Skip to main content

Part of the book series: NATO ASI Series ((ASIC,volume 181))

Abstract

The increase in the price of energy following the oil crisis of 1973 has encouraged the use of membranes in a number of energy conversion, recovery, and conservation processes. Membranes are often considered for use in these processes because of their low energy consumption compared with conventional techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Loeb, S. and Sourirajan, S.: 1963, “Sea water demineralization by means of an osmotic membrane,” in Saline Water Conversion II, Advances in Chemistry Series, No. 38, American Chemical Society, Washington, D.C., pp. 117–132.

    Google Scholar 

  2. Kremen, S.: 1977, “Technology and engineering of ROGA spiral-wound reverse osmosis membrane modules,” in Reverse Osmosis and Synthetic Membranes, Sourirajan, S. (Ed.), National Research Council Canada, Ottawa, pp. 371–385.

    Google Scholar 

  3. Riley, R.L., Lonsdale, H.K., Lyons, D.R., and Merten, U.R.: 1967, “Preparation of ultrathin reverse osmosis membranes and the attainment of theoretical salt rejection.” J. Appl. Poly. Sci. 11, p. 2143.

    Article  CAS  Google Scholar 

  4. Rozelle, L.T., Cadotte, J.E., Cobian, K.E., and Copp, Jr., C.V.: 1977, “Nonpolysaccharide membranes for reverse osmosis: NS-100 membranes,” in Reverse Osmosis and Synthetic Membranes, Sourirajan, S. (Ed.), National Research Council Canada, Ottawa, pp. 249–261.

    Google Scholar 

  5. Baum, B., Holley, Jr., W., and White, R.A.: 1976, “Hollow fibres in reverse osmosis, dialysis, and ultrafiltration,” in Membrane Separation Processes, Meares, P. (Ed.), Elsevier Scientific Pub. Co., Amsterdam, pp. 187–228.

    Google Scholar 

  6. Baker, R.W., Tuttle, M.E., Kelly, D.J., and Lonsdale, H.K.: 1977, “Coupled transport membranes I. Copper separations.” J. Membrane Sci. 2, p. 213.

    Article  CAS  Google Scholar 

  7. Largman, T. and Sifniades, S.: 1978, “Recovery of copper (II) from aqueous solutions by-means of supported liquid membranes.” Hydrometallurgy 3, p. 153.

    Article  CAS  Google Scholar 

  8. Bassett, R.J. and Schultz, J.S.: 1970, “Nonequilibrium facilitated diffusion through membranes of aqueous cobaltodihistidine.” Biochem. Biophys. Acta. 211, p. 194.

    Article  CAS  Google Scholar 

  9. Baker, R.W., Roman, I.C., Smith, K.L., and Lonsdale, H.K.: 1982, “Liquid membranes for the production of oxygen-enriched air,” in Proceedings of the Ninth Energy Technology Conference, Hill, R.F. (Ed.), Government Institutes, Inc. (Reprinted in Industrial Heating, pp. 16–18, July 1982.)

    Google Scholar 

  10. Kimura, S.G. and Walmet, G.E.: 1980, “Fuel gas purification with permselective membranes.” Sep. Sci. & Tech. 15, p. 1115.

    Article  CAS  Google Scholar 

  11. Hwang, S.T. and Yuen, K.H.: 1980, “Gas separation by a continuous membrane column.” Sep. Sci. & Tech. 15, p. 1069.

    Article  CAS  Google Scholar 

  12. Shires, M.J. and Gellender, M.: 1980, “Gasified coal—Starting point for chemical manufacture.” Chem. Int’l., No. 6, p. 5.

    Google Scholar 

  13. Fossil Energy Program Summary Document. 1980, U.S. Department of Energy, DOE/FE-0006, May.

    Google Scholar 

  14. National Academy of Engineering-National Research Council-Division of Engineering. Committee on Air Quality Management-Committee on Pollution Abatement and Control. Ad Hoc Panel on Evaluation of Coal-Gasification Technology: 1973, Evaluation of Coal-Gasification Technology: Part II—Low- and Intermediate-BTU Fuel Gases. R & D Report No. 74, Interim Report No. 2, U.S. Government Printing Office, Washington, D.C.

    Google Scholar 

  15. Ward III, W.J., Browall, W.R., and Salemme, R.M.: 1976, “Ultrathin silicone/polycarbonate membranes for gas separation processes.” J. Membrane Sci. 1, p. 99.

    Article  CAS  Google Scholar 

  16. Yasuda, H. and Stannett, V.: 1975, “Permeability coefficients,” in Polymer Handbook, Brandup, J., Immergut, E.H., and McDowell, W. (Eds.), John Wiley & Sons, New York, p. 249.

    Google Scholar 

  17. Scholander, P.F.: 1960, “Oxygen transport through hemoglobin solutions.” Science 131, p. 585.

    Article  CAS  Google Scholar 

  18. Kreuzer, F.: 1970, “Facilitated diffusion of oxygen and its possible significance; a review.” Respir. Physiol. 9, p. 1.

    Article  CAS  Google Scholar 

  19. Basolo, F., Hoffman, B.M., and Ibers, J.A.: 1975, “Synthetic oxygen carriers of biological interest.” Accounts of Chemical Research 8 (11), p. 384.

    Article  CAS  Google Scholar 

  20. Martell, A.E. and Calvin, M.: 1952, “Catalytic effects of chelate compounds,” in Chemistry of the Metal Chelate Compounds, Martell, A.E. and Calvin, M. (Eds.), Prentice-Hall, Englewood Cliffs, N.J., p. 336.

    Google Scholar 

  21. Ward III, W.J. and Robb, W.L.: 1967, “Carbon dioxide-oxygen separation: Facilitated transport of carbon dioxide across a liquid film.” Science 156, p. 1481.

    Article  CAS  Google Scholar 

  22. Matson, S.L., Herrick, C.S., and Ward III, W.J.: 1977, “Progress on the selective removal of H2S from gasified coal using an immobilized liquid membrane.” Ind. Eng. Chem., Process Des. Dev. 16 (3), p. 370.

    Article  CAS  Google Scholar 

  23. Henis, J.M.S. and Tripodi, M.K.: 1983, “The developing techniques of gas separating membranes.” Science 220, p. 4592.

    Article  Google Scholar 

  24. Michaels, A.S.: 1980, “Membrane technology and biotechnology.” Desalination 35, pp. 329–351.

    Article  CAS  Google Scholar 

  25. Norman, R.S.: 1974, “Water salination: A source of energy.” Science 186, p. 350.

    Article  CAS  Google Scholar 

  26. Jellinek, H.H.: 1975, “Osmotic work I. Energy production from osmosis on fresh water systems.” Kagaku Kojo 19, p. 87.

    CAS  Google Scholar 

  27. Loeb, S.: 1976, “Production of energy from concentrated brines by pressure-retarded osmosis I. Preliminary technical and economic correlations.” J. Membrane Sci. 1, p. 49.

    Article  Google Scholar 

  28. Weinstein, J.N. and Leitz, F.B.: 1976, “Electric power from differences in salinity: The dialytic battery.” Science 191, p. 557.

    Article  CAS  Google Scholar 

  29. Lee, K.L., Baker, R.W., and Lonsdale, H.K.: 1981, “Membranes for power generation by pressure-retarded osmosis.” J. Membrane Sci. 8, pp. 141–171.

    Article  CAS  Google Scholar 

  30. Mehta, G.D. and Loeb, S.: 1978, “Internal polarization in the porous substructure of a semipermeable membrane under pressure-retarded osmosis.” J. Membrane Sci. 4, p. 261.

    Article  CAS  Google Scholar 

  31. Wick, G.L. and Issacs, J.D.: 1978, “Salt domes: Is there more energy available from their salt than their oil?” Science 199, p. 7436.

    Google Scholar 

  32. Maciula, E.A.: 1980, “High H2 purity is key in new refining era.” Oil & Gas Journal, May 26, pp. 63–68.

    Google Scholar 

  33. Gardner, R.J., Crane, R.A., and Hannan, J.F.: 1977, “Hollow fiber permeator for separating gases.” Chem. Eng. Progr. 73, pp. 76–78.

    CAS  Google Scholar 

  34. Duel, M. and Kim, A.: 1978, “Methane drainage—An update.” Mining Congress Journal, July, pp. 38–42.

    Google Scholar 

  35. Duel, M. and Skow, W.: 1975, “Speeding coal mining operations by recovering and utilizing methane from coal beds.” Coal Age, July, p. 104.

    Google Scholar 

  36. Rush, Jr., F.E.: 1980, “Energy saving alternatives to distillation.” Chem. Eng. Progress, July.

    Google Scholar 

  37. Cook, B.: 1980, “Trends in desalting.” Newsletter International Desalination and Environmental Association, p. 10.

    Google Scholar 

  38. Department of Energy, Office of Industrial Programs: 1981, Agriculture and Food Processes Branch Program Summary Document, June.

    Google Scholar 

  39. Loeb, S. and Bloch, M.R.: 1973, “Countercurrent flow osmotic processes for the production of solutions having a high osmotic pressure.” Desalination 13, p. 207.

    Article  CAS  Google Scholar 

  40. Binning, R.C., Lee, R.J., Jennings, J.F., and Martin, E.C.: 1961, “Separation of liquid mixtures by permeation.” Ind. & Eng. Chem. 53, p. 45.

    Article  Google Scholar 

  41. Aptel, P., Cuny, J., Jozefowiczz, J., Morel, G., and Neel, J.: 1972, “Liquid transport membranes prepared by grafting polar monomers onto poly(tetrafluorethylene) films: I. Some fractions of liquid mixtures by pervaporation.” J. Appl. Poly. Sci. 16, p. 1061.

    Article  CAS  Google Scholar 

  42. Aptel, P., Challard, N., Cuny, J., and Neel, J.: 1976, “Application of the pervaporation processes to separate azeotropic mixtures.” J. Membrane Sci. 1, p. 271.

    Article  CAS  Google Scholar 

  43. Cabasso, I.: 1983, “Organic liquid mixtures separation by permselective polymer membranes. 1. Selection and characteristics of dense isotropic membranes employed in the pervaporation process.” Ind. & Eng. Chem., Prod. Res. & Dev. 22(2), p. 313.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 D. Reidel Publishing Company

About this chapter

Cite this chapter

Baker, R.W. (1986). Membranes in Energy Conservation Processes. In: Bungay, P.M., Lonsdale, H.K., de Pinho, M.N. (eds) Synthetic Membranes: Science, Engineering and Applications. NATO ASI Series, vol 181. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-4712-2_16

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-4712-2_16

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-8596-0

  • Online ISBN: 978-94-009-4712-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics