Skip to main content

Why Ultrarelativistic Numerical Hydrodynamics is Difficult

  • Chapter
Astrophysical Radiation Hydrodynamics

Part of the book series: NATO ASI Series ((ASIC,volume 188))

Abstract

An implicit, adaptive-mesh numerical technique is described for modeling ultrarelativist ic (Y >> 1) gas flows in flat spacetime in one space dimension. The numerical code is an adaptation of the WH80s Newtonian radiation hydrodynamics code described by Winkler and Norman in these proceedings. Shock fronts are treated by the method of artificial viscosity. We derive the equations of motion for an ideal gas with artificial viscosity in Eulerian and arbitrarily-moving coordinates. We show through numerical examples the systematic errors that result from inconsistently omitting or including the artificial viscous “pressure” in the Eulerian equations of motion. These errors are eliminated in the present code, which gives good results on three test problems involving strong relativistic shock waves.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anile, A. M., Miller, J. C. & Motta, S. 1983, Phys. Fluids 26, p. 1450.

    Article  ADS  MATH  Google Scholar 

  2. Blandford, R. D. 1985, in “Numerical Astrophysics,” eds. J. Centrella, J. LeBlanc & R. Bowers, (Jones and Bartlett: Portola Valley), p. 6.

    Google Scholar 

  3. Blandford, R. D. & Königl, A. 1979, Astrophys. J. 232, p. 34.

    Article  ADS  Google Scholar 

  4. Blandford, R. D. & McKee, C. F. 1976, Phys. Fluids 19, p. 1130.

    Article  ADS  MATH  Google Scholar 

  5. Centrella, J. & Wilson, J. R. 1984, Astrophys. J. Supp. Ser. 54, p. 229.

    Article  ADS  Google Scholar 

  6. Colgate, S. A. & Johnson, M. H. 1960, Phys. Rev. Letters 5, p. 235.

    Article  ADS  Google Scholar 

  7. Dykema, P. G. 1980, Ph.D. Dissertation, University of Texas at Austin.

    Google Scholar 

  8. Hawley, J. F., Smarr, L. L. & Wilson, J. R. 1984, Astrophys. J. Supp. Ser. 55, p. 211.

    Article  ADS  Google Scholar 

  9. Hawley, J. F. & Smarr, L. L. 1985, in “Numerical Astrophysics,” eds. J. Centrella, J. LeBlanc & R. Bowers, (Jones and Bartlett: Portola Valley), p. 30.

    Google Scholar 

  10. Kellerman, K. I. & Pauliny-Toth, I. 1981, Ann. Rev. Astron. Astrophys. 19, p. 373.

    Article  ADS  Google Scholar 

  11. May, M. M. & White, R. H. 1967, Meth. Comp. Phys. 7, p. 219.

    Google Scholar 

  12. McKee, C. R. & Colgate, S. A. 1973, Astrophys. J. 181, p. 903.

    Article  ADS  Google Scholar 

  13. Misner, C. W., Thorne, K. S. & Wheeler, J. A. 1973, “Gravitation,” (Freeman: San Francisco).

    Google Scholar 

  14. Richtmyer, R. D. & Morton, K. W. 1967, “Difference Methods for Initial Value Problems,” (Interscience: New York).

    MATH  Google Scholar 

  15. Shapiro, P. R. 1979, in “Particle Acceleration Mechanisms in Astrophysics,” eds. J. Arons, C. Max, & C. McKee, (American Institute of Physics: New York), p. 295.

    Google Scholar 

  16. Smarr, L. L., Taubes, C. & Wilson, J. R. 1980, in “Essays in General Relativity,” ed. F. Tipler, (Academic Press: New York).

    Google Scholar 

  17. Sod, G. A. 1978, J. Comp. Phys., 27 p1.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  18. Von Neumann, J., & Richtmyer, R. D. 1950, J. Appl. Phys., 21, p. 232.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  19. Wilson, J. R. 1972, Ap. J., 173, p. 431.

    Article  ADS  Google Scholar 

  20. Wilson, J. R. 1979, in “Sources of Gravitational Radiation,” ed. L. Smarr, (Cambridge Univ. Press: Cambridge), p. 423.

    Google Scholar 

  21. Winkler, K.-H. A., Norman, M. L. & Mihalas, D. 1984, J. Quant. Spectrosc. Radiat. Transfer, 31, p. 473.

    Article  ADS  Google Scholar 

  22. Winkler, K.-H. A., Norman, M. L. & Mihalas, D. 1985, to appear in “Computational Techniques: Multiple Timescale Problems,” eds. J. I. Brackbill & B. I. Cohen, (Academic: New York).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 D. Reidel Publishing Company

About this chapter

Cite this chapter

Norman, M.L., Winkler, KH.A. (1986). Why Ultrarelativistic Numerical Hydrodynamics is Difficult. In: Winkler, KH.A., Norman, M.L. (eds) Astrophysical Radiation Hydrodynamics. NATO ASI Series, vol 188. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-4754-2_13

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-4754-2_13

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-8612-7

  • Online ISBN: 978-94-009-4754-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics