., I. A. Kibel, and N. U. Rose, Theoretical Hydrodynamics, Vol. 2, 3rd ed., (in Russian). Moscow, 1948.

    Google Scholar 

  41. Ladenburg, R., Ann. Phys. 23 (1907), 447.

    Article  Google Scholar 

  42. Lamb, H., Hydrodynamics, 6th ed. Cambridge: Cambridge Univ. Press, 1932.

    MATH  Google Scholar 

  43. Landau, L. P., and E. M. Lifshitz, Fluid Mechanics. Reading, Mass.: Addison-Wesley, 1959.

    Google Scholar 

  44. Lin, C. C, The Theory of Hydrodynamic Stability. Cambridge: Cambridge Univ. Press, 1955.

    MATH  Google Scholar 

  45. Lorentz, H. A., Abhand. theor. Phys., Leipzig 1 (1907), 23.

    Google Scholar 

  46. MacKay, G. D. M., M. Suzuki, and S. G. Mason, J. Coll. Sci. 18 (1963), 103.

    Article  Google Scholar 

  47. McNown, J. S., H. M. Lee, M. B. McPherson, and S. M. Engez., Proc. Seventh Intern. Cong. Appl. Mech., London, 1948.

    Google Scholar 

  48. Oberbeck, A., J. reine angew. Math. 81 (1876), 62.

    Article  Google Scholar 

  49. Oseen, C., Neuere Methoden und Ergebnisse in der Hydrodynamik. Leipzig: Akademische Verlagsgesellschaft, 1927.

    MATH  Google Scholar 

  50. Pfeffer, R., and J. Happel, Unpublished experiments (1958).

    Google Scholar 

  51. Rothfus, R. R., C. C. Monrad, and V. E. Senecal, Ind. Eng. Chem. 42 (1950), 2511.

    Article  Google Scholar 

  52. Rubinow, S. I., and J. B. Keller, J. Fluid Mech. 11 (1961), 447.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  53. Segré, G., and A. Silberberg, J. Fluid Mech. 14 (1962), 115

    Article  ADS  MATH  Google Scholar 

  54. Segré, G., and A. Silberberg, J. Fluid Mech. 14 (1962), 136.

    Article  ADS  Google Scholar 

  55. Simha, R., Kolloid Z. 76 (1936), 16.

    Article  Google Scholar 

  56. Slezkin, N. A., Dynamics of Viscous Incompressible Fluids (in Russian). Moscow: Gos. Izdat. Tekh.-Teor. Lit., 1955.

    Google Scholar 

  57. Smythe, W. R., Phys. Fluids 4 (1961), 756.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  58. Stimson, M., and G. B., Jeffery, Proc. Roy. Soc. A111 (1926), 110.

    ADS  Google Scholar 

  59. Sommerfeld, A., Mechanics of Deformable Bodies. New York: Academic Press, 1950.

    MATH  Google Scholar 

  60. Takaisi, Y., J. Phys. Soc. Japan 10 (1955), 685

    Article  MathSciNet  ADS  Google Scholar 

  61. Takaisi, Y., J. Phys. Soc. Japan 11 (1956), 1092.

    Article  Google Scholar 

  62. Wakiya, S., J. Phys. Soc. Japan 8 (1953), 254.

    Article  Google Scholar 

  63. —, Res. Rep. Fac. Eng. Niigata Univ. (Japan) 5 (1956), 1.

    Google Scholar 

  64. —, J. Phys. Soc. Japan 12 (1957), 1130.

    Article  Google Scholar 

  65. —, Res. Rep. Fac. Eng. Niigata Univ. (Japan) 9 (1960), 31.

    Google Scholar 

  66. —, Res. Rep. Fac. Eng. Niigata Univ. (Japan) 7 (1958), 1.

    Google Scholar 

  67. —, Res. Rep. Fac. Eng. Niigata Univ. (Japan) 8 (1959), 17.

    Google Scholar 

  68. —, Res. Rep. Fac. Eng. Niigata Univ. (Japan) 10 (1961), 15.

    Google Scholar 

  69. Watson, G. N., A Treatise on the Theory of Bessel Functions. Cambridge: Cambridge Univ. Press, 1922.

    MATH  Google Scholar 

  70. Westberg, R., Proc. Roy. Swedish Academy Eng. Sci. (Stockholm) No. 197, (1948).

    Google Scholar 

  71. White, C. M., Proc. Roy. Soc. A186 (1946), 472.

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Martinus Nijhoff Publishers, The Hague

About this chapter

Cite this chapter

Happel, J., Brenner, H. (1983). Wall Effects on the Motion of a Single Particle. In: Low Reynolds number hydrodynamics. Mechanics of fluids and transport processes, vol 1. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-8352-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-8352-6_7

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-247-2877-0

  • Online ISBN: 978-94-009-8352-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics