Skip to main content

Asymptotic Properties of Isolated Systems: Recent Developments

  • Chapter
General Relativity and Gravitation

Part of the book series: Fundamental Theories of Physics ((FTPH,volume 9))

Abstract

Since this report belongs to the general plenary session, I thought it would be best to present a review of the current status of the field in broad terms. Thus, I will omit all proofs and try to convey the essential ideas instead. Furthermore, in the main text, technical points will be occasionally skipped, and, in some cases, results presented will not be the most general ones available today. The hope is that the style adopted will facilitate non-experts to get a good feeling for the type of issues that are discussed in the field. I must say, however, that the discussion is not evenly distributed among the various topics of interest: the emphasis is on the material which was published during the last three or four years and which is not covered in other talks at this conference. The experts will find that some of the material is presented from a new angle — the relation between the conformally rescaled and physical space-time quantities is stressed — and that a few of the ideas are new (in the sense that they have not appeared in print before).

Alfred P. Sloan Research Fellow. Work supported in part by the NSF contract PHY 80 08155 with Syracuse University.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arnowitt, R., Deser, S., and Misner, C.W.: 1962, “The Dynamics of General Relativity”, in L. Witten (ed.), Gravitation, an Introduction to current research, Wiley, New York, p. 227.

    Google Scholar 

  • Ashtekar, A.: 1980, “Asymptotic Structure of the Gravitational Field and Spatial Infinity”, in A. Held (ed.), General Relativity and Gravitation, One Hundred Years After the Birth of Albert Einstein, Plenum, New York, p. 37.

    Google Scholar 

  • Ashtekar, A.: 1981a, “Radiative Degrees of Freedom of the Gravitational Field in Exact General Relativity”, J. Math. Phys., 22, 2885.

    Article  MathSciNet  ADS  Google Scholar 

  • Ashtekar, A.: 1981b, “Asymptotic Quantization of the Gravitational Field”, Phys. Rev. Lett., 46, 573.

    Article  MathSciNet  ADS  Google Scholar 

  • Ashtekar, A.: 1981c, “Quantization of the radiative modes of the gravitational field”, in C.J. Isham, R. Penrose, and D.W. Sciama (eds), Quantum Gravity 2, Oxford University Press, London, p. 416.

    Google Scholar 

  • Ashtekar, A., and Dray, T.: 1981, “On the Existence of Solution to Einstein’s Equation with Non-Zero Bondi News”, Commun. Math. Phys., 79, 581.

    Article  MathSciNet  ADS  Google Scholar 

  • Ashtekar, A., and Hansen, R.O.: 1978, “A unified treatment of null and spatial infinity in general relativity. I. Universal structure, asymptotic symmetries, and conserved quantities at spatial infinity”, J. Math. Phys., 19, 1542.

    Article  MathSciNet  ADS  Google Scholar 

  • Ashtekar, A., and Horowitz, G.T.: 1982, “Energy-Momentum of isolated systems cannot be null”, Phys. Lett., 89A, 181.

    MathSciNet  ADS  Google Scholar 

  • Ashtekar, A. and Magnon-Ashtekar, A.: 1979a, “Energy-Momentum in General Relativity”, Phys. Rev. Lett., 43, 181.

    Article  MathSciNet  ADS  Google Scholar 

  • Ashtekar, A., and Magnon-Ashtekar, A.: 1979b, “On conserved quantities in general relativity”, J. Math. Phys., 20, 793.

    Article  MathSciNet  ADS  Google Scholar 

  • Ashtekar, A.: and Magnon-Ashtekar, A.: 1983, “From i° to 3+1 description of spatial infinity”, preprint.

    Google Scholar 

  • Ashtekar, A., and Sen, A.: 1982, “NUT 4-momenta are forever”, J. Math. Phys., 23, 2168.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Ashtekar, A., and Streubel, A.: 1981, “Symplectic geometry of radiative modes and conserved quantities at null infinity”, Proc. R. Soc. London, A376, 585.

    MathSciNet  ADS  Google Scholar 

  • Ashtekar, A., and Winicour, J.: 1982, “Linkages and Hamiltonians at null infinity”, J. Math. Phys., 23, 2410.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Beig, R.: 1981a, “The multipole Expansion in General Relativity”, Acta Phys. Austriaca, 53, 249.

    MathSciNet  Google Scholar 

  • Beig, R.: 1981b, Private Communication.

    Google Scholar 

  • Beig, R.: 1983, “Integration of Einstein’s equations near spatial infinity”, preprint-UWThPh 1983–10.

    Google Scholar 

  • Beig, R., and Schmidt, B.G.: 1982, “Einstein’s Equations near Spatial Infinity”, Commun. Math. Phys., 87, 65.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Beig, R., and Simon, W.: 1980, “Proof of a Multipole Conjecture due to Geroch”, Commun. Math. Phys., 78, 75.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Beig, R., and Simon, W.: 1981, “On the multipole expansion for stationary space-times”, Proc. R. Soc. London, A376, 333.

    MathSciNet  ADS  Google Scholar 

  • Beig, R., and Simon, W.: 1982, “The multipole structure of stationary space-times”, preprint UWThPh 1982–7.

    Google Scholar 

  • Bičak, J., Hoenselaers, C., and Schmidt, E.G.: 1983, “The solutions of the Einstein equations for uniformly accelerated particles without nodal singularities”, Max Planck Institute preprint, to appear in J. Math. Phys.

    Google Scholar 

  • Bondi, H., Van der Burg, M.J.G., and Metzner, A.W.K.: 1962, “Gravitational waves in general relativity VII. Waves from axi-symmetric isolated systems”, Proc. R. Soc. London, A269, 21.

    ADS  Google Scholar 

  • Bramson, B.D.: 1975, “Relativistic angular momentum for asymptotically flat Einstein-Maxwell manyfolds”, Proc. R. Soc. London, A341, 463.

    MathSciNet  ADS  Google Scholar 

  • Choquet-Bruhat, Y. and Christodoulou, D.C.: 1981, “The Cauchy problem I”, Acta Math., 146, 129.

    Article  MathSciNet  MATH  Google Scholar 

  • Christodoulou, D.C., and O’Murchadha, N.: 1981, “The Boost Problem in General Relativity”, Commun. Math. Phys., 80, 271.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Dixon, W.G.: 1977, in J. Ehlers (ed.) “Extended bodies in general relativity, their description and motion”, Isolated gravitating systems in general relativity, North-Holland, Amsterdam.

    Google Scholar 

  • Eardley, D. and Sachs, R.K.: 1973, “Space-Times with a future projective infinity”, J. Math. Phys., 14, 209.

    Article  MathSciNet  ADS  Google Scholar 

  • Friedrich, H.: 1982, “On the existence of asymptotical ly flat and empty space-times”, in N. Deruelle, and T. Piran (eds), Gravitational Radiation, North -Holland, Amsterdam.

    Google Scholar 

  • Friedrich, H.: 1983, “The Hyperboloidal Cauchy Problem in General Relativity”, in B. Bertotti, F. de Felice, A. Pascolini (eds), 10th International Conference on General Relativity and Gravitation. Contributed Papers, CNR Roma, vol.1, p. 401.

    Google Scholar 

  • Friedman, J.L., and Sorkin, R.: 1980, “Spin ½ from Gravity”, Phys. Rev. Lett., 44, 1100.

    Article  ADS  Google Scholar 

  • Geroch, R.: 1970, “Multipole Moments. II. Curved Space J. Math. Phys., 11, 2580.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Geroch, R.: 1971, “A Method for Generating Solutions of Einstein’s Equations”, J. Math. Phys., 12, 918.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Geroch, R.: 1972, “Structure of the Gravitational Fields at Spatial Infinity”, J. Math. Phys., 13, 956.

    Article  MathSciNet  ADS  Google Scholar 

  • Geroch, R.: 1976, “Asymptotic structure of space-time” in P. Esposito, and L. Witten (eds), Asymptotic structure of space-time, Plenum, New York, p. 1.

    Google Scholar 

  • Geroch, R., and Horowitz, G.T.: 1978, “Asymptotically Simple Does Not Imply Asymptotically Minkowskian” Phys. Rev. Lett., 40, 203.

    Article  ADS  Google Scholar 

  • Geroch, R., and Winicour, J.: 1981, “Linkages in general relativity”, J. Math. Phys., 22, 803.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Geroch, R., and Xanthopoulos, B.C.: 1978 “Asymptotic simplicity is stable”, J. Math. Phys., 19, 714.

    Article  MathSciNet  ADS  Google Scholar 

  • Gibbons, G.W., Hawking, S.W., Horowitz, G.T., and Perry, M.T.: 1983, “Positive Mass Theorem for Black Holes”, Commun. Math. Phys., 88, 2915.

    Article  MathSciNet  Google Scholar 

  • Gürsel, Y.: 1983, “Multipole Moments for Stationary Systems: The equivalence of the Geroch-Hansen Formulation and the Thorne Formulation”, Gen. Rel. & Grav., 15, 737.

    Article  ADS  MATH  Google Scholar 

  • Hansen, R.O.: 1974, “Multipole moments of stationary space-times”, J. Math. Phys., 15, 46.

    Article  ADS  MATH  Google Scholar 

  • Hawking, S.W.: 1983, “The boundary conditions for gauged supergravity”, University of Cambridge Preprint.

    Google Scholar 

  • Hawking, S.W., and Ellis, G.F.R.: 1973, The large scale structure of space-time, Cambridge University Press, Cambridge.

    Book  MATH  Google Scholar 

  • Horowitz, G.T., and Perry, M.J.: 1982, “Gravitational Energy Cannot Become Negative”, Phys. Rev. Lett., 48, 371.

    Article  MathSciNet  ADS  Google Scholar 

  • Komar, A.: 1959, “Covariant Conservation Laws in General Relativity”, Phys. Rev., 113, 934.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Koul, R.: 1983a, “Relation between asymptotic flatness at null infinity and spatial infinity for stationary space-times”, in B. Bertotti, F. de Felice, and A. Pacolini (eds), 10th International Conference on General Relativity and Gravitation, Contributed Papers, CNR, Roma, vol. 1, p. 82.

    Google Scholar 

  • Koul, R.: 1983b, private communication.

    Google Scholar 

  • Kundu, P.: 1981a, “Multipole expansion of stationary asymptotically flat vacuum metrics in general relativity”, J. Math. Phys., 22, 1236.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Kundu, P.: 1981b, “On the analyticity of stationary gravitational fields at spatial infinity”, J. Math. Phys., 22, 2006.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Ludvigsen, M., and Vickers, J.A.G.: 1982, “A simple proof of the positivity of the Bondi mass”, J. Phys., A15, 167.

    Google Scholar 

  • Newman, E.T., and Penrose, R.: 1966, “Note on the Bondi-Metzner-Sachs Groups”, J. Math. Phys., 7, 863.

    Article  MathSciNet  ADS  Google Scholar 

  • Newman, E.T., and Penrose, R.: 1968, “New conservation laws for zero rest-mass fields in asymptotically flat space-time”, Proc. R. Soc. London, A305, 175.

    ADS  Google Scholar 

  • Newman, E.T. and Tod,, P.: 1980, “Asymptotically Flat Space-Times”, in A. Held (ed.), General Relativity and Gravitation, one hundred years after the birth of Albert Einstein, Plenum, New York.

    Google Scholar 

  • Penrose, R.: 1963, “Asymptotic properties of fields and space-times”, Phys. Rev. Lett., 10, 66.

    Article  MathSciNet  ADS  Google Scholar 

  • Penrose, R.: 1965, “Zero rest-mass fields including gravitational: asymptotic behavior”, Proc. R. Soc. London, A284, 159.

    MathSciNet  ADS  Google Scholar 

  • Penrose, R.: 1982, “Quasi-local mass and angular momentum in general relativity”, Proc. R. Soc. London, A381, 53.

    MathSciNet  ADS  Google Scholar 

  • Porrill, J., and Stewart, J.M.: 1981, “Electromagnetic and gravitational fields in a Schwarzschild space-time”, Proc. R. Soc. London, A376, 451.

    MathSciNet  ADS  Google Scholar 

  • Porrill, J.: 1982, “The structure of time like infinity for isolated systems”, Proc. R. Soc. London, A381, 323.

    MathSciNet  ADS  Google Scholar 

  • Prior, C.R.: 1977, “Angular momentum in general relativity I. Definition and asymptotic behavior”, Proc. R. Soc. London, A354, 379.

    MathSciNet  ADS  Google Scholar 

  • Ramaswami, S., and Sen, A.: 1981, “Dual-mass in general relativity”, J. Math. Phys., 22, 2612.

    Article  MathSciNet  ADS  Google Scholar 

  • Sachs, R.: 1962a, “Gravitational waves in general relativity VIII. Waves in asymptotically flat space-time”, Proc. R. Soc. London, A270, 103.

    MathSciNet  ADS  Google Scholar 

  • Sachs, R.: 1962b, “Asymptotic Symmetries in Gravitational Theory”, Phys. Rev., 128, 2851.

    Article  MathSciNet  ADS  Google Scholar 

  • Schatner, R., and Streubel, M.: 1981, “The connection between local and asymptotically structures for isolated gravitating systems with isometries”, Ann. Inst. Henri Roincaré, Sect. A., 34, 117.

    ADS  Google Scholar 

  • Schmidt, E.G.: 1981, “The decay of the Gravitational Field”, Commun. Math. Phys., 78, 447.

    Article  ADS  MATH  Google Scholar 

  • Schmidt, B.G.: 1983, Private Communication.

    Google Scholar 

  • Schoen, R., and Yau, S.T.: 1979, “On the Proof of the Positive Mass Conjecture in General Relativity”, Commun. Math. Phys., 65, 45.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Schoen, R., and Yau, S.T.: 1981, “Proof of the Positive Mass Theorem II”, Commun. Math. Phys., 79, 231.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Schoen, R., and Yau, S.T.: 1982, “Proof that the Bondi Mass is Positive”, Phys. Rev. Lett., 48, 369.

    Article  MathSciNet  ADS  Google Scholar 

  • Shaw, W.T.: 1983a, “Twistor theory and the energy-momentum and angular momentum of the gravitational field at spatial infinity”, preprint.

    Google Scholar 

  • Shaw, W.T.: 1983b, “On the definition and radiation of angular momentum and energy-momentum at null infinity”, preprint.

    Google Scholar 

  • Simon, W.: 1980, Thesis, Universität Wien, Wien.

    Google Scholar 

  • Streubel, M.: 1978, “ “Conserved” Quantities for Isolated Gravitational Systems”, Gen. Rel. and Grav., 9, 551.

    Article  MathSciNet  ADS  Google Scholar 

  • Tamburino, L.A., and Winicour, J.H.: 1966, “Gravitational Fields in Finite and Conformal Bondi Frames”, Phys. Rev., 150, 1039.

    Article  ADS  Google Scholar 

  • Thorne, K.S.: 1980, “Multipole expansions of gravitational radiation”, Rev. Mod. Phys., 52, 299.

    Article  MathSciNet  ADS  Google Scholar 

  • Winicour, J.: 1968, “Some Total Invariants of Asymptotically Flat Space-Times”, J. Math. Phys., 9, 861.

    Article  ADS  MATH  Google Scholar 

  • Witten, E.: 1981, “A New Proof of the Positive Energy Theorem”, Commun. Math. Phys., 80, 381.

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 D. Reidel Publishing Company

About this chapter

Cite this chapter

Ashtekar, A. (1984). Asymptotic Properties of Isolated Systems: Recent Developments. In: Bertotti, B., de Felice, F., Pascolini, A. (eds) General Relativity and Gravitation. Fundamental Theories of Physics, vol 9. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-6469-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-6469-3_4

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-009-6471-6

  • Online ISBN: 978-94-009-6469-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics