Skip to main content

Part of the book series: NATO ASI Series ((ASIC,volume 209))

Abstract

For an exact area preserving monotone twist diffeomorphism with a uniform lower bound β for the amount of twisting, we will show that Peierls’s barrier satisfies

$$ \left| {{P_{p/q}}\left( \xi \right) - {P_\omega }\left( \xi \right)} \right| \leqslant C\left( {{q^{ - 1}} + \left| {\omega q - p} \right|} \right) $$

, where C = (1200)cotβ.

Partially supported by National Science Foundation Grant No. DMS85-04984.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. Aubry and P. Y. Le Daeron, ‘The discrete Frenkel-Kontorova model and its extensions’, Physica 8D (1983), 381–422.

    Google Scholar 

  2. S. Aubry, P. Y. Le Dearon, and G. André, ‘Classical ground-states of a one-dimensional model for incommensurate structures’. Preprint (1982).

    Google Scholar 

  3. V. Bangert, ‘Mather sets for twist maps and geodesies on tori’. Preprint (1986), to appear in Dynamics Reported.

    Google Scholar 

  4. A. Katok, ‘More about Birkhoff periodic orbits and Mather sets for twist maps’. Preprint (1982).

    Google Scholar 

  5. J. Mather, ‘A criterion for the non-existence of invariant circles’. Publ. IHES (1986), 153–204.

    Google Scholar 

  6. J. Mather, ‘More Denjoy minimal sets for area preserving diffeomorphisms’, Comment. Math. Helvetici 60 (1985), 508–557.

    Article  MathSciNet  MATH  Google Scholar 

  7. J. Mather, ‘Dynamics of area preserving mappings’, to appear in Proceedings of ICM, 1986.

    Google Scholar 

  8. J. Mather, ‘Existence of quasi-periodic orbits for twist homeomorphisms of the annulus’, Topology 21 (1982), 457–467.

    Article  MathSciNet  MATH  Google Scholar 

  9. J. Mather, ‘Concavity of the Lagrangian for quasi-periodic orbits’, Comment. Math. Helvetici 57 (1982), 356–376.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 D. Reidel Publishing Company

About this chapter

Cite this chapter

Mather, J.N. (1987). Modulus of Continuity for Peierls’s Barrier. In: Rabinowitz, P.H., Ambrosetti, A., Ekeland, I., Zehnder, E.J. (eds) Periodic Solutions of Hamiltonian Systems and Related Topics. NATO ASI Series, vol 209. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-3933-2_18

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-3933-2_18

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-8245-7

  • Online ISBN: 978-94-009-3933-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics