Skip to main content

Gravity-Assisted Melting in Enclosures

  • Chapter
Energy Storage Systems

Part of the book series: NATO ASI Series ((NSSE,volume 167))

  • 582 Accesses

Abstract

The gradual depletion of fossil fuels over the past few decades has resulted in an increase in energy costs which can be expected to rise sharply over the next few decades as supplies become scarce. Current worries regarding the disposal of nuclear wastes have caused many countries to put less stress on nuclear energy, and higher air pollution causing acid rain and possible long term change in global weather patterns make the use of solar energy a very attractive option in the long run. Though the amount of solar energy falling on the earth’s surface far exceeds our requirements, the diffuse and unpredictable nature of solar radiation makes it extremely difficult to harness. Efficient energy storage devices are essential if solar energy is ever to be used on a large scale. Considerable research is being done on many different kinds of storage devices like electrochemical batteries, flywheels, compressed air, pumped water storage, etc. However, thermal energy storage devices using phase change materials have some major advantages which make them extremely attractive for certain applications. These include a high energy density of storage and an uniform temperature at which the energy is released or absorbed. Such latent heat thermal energy storage devices can also be used over a wide range of temperatures since different materials can be used as required.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 429.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 549.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

Ar:

Archimedes number (ρs – ρ1)gD3/(ρν2)

D:

Diameter

Gr:

Grashof Number [gβΔATD32]

Md:

Non-dimensional parameter ((Steρ°/Pr)/Ars)1/4

Mt:

Non-dimensional parameter ((Steρ°/Pr)3Ars)-1/4

Nu:

Nusselt number qD/k(TH - TC)

P:

Pressure (including hydrostatic pressure)

Pr:

Prandt1 number ν/α

Q:

Average wall heat flux for the complete process

R:

Transformed radial coordinate

R:

Rayleigh number (GrPr)

S:

Annulus ratio ((Do - D(inner cylinder))/Do)

Sb:

Degree of subcooling (TF - TC)/(TH - TC)

Ste:

Stefan number cp (TH - TF)/l

T:

Temperature

c:

Constant in Eq. 40

cp :

Specific heat at constant pressure

g:

Gravitational constant

h:

Heat transfer coefficient

k:

Thermal conductivity

k̄:

Also used as unit vector in vertical direction

n:

Normal direction

n̄:

Unit vector in normal direction

p:

Pressure (not including the hydrostatic pressure)

q:

Average wall heat flux at a particular time

r:

Radial coordinate

s:

Length along the interface

t:

Time; Also used as enclosure wall thickness (Eq. 6.13)

v:

Velocity

z:

Drop of solid core

l:

Latent heat of fusion

θ:

Transformed angular coordinate

α:

Thermal diffusivity

ß:

Coefficient of thermal expansion

δ:

Film thickness in lower region ro - ri

ζ:

Position of interface at θ = π

η:

Coordinate in toroidal coordinate system

θ:

Angular coordinate

θA :

Angle defining junction between upper and lower zones

v:

Order of a variable

μ:

Dynamic viscosity

ν:

Kinematic viscosity

ρ:

Density

τ:

Shear stress

°:

Non-dimensional property ratio (Liquid/Solid)

C:

Cold

F:

Fusion (melting)

H:

Hot

a:

Average (over surface area)

f:

Liquid Film

i:

Inner (Interface)

l:

Liquid

m:

Mean (averaged over surface area and time)

n:

Normal direction

o:

Outer

r:

Radial direction

s:

Solid

w:

Wall

θ:

θ-direction

References

  1. Katayama K, Saito K, Utaka Y, Saito A, Matsui H, Maekawa H, and Saifullah AZA: Heat Transfer Characteristics of the Latent Heat Thermal Energy Storage Capsule. Solar Energy, 27, pp. 91–97, 1981.

    Article  Google Scholar 

  2. Viskanta R: Phase-Change Heat Transfer. Solar Heat Storage: Latent Heat Materials. Vol. 1, G. Lane, Ed., Florida: CRC Press, Inc., pp. 153–222, 1983.

    Google Scholar 

  3. Viskanta R: Natural Convection in Melting and Solidification. Natural Convection: Fundamentals and Applications, S. Kakac, et al., Ed., Washington DC: Hemisphere Pub. Corp., pp. 8445–877, 1985.

    Google Scholar 

  4. Saitoh T: On the Optimum Design for Latent Heat Thermal Energy Storage Reservoir. Refrigeration, V.58(670), pp. 749–756, 1983.

    Google Scholar 

  5. Saitoh T, and Hirose K: High-Performance Phase-Change Thermal Energy Storage Using Spherical Capsules. ASME Pap. 84-HT-8, 1984.

    Google Scholar 

  6. Maldonado JJ: Experimental Investigation of the Melting Process Inside a Horizontal Cylinder. M.S. Thesis, University of Miami, FL, 1986.

    Google Scholar 

  7. Nicholas D, and Bayazitoglu Y: Heat Transfer and Melting Front Within a Horizontal Cylinder. J. Solar Energy Engg., V.102, pp. 229–232, 1980.

    Article  Google Scholar 

  8. Nicholas D, and Bayazitoglu Y: Thermal Storage of a Phase Change Material in a Horizontal Cylinder. Alternative Energy Sources III. Proc. 3rd Miami Int. Conf. on Alternate Energy Sources, 1980, Vol. 1, T. N. Veziroglu, Ed., Washington, DC: Hemisphere PUD. Corp., pp. 351–367, 1982.

    Google Scholar 

  9. Moore F, and Bayazitoglu Y: Melting Within a Spherical Enclosure. J. Heat Transfer, V.104, pp. 19–23, 1982.

    Article  Google Scholar 

  10. Bareiss M, and Beer H: An Analytical Solution of the Heat Transfer Process During Melting of an Unfixed Solid Phase Change Material Inside a Horizontal Enclosure. Int. J. Heat Mass Transfer, V.27, pp. 7 39–746, 1984.

    Article  Google Scholar 

  11. Sparrow EM, and Myrum TA: Inclination-Induced Direct-Contact Melting in a Circular Tube. J. Heat Transfer, V.107, pp. 533–540, 1985.

    Article  Google Scholar 

  12. Sparrow EM, and Zumbrunnen ML: In-tube Melting in the Presence of Circumferentially Nonuniform Heating. Int. J. Heat Mass Transfer, V.29, pp. 1629–1637, 1986.

    Article  Google Scholar 

  13. Sparrow EM, and Geiger GT: Melting in a Horizontal Tube With Solid Either Constrained or Free to Fall Under Gravity. Int. J. Heat Mass Transfer, V.29, pp. 1007–1019, 1986.

    Article  Google Scholar 

  14. Webb BW, Moallemi MK, and Viskanta R: Phenomenology of Melting of Unfixed Phase Change Material in a Horizontal Capsule. ASME Pap. 86-HT-10, 1986.

    Google Scholar 

  15. Riviere P and Beer H: Experimental Investigation of Melting of Unfixed Ice in an Isothermal Enclosure. Int. Comm. Heat Mass Transfer, V.14, pp. 155–165, 1987.

    Article  Google Scholar 

  16. Webb BW, Moallemi MK, and Viskanta R: Experiments on Melting of Unfixed Ice in a Horizontal Capsule. J. Heat Transfer.V.109, pp. 454–459, 1987.

    Article  Google Scholar 

  17. Lea JF and Stegall RD: A Two-Dimensional Theory of Temperature and Pressure Effects on Ice Melting Rates with a Heated Plate. J. Heat Transfer, V.95, pp. 571–573, 1973.

    Article  Google Scholar 

  18. Saito A, Utaka Y, Akiyoshi M, and Katayama K: On the Contact Heat Transfer With Melting (1st Report: Experimental Study). Bull. JSME, V.28,pp. 1142–1149, 1985.

    Google Scholar 

  19. Saito A, Utaka Y, Akiyoshi M, and Katayama K: On the Contact Heat Transfer With Melting (2nd Report: Analytical Study). Bull. JSME, V.28, pp. 1703–1709, 1985.

    Article  Google Scholar 

  20. Moallemi MK, and Viskanta R: Analysis of Close-Contact Melting. Int. J. Heat Mass Transfer, V.29, pp. 855–867, 1986.

    Article  MATH  Google Scholar 

  21. Martin H, Lede J, Li HZ, Villermaux R, Moyne C, and Degiovanni A: Ablative Melting of a Solid Cylinder Perpendicularly Pressed Against a Heated Wall. Int. J. Heat Mass Transfer, V.29, pp. 1407–1415, 1986.

    Article  Google Scholar 

  22. Moallemi MK, Webb BW, and Viskanta R: An Experimental and Analytical Study of Close-Contact Melting. J. Heat Transfer, V.108, pp. 894–899, 1986.

    Article  Google Scholar 

  23. Emmerman MK, and Turcotte DL: Stokes’s Problem With Melting. Int. J. Heat Mass Transfer, V.26, pp. 1625–1630, 1983.

    Article  Google Scholar 

  24. Moallemi MK, and Viskanta R: Melting Around a Migrating Heat Source. J. Heat Transfer, V.107, pp. 451–458, 1985.

    Article  Google Scholar 

  25. Moallemi MK, and Viskanta R: Experiments on Fluid Flow Induced By Melting Around a Migrating Heat Source. J. Fluid Mechanics, V.157, pp. 35–51, 1985.

    Article  Google Scholar 

  26. Moallemi MK, and Viskanta R: Analysis of Melting Around a Moving Heat Source. Int. J. Heat Mass Transfer, V.29, pp. 1271–1282, 1986.

    Article  Google Scholar 

  27. Sengupta S, and Elmasry S: Phase Change Heat Transfer Inside a Horizontal Tube: Effects of Subcooling and Stefan Number. ASME Pap. 84-WA/SOL-19, 1984.

    Google Scholar 

  28. Elmasry S, and Sengupta S.: Phase Change Heat Transfer Inside a Horizontal Tube: Effects of Rayleigh Number. ASME Pap. 84-HT-4, 1984.

    Google Scholar 

  29. Prasad A, and Sengupta S: Numerical Investigation of Melting Inside a Horizontal Cylinder Including Effects of Natural Convection. Heat Transfer and Fluid Flow in Solar Thermal Systems, ASME SED-Vol. 1, TC Min and JP Chiou, Ed., New York: American Soc. Mech. Engineers, pp. 19–26, 1985.

    Google Scholar 

  30. Prasad A, and Sengupta S: Numerical Investigation of Melting Inside a Horizontal Cylinder Including the Effects of Natural Convection. J. Heat Transfer, V.109, pp. 803–806, 1987.

    Article  Google Scholar 

  31. Prasad A, and Sengupta S: Nusselt Number and Melt Time Correlations for Melting Inside a Horizontal Cylinder Subjected to an Isothermal Wall Temperature Condition. Solar Energy Technology, ASME SED-Vol.4, LM Murphy et al., Ed., New York: American Soc. Mech. Engineers, pp. 85–89, 1987.

    Google Scholar 

  32. Bahrami PA, and Wang TG: Analysis of Gravity and Conduction-Driven Melting in a Sphere. J. Heat Transfer, V.109, pp. 806–809, 1987.

    Article  Google Scholar 

  33. Ghosal S, and Sengupta S: Melting Within a Horizontal Cylinder: Effects of Subcooling and Natural Convection. AIChE Symp. Ser., V.83(257), pp. 163–170, 1987.

    Google Scholar 

  34. Roy SK, and Sengupta S: An Analysis of the Melting Process in Spherical Enclosures. Heat Transfer and Fluid Flow in Solar Thermal Systems. ASME SED-Vol. 1, TC Min ana JP Chiou, Ed., New York: American Soc. Mech. Engineers, pp. 27–32, 1985.

    Google Scholar 

  35. Roy SK, and Sengupta S: The Melting Process in Spherical Enclosures,” J. Heat Transfer, V.109, pp. 460–462, 1987.

    Article  Google Scholar 

  36. Roy SK, and Sengupta S: Melting Within a Spherical Enclosure: Effects of Subcooling. Solar Energy-1987, Proceedings of the ASME-JSME-JSES Solar Energy Conference, Vol. 1, DY Goswami, et al., Ed., New York: American Soc. Mech. Engineers, pp. 239–244, 1987.

    Google Scholar 

  37. Roy SK: Melting in Spherical Enclosures. Ph.D. Dissertation, Department of Mechanical Engg., Univ. of Miami, FL, 1988.

    Google Scholar 

  38. Betzel T, and Beer H: Solidification and Melting Heat Transfer to an Unfixed Phase Change Material (PCM) Encapsulated in a Horizontal Concentric Annulus. Warme- und StoffÜbertragung, V.22, pp. 335–344, 1988.

    Article  Google Scholar 

  39. Carslaw HS, and Jaeger JC: Conduction of Heat in Solids. 2nd Ed., Great Britain: Oxford Univ. Press, pp. 291, 1959.

    Google Scholar 

  40. Kays WM, and Crawford ME: Convective Heat and Mass Transfer. 2nd Ed. New York: McGraw Hill Bk. Co., pp. 324–325, 1980.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Kluwer Academic Publishers

About this chapter

Cite this chapter

Sengupta, S., Roy, S.K. (1989). Gravity-Assisted Melting in Enclosures. In: Kılkısş, B., Kakaç, S. (eds) Energy Storage Systems. NATO ASI Series, vol 167. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-2350-8_16

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-2350-8_16

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-7558-9

  • Online ISBN: 978-94-009-2350-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics