Skip to main content

Infinite Ordered Sets, A Recursive Perspective

  • Conference paper
Ordered Sets

Part of the book series: NATO Advanced Study Institutes Series ((ASIC,volume 83))

  • 605 Accesses

Abstract

This work surveys the development of the theory of infinite ordered sets along the lines suggested by recursion theory. Since recursion theory is principally concerned with explicit effective constructions, this line of research retains much of the character of the mathematics of finite ordered sets. There are two distinct categories into which the results fall: the first is concerned with individual infinite ordered sets on which the ordering can be mechanically determined, while the second concerns whether the elementary sentences true in a given class of ordered sets can be distinguished by an algorithm. Roughly, an elementary sentence is one that refers to the elements of an ordered set rather than, say, sets of elements. “Width 3” is a notion expressible by an elementary sentence, but “finite width” cannot be expressed even by a set of such sentences. The requisite background in recursion theory and in the logic of elementary sentences can be found in Barwise [1977].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • K. Baker, P. Fishburn, and F. Roberts (1971) Partial orders of dimension 2, interval orders, and interval graphs, Networks 2, 11–28.

    Article  MathSciNet  Google Scholar 

  • J. Barwise (1977a) An introduction to first order logic, pp. 5–46 in Barwise [1977].

    Google Scholar 

  • J. Barwise (1977) Handbook of Mathematical Logic, Studies in Logic v. 90, North-Holland Publishing Company, Amsterdam.

    Google Scholar 

  • J. Bell and M. Machover (1977) A Course in Mathematical Logic, North-Holland Publishing Company, Amsterdam.

    MATH  Google Scholar 

  • K. Bogart, I. Rabinovich, and W. Trotter (1976) A bound on the dimension of interval orders, J. Comb. Theory, 21, 319–328.

    Article  MathSciNet  MATH  Google Scholar 

  • C. C. Chang and H. H. Keisler (1973) Model Theory, North-Holland Publishing Company, Amsterdam.

    MATH  Google Scholar 

  • K. H. Chen (1976) Recursive Well-Founded Orderings, Ph.D. Thesis, Duke University.

    Google Scholar 

  • A. Church (1938) The constructive second class number, Bull. Amer. Math. Soc. 44, 229–232.

    Google Scholar 

  • A. Church and S. Kleene (1937) Formal definitions in the theory of ordinal numbers, Fundamenta Mathematicae 28, 11–21.

    Google Scholar 

  • N. Cutland (1980) Computability, an introduction to recursive function theory, Cambridge University Press, Cambridge.

    MATH  Google Scholar 

  • M. Davis (1958) Computability and Unsolvability, McGraw-Hill Book Company, New York.

    MATH  Google Scholar 

  • M. Davis (1965) The Undecidable, Raven Press, New York.

    Google Scholar 

  • M. Davis (1977) Unsolvable problems, pp. 567–594 in Barwise [1977].

    Google Scholar 

  • R. P. Dilworth (I950) A decomposition theorem for partially ordered sets, Annals of Math. 51, 161–166.

    Article  MathSciNet  Google Scholar 

  • J. Doner, A. Mostowski, and A. Tarski (1978) The elementary theory of well-ordering — a metamathematicai study —, in Logic Colloquium 77, (MacIntyre, Pacholski and Paris, eds.), North-Holland Publishing Company, Amsterdam, 1–54.

    Chapter  Google Scholar 

  • B. Dushnik and E. Miller (1941) Partially ordered sets, Amer. J. Math. 63, 600–610.

    Article  MathSciNet  Google Scholar 

  • A. Ehrenteucht (1959) Decidability of the theory ol one linear ordering relation, Notices Amer. Math. Soc. 6, 268–269.

    Google Scholar 

  • H. Enderton (1972) A Mathematical Introduction to Logic, Academic Press, New York.

    MATH  Google Scholar 

  • H. Enderton (1977) Elements of recursion theory, 527–566 in Barwise [1977].

    Google Scholar 

  • Y. Ershov, I. Lavrov, A. Taimanov, and M. Taitslin (1965) Elementary theories (Russian,) Uspehi Matematisheski Nauk 20. Translation: Russian Mathematical Surveys 20, 35–105.

    Google Scholar 

  • L. Feiner (1967) Orderings and Boolean Algebras not Isomorphic to Recursive Ones, Ph.D. Thesis, M.I.T.

    Google Scholar 

  • S. Fellner (1976) Recursiveness and Finite Axiomatizability of Linear Orderings. Ph.D. Thesis, Rutgers University.

    Google Scholar 

  • P. Fishburn (1970) Intransitive indifference with unequal indifference intervals, J. Math. Psychol. 7, 144–149.

    Article  MathSciNet  MATH  Google Scholar 

  • M. Garey and D. Johnson (1978) Computers and Intractability: A Guide to the Theory of NP-Completeness, W. H. Freeman, San Francisco.

    Google Scholar 

  • A. Grzegorczyk (1951) Undecidability of some topological theories, Fund. Math. 38, 137–152.

    MathSciNet  Google Scholar 

  • Y. Gurevich and S. Shelah (1981) Modest theory of short chains, II, J. Symbolic Logic 44, 491–502.

    Google Scholar 

  • L. Hay, A. Manaster, and J. Rosenstein (1975) Small recursive ordinals, many-one degrees, and the arithmetical difference hierarchy, Annals of Math. Logic 8, 297–343.

    Article  MathSciNet  MATH  Google Scholar 

  • L. Hay, A. Manaster, and J. Rosenstein (1982) Concerning partial recursive similarity transformations of linearly ordered sets, Pacific J. Mathematics.

    Google Scholar 

  • J. Hopcroft and J. Ullman (1979) Introauction to Automata Theory, Languages, and Computation, Addison-Wesley, Reading, Massachusetts.

    Google Scholar 

  • D. Kelly (1977) The 3-irreducible partially ordered sets, Canaa. J. Math. 29, 367–383.

    Article  MATH  Google Scholar 

  • D. Kelly and W. T. Trotter (1982) Dimension theory for ordered sets, this volume, 171–211.

    Google Scholar 

  • H. Kierstead (1981) An effective version of Dilworth’s theorem, Trans. Amer. Math. Soc.

    Google Scholar 

  • H. Kierstead and W. T. Trotter (1982) An extremal problem in recursive combinatorics.

    Google Scholar 

  • S. Kleene (1938) On notation for ordinal numbers, J. Symbolic Logic 3, 150–155.

    Article  MATH  Google Scholar 

  • M. Lerman (1981) On recursive linear orderings, in: Logic Year 1979–80, (Lerman, Schmerl, Soare, eds.), Lecture Notes in Mathematics v. 859, Springer-Verlag, Berlin.

    Chapter  Google Scholar 

  • M. Lerman and J. Rosenstein (1981) On recursive linear orderings: II.

    Google Scholar 

  • M. Machtey and P. Young (1978) An Introduction to the General Theory of Algorithms, North-Hoiland Publishing Company, Amsterdam.

    MATH  Google Scholar 

  • A. Mal’cev (1962) On recursive Abelian groups, Soviet Matn. Dokl. 3, 1431–1434.

    MathSciNet  Google Scholar 

  • A. Manaster (1975) Completeness, Compactnessand Undecidability, Prentice Hall, Englewood Cliffs, New Jersey.

    MATH  Google Scholar 

  • A. Manaster and J. Remmel (1981a) Partial orderings of fixed finite dimension: model companions and density, J. Symbolic Logic.

    Google Scholar 

  • A. Manaster and J. Remmel (1981b) Some recursion theoretic aspects of dense two dimensional partial orders.

    Google Scholar 

  • A. Manaster and J. Rosenstein (1980a) Two dimensional partial orderings; recursive model theory, J. Symbolic Logic, 45, 121–132.

    Article  MathSciNet  MATH  Google Scholar 

  • A. Manaster and J. Rosenstein (1980b) Two dimensional partial orderings: undecidability. J. Symbolic Logic 45, 133–143.

    Article  MathSciNet  MATH  Google Scholar 

  • W. Markwald (1954) Zur Theorie der konstructiven Wohlord-nungen, Math. Annalen, 127, 135–149.

    Article  MathSciNet  MATH  Google Scholar 

  • A. Miller (1977) Ph.D. Thesis, University of Wisconsin.

    Google Scholar 

  • Y. Moschovakis (1981) Descriptive Set Theory, Studies in Logic v. 100, North-Holland Publishing Co., Amsterdam.

    Google Scholar 

  • A. Nurtazin (1974) Strong and weak constructivizations and computable families, Algebra and Logic 13, 177–184.

    Article  MathSciNet  Google Scholar 

  • H. Putnam (1973) Recursive functions and hierarchies, in The Thirteenth Herbert Ellsworth Slaught Memorial Papers, American Mathematical Monthly, 80 (suppl.), 68–86.

    Google Scholar 

  • M. Rabin (1965) A simple method for undecidability proofs and some applications, in Logic, Methodology, and Philosophy of Science 11, (Y. Bar-Hille, ed.), North-Holland, Amsterdam, 58–68.

    Google Scholar 

  • M. Rabin (1965) Decidable theories, 565–629 in Barwise [1977].

    Google Scholar 

  • M. Rabin (1969) Decidability of second order theories and automata on infinite trees, Trans. Amer. Math. Soc. 141, 1–35.

    MathSciNet  MATH  Google Scholar 

  • I. Rabinovitch (1973) The Dimension Theory of Semiorders and Interval Orders, Ph.D. dissertation, Dartmouth College.

    Google Scholar 

  • A. Robinson and E. Zakon (1960) Elementary properties of ordered abelian groups, Trans. Amer. Math. Soc. 96, 222–235.

    Article  MathSciNet  MATH  Google Scholar 

  • H. Rogers (1967) Theory of Recursive Functions and Effective Computability, McGraw-Hill Book Company, New York.

    MATH  Google Scholar 

  • J. Rosenstein (1969) χcategoricity of linear orderings, Fundamenta Mathematicae 44, 1–5.

    MathSciNet  Google Scholar 

  • J. Rosenstein (1981) Linear Orderings, Academic Press, New York.

    Google Scholar 

  • M. Rubin (1974) Theories of.linear orderings, Israel J. of Mathematics 17, 392–443.

    Article  MATH  Google Scholar 

  • J. Schmerl (1977) On χ0 categoricity and the theory of trees, Fundamenta Mathematicae 94, 121–128.

    MathSciNet  MATH  Google Scholar 

  • J. Schmerl (1980) Decidability and χ0 categoricity of theories of partially ordered sets, J. Symbolic Logic 45, 585–611.

    Article  MathSciNet  MATH  Google Scholar 

  • D. Scott and P. Suppes (1958) Foundational aspects of theories of measurements, J. Symbolic Logic 23, 113–128.

    Article  MathSciNet  Google Scholar 

  • S. Shelah (1975) The monadic theory of order, Annals of Mathematics 102, 379–419.

    Article  MathSciNet  MATH  Google Scholar 

  • C. Spector (1955) Recursive well orderings, J. Symbolic Logic 206, 151–163.

    MathSciNet  Google Scholar 

  • J. Steel (1978) On Vaught’s Conjecture, in Cabal Seminar 76–77, Lecture Notes in Mathematics, Springer-Verlag, Berlin.

    Google Scholar 

  • J. Stillwell (1977) Concise survey of mathematical logic, J. Austral. Math. Soc. Ser. A, 24, 139–161.

    Article  MathSciNet  MATH  Google Scholar 

  • E. Szpilrajn (E. Marczewski) (1930) Sur l’extension de l’ordre partial, Fund. Math. 16, 386–389.

    MATH  Google Scholar 

  • A. Tarski (1949b) Undecidability of the theories of lattices and projective geometries, J. Symbolic Logic 14, 77–78.

    MathSciNet  Google Scholar 

  • A. Tarski with A. Mostowski and R. Robinson (1953) Undecidable Theories, Studies in Logic, North-Holland Publishing Company, Amsterdam.

    Google Scholar 

  • W. T. Trotter (1974) Dimension of the crown Snk, Discrete Math. 8, 85–103.

    Article  MathSciNet  MATH  Google Scholar 

  • W. T. Trotter and J. Moore (1976) Characterization problems for graphs, partially ordered sets, lattices, and families of sets, Discrete Math. 16, 361–381.

    Article  MathSciNet  Google Scholar 

  • R. Vaught (1954) Applications of the Löwenheim-Skolem-Tarski theorem to problems of completeness and decidability, Indag. Math. 16, 467–472.

    MathSciNet  Google Scholar 

  • R. Vaught (1961) Denumerable models of complete theories, in Infinitistic Methods, Pergamon, London.

    Google Scholar 

  • R. Vaught (1973) Some aspects of the theory of models, in the Thirteenth Herbert Ellsworth Slaught Memorial Papers, Amer. Math. Monthly 80 (supp.), 3–37.

    MathSciNet  MATH  Google Scholar 

  • C. Wagner (1979) On Martin’s Conjecture, Ph.D. Thesis, Cornell University.

    Google Scholar 

  • R. Watnick (1979) Recursive and Constructive Linear Orderings, Ph.D. Thesis, Rutgers University.

    Google Scholar 

  • R. Watnick (1981) Constructive and recursive scattered order types, in Logic Year (1979–80), M. Lerman, J. Schmerl, and R. Soare, eds.), Lecture Notes in Mathematics vol. 859, Springer-Verlag, Berlin.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1982 D. Reidel Publishing Company

About this paper

Cite this paper

McNulty, G.F. (1982). Infinite Ordered Sets, A Recursive Perspective. In: Rival, I. (eds) Ordered Sets. NATO Advanced Study Institutes Series, vol 83. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-7798-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-7798-3_9

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-009-7800-3

  • Online ISBN: 978-94-009-7798-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics