Skip to main content

Stability of the Arctic Ocean Ice-Cover and Pleistocene Warming Events: Outlining the Problem

  • Chapter
Geological History of the Polar Oceans: Arctic versus Antarctic

Part of the book series: NATO ASI Series ((ASIC,volume 308))

Abstract

The sequence of events leading to the development of the modern Arctic Ocean ice-cover is imperfectly understood. Glacial-marine sediment was deposited during the early Pliocene and perhaps by the end of the late Miocene and this sediment type has continued to accumulate throughout the late Cenozoic to the present. The time of formation of the ocean’s ice-cover, whether ice has been continually present, and the relationship of the ocean’s sediment to the ice-cover have been debated. How geologically stable is the ice-cover? Is there evidence for significant change in the ice-cover during the late Cenozoic?

Arctic ice-cover origination probably depended upon such diverse activity as the formation of seasonal ice on Greenland, restricted circulation between the Arctic and North Atlantic Oceans, temperature/salinity changes in the North Atlantic — Greenland Sea, and enhancement of any or all of these events by orbitally driven insolation minima. Together with factors not recognized or poorly understood they resulted in the development of the first Arctic Ocean ice-cover.

Interpretations of the Arctic Ocean condition during the late Cenozoic include the idea of a continual warm ocean until approximately 2 Ma, a continually cold ocean with no permanent ice until 0.85 Ma, a probable warming of a cold Arctic Ocean around its margins at approximately 2 Ma, and a deep ocean warming event that resulted from increased ventilation of the Arctic Ocean at approximately 1.5 Ma. All of these ideas contrast, at least in part, with an unique idea that 1000 m thick ice occupied most of the Arctic Basin during the Pleistocene.

There are questions concerning the chronology for most of these interpretations, and with the limited evidence available it is possible that the proposed deep ocean ventilation at approximately 1.5 Ma and the warming of the Arctic borderlands interpreted to have occurred at approximately 2 Ma could represent a single event. Time of the initial late Cenozoic ice-cover formation may not be fixed without a major drilling activity in the central Arctic Ocean.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Aagaard, K., and P. Greisman: 1975, ‘Toward new mass and heat budgets for the Arctic Ocean’, J. Geophys. Res. 80, 3821–3827.

    Article  Google Scholar 

  • Aagaard, K., A. Foldvik, and S. R. Hillman: 1987, ‘The West Spitsbergen Current: Disposition and water mass transformation’, J. Geophys. Res. 92, 3778–3784.

    Article  Google Scholar 

  • Aksu, A. E.: 1985, ‘Paleomagnetic stratigraphy of the CESAR cores’, in H. R. Jackson, P. J. Mudie, and S. M. Blasco (eds.), Geological Report on CESAR: The Canadian Expedition to Study the Alpha Ridge, Arctic Ocean, Geol. Soc. Can. Paper 84–22, pp. 101–114.

    Google Scholar 

  • Aksu, A. E., and P. J. Mudie: 1985, ‘Magnetostratigraphy and palynology demonstrate at least 4 million years of Arctic Ocean sedimentation’, Nature 318, 280–283.

    Article  Google Scholar 

  • Atkins, E. D.: 1988, ‘Calcareous microfossils in the Pliocene central Arctic Ocean’, unpubl. M.Sc. thesis, Univ. Wisconsin, Madison.

    Google Scholar 

  • Carter, L. D., J. Brigham-Grette, and L. Marincovich: 1986. ‘Late Cenozoic Arctic Ocean sea ice and terrestrial paleoclimate’, Geology 14, 675–678.

    Article  Google Scholar 

  • Clark, D. L.: 1982, ‘Origin, nature and world climate effect of Arctic Ocean ice-cover’, Nature 300, 321–325.

    Article  Google Scholar 

  • Clark, D. L.: 1985, ‘The Eocene Arctic Ocean and Earth’s early Cenozoic climate’, Geol. Soc. Amer. Programs 17, 547 (abstr.).

    Google Scholar 

  • Clark, D. L., and A. Hanson: 1983, ‘Central Arctic Ocean sediment texture: Key to ice-transport mechanism’, in B. F. Molnia, (ed.), Glacial-Marine Sediment, Plenum Press, New York, pp. 301–330.

    Google Scholar 

  • Clark, D. L., R. R. Whitman, K. A. Morgan, and S. D. Mackay: 1980, ‘Stratigraphy and glacial-marine sediments of the Amerasian Basin, central Arctic Ocean’, Geol. Soc. Amer. Spec. Paper 181, 57 p.

    Google Scholar 

  • Clark, D. L., J.-S. Vincent, G. A. Jones, and W. A. Morris: 1984, ‘Correlation of marine and continental glacial and interglacial events, Arctic Ocean and Banks Island’, Nature 311, 147–149.

    Article  Google Scholar 

  • Clark, D. L., M. Andrée, W. S. Broecker, A. C. Mix, G. Bonani, H. J. Hofmann, E. Morenzoni, M. Nessi, M. Suter, and W. Wölfli: 1986, ‘Arctic Ocean chronology confirmed by accelerator 14C dating’, Geophys. Res. Lett. 13, 319–321.

    Article  Google Scholar 

  • Clark, D. L., L. A. Chern, J. A. Hogler, C. M. Mennicke, and E. D. Atkins: in press, ‘Late Neogene climate evolution of the central Arctic Ocean’, Tectonophysics.

    Google Scholar 

  • Dalrymple, R. W., and O. C. Maass: 1987, ‘Clay mineralogy of late Cenozoic sediment in the CESAR cores, Alpha Ridge, central Arctic Ocean’, Can. J. Earth Sci. 24, 1562–1569.

    Article  Google Scholar 

  • Darby, D. A.: 1971, ‘Carbonate cycles in Arctic sediment cores’, Tech. Rept. 8, Arctic Studies, Univ. Wisconsin, Madison, 43 p.

    Google Scholar 

  • Fillon, R. H.: 1984, ‘Ice-age Arctic Ocean ice-sheets: A possible direct link with insolation’, in A. L. Berger, J. D. Hays, G. J. Kukla, and B. Saltzman (eds.), Milankovitch and Climate, Reidel, Dordrecht, pp. 223–240.

    Google Scholar 

  • Fletcher, J. O.: 1972, ‘Ice on the ocean and world climate’, in Beneficial Modifications of the Marine Environment, Nat. Acad. Sci., Washington, pp. 4–49.

    Google Scholar 

  • Fletcher, J. O., and J. J. Kelley: 1978, ‘The role of the polar regions in global climate change’, in M. A. McWhinnie (ed.), Polar Research, AAAS Selected Symposium Series, Westview Press, Boulder, pp. 97–116.

    Google Scholar 

  • Funder, S., N. Abrahamsen, O. Bennike, and R. W. Feyling-Hanssen: 1985, ‘Forested Arctic: Evidence from North Greenland’, Geology 13, 542–546.

    Article  Google Scholar 

  • Gamber, J. H., and D. L. Clark: 1978, ‘Distribution of microscopic molluscs, echinoderms, and sponges in the central Arctic Ocean’, Micropaleont. 24, 422–431.

    Article  Google Scholar 

  • Gartner, S.: 1988, ‘Paleoceanography of the mid-Pleistocene’, Mar. Micropaleont. 13, 23–46.

    Article  Google Scholar 

  • Gilbert, M. W., and D. L. Clark: 1983, ‘Central Arctic Ocean paleoceanography interpretations based on Late Cenozoic calcareous dinoflagellates’, Mar. Micropaleont. 7, 385–401.

    Article  Google Scholar 

  • Herman, Y., and D. M. Hopkins: 1980, ‘Arctic Ocean climate in late Cenozoic time’, Science 209, 557–562.

    Article  Google Scholar 

  • Hughes, T. J., G. H. Denton, and M. G. Grosswald: 1977, ‘Was there a late Würm Arctic ice-sheet?’, Nature 266, 596–602.

    Article  Google Scholar 

  • Jones, G. A., and D. L. Clark: in prep., ‘Paleomagnetic data of central Arctic Ocean sediment cores’.

    Google Scholar 

  • Keigwin, L. D.: 1982, ‘An Arctic Ocean ice-sheet in the Pleistocene?’, Nature 296, 808–809.

    Article  Google Scholar 

  • Kitchell, J. A., and D. L. Clark: 1982, ‘Late Cretaceous - Paleogene paleogeography and paleocirculation: Evidence of North Polar upwelling’, Palaeogeogr. Palaeoclimat. Palaeoecol. 40, 135–165.

    Article  Google Scholar 

  • Kukla, G. J., and H. J. Kukla: 1974, ‘Increases surface albedo in the northern hemisphere’, Science 183, 709–714.

    Article  Google Scholar 

  • Lamb, H. H.: 1974, ‘Atmospheric circulation during the onset and maximum development of the Wisconsin/Würm Ice Age’, in Y. Herman (ed.), Marine Geology and Oceanography of the Arctic Seas, Springer, New York, pp. 349–358.

    Google Scholar 

  • Livingston, H. D., S. L. Kupferman, V. T. Bowen, and R. M. Moore: 1984, ‘Vertical profile of artificial radionuclide concentrations in the central Arctic Ocean’, Geochim. Cosmochim. Acta 48, 2195–2203.

    Article  Google Scholar 

  • Macko, S. A., and A. E. Aksu: 1986, ‘Amino acid epimerization in planktonic foraminifera suggests slow sedimentation rates for Alpha Ridge, Arctic Ocean’, Nature 322, 730–732.

    Article  Google Scholar 

  • Marquard, R. S., and D. L. Clark: 1987, ‘Pleistocene paleoceanographic correlations: Northern Greenland Sea to central Arctic Ocean’, Mar. Micropaleont. 12, 325–341.

    Article  Google Scholar 

  • McDougall, K. A., E. M. Brouwers, and P. Smith: 1986, ‘Micropaleontology and sedimentology of the BP borehole series, Prudoe Bay, Alaska’, U.S. Geol. Surv. Bull. 1598, 62 p.

    Google Scholar 

  • Morris, T. H.: 1988, ‘Stable isotope stratigraphy of the Arctic Ocean’, Palaeogeogr. Palaeoclimat. Palaeoecol 64, 201–219.

    Article  Google Scholar 

  • Morris, T. H., and D. L. Clark: 1986, ‘Pleistocene calcite lysocline and paleocurrents of the central Arctic Ocean and their paleoclimatic significance’, Paleoceanography 1, 181–195.

    Article  Google Scholar 

  • Mudie, P. J., and S. M. Blasco: 1985, ‘Lithostratigraphy of the CESAR cores’, in H. R. Jackson, P. J. Mudie, and S. M. Blasco (eds.), Geological Report on CESAR: The Canadian Expedition to Study the Alpha Ridge,, Geol. Surv. Can. Paper 84–22, pp. 59–99.

    Google Scholar 

  • Naidu, A. S.: 1974, ‘Sedimentation in the Beaufort Sea: A synthesis, in Y. Herman (ed.), Marine Geology and Oceanography of the Arctic Seas, Springer, New York, pp. 173–190.

    Google Scholar 

  • O’Neill, B. J.: 1981, ‘Pliocene and Pleistocene benthic foraminifera from the central Arctic Ocean’, J. Paleont. 55, 1141–1170.

    Google Scholar 

  • Östlund, H. G., G. Possnert, and J. H. Swift: 1987, ‘Ventilation rate of the deep Arctic Ocean from Carbon 14 data’, J. Geophys. Res. 92, 3769–3777.

    Article  Google Scholar 

  • Polar Research Board: 1985, National issues and research priorities in the Arctic, Nat. Res. Council, Washington, 124 p.

    Google Scholar 

  • Repenning, C. A.: 1983, ‘New evidence for the age of the Gubik Formation, Alaska, North Slope’, Quat. Res. 19, 356–372.

    Article  Google Scholar 

  • Repenning, C. A.: 1984, ‘Quaternary rodent biochronology and its correlation with climatic and magnetic stratigraphies’, in W. C. Mahaney (ed.), Correlation of Quaternary Chronologies, Geo Books, Norwich, pp. 105–118.

    Google Scholar 

  • Repenning, C. A., E. M. Brouwers, L. D. Carter, L. Marincovich, and T. A. Ager: 1987, ‘The Beringian ancestry of Phenacomys (Rodentia: Cricetidae) and the beginning of the modern Arctic Ocean borderland biota’, U.S. Geol. Surv. Bull. 1687, 31 p.

    Google Scholar 

  • Ruddiman, W. K, M. E. Raymo, and A. Mclntyre: 1986, ‘Matuyama 41.000 year cycles: North Atlantic Ocean and Northern Hemisphere ice-sheets’, Earth Planet. Sci. Lett. 80, 117–129.

    Article  Google Scholar 

  • van Loon, H., and J. C. Rogers: 1978, ‘The seesaw in winter temperatures between Greenland and Northern Europe, Part I: General description’, Mon. Weather Rev. 106, 296–310.

    Article  Google Scholar 

  • Vincent, J.-S.: 1982, ‘The Quaternary history of Banks Island, N.W.T. Canada’, Geoff: Phys. Quat. 36, 209–232.

    Google Scholar 

  • Vincent, J.-S.: 1983. ‘Géologie du Quaternaire et la Géomorphologie de l’Ile Banks, Arctique Canadien’, Geol. Surv. Canada Memoir 405,118 p.

    Google Scholar 

  • Vincent, J.-S., W. A. Morris, and S. Ochietti: 1984, ‘Glacial and nonglacial sediment of Matuyama paleomagnetic age on Banks Island, Canadian Arctic Archipelago’, Geology 12, 139–142.

    Article  Google Scholar 

  • Vogt, P. R.: 1986, ‘Geophysical and geochemical signatures and plate tectonics’, in B. G. Hurdle (ed.), The Nordic Seas, Springer, New York, pp. 413–662.

    Google Scholar 

  • Wigley, T. M. L., P. D. Jones, and P. M. Kelly: 1980, ‘Scenario for a warm, high CO2 world’, Nature 283, 17–21.

    Article  Google Scholar 

  • Williams D. F., W. S. Moore, and R. H. Fillon: 1981, ‘Role of Arctic Ocean ice-sheets in Pleistocene oxygen isotope sea level records’, Earth Planet. Sci. Lett. 56, 157–166.

    Article  Google Scholar 

  • Witte, W. K., and D. V. Kent: 1988, ‘Revised magnetostratigraphies confirm low sedimentation rates in Arctic Ocean cores’, Quat. Res. 29, 43–53.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Kluwer Academic Publishers

About this chapter

Cite this chapter

Clark, D.L. (1990). Stability of the Arctic Ocean Ice-Cover and Pleistocene Warming Events: Outlining the Problem. In: Bleil, U., Thiede, J. (eds) Geological History of the Polar Oceans: Arctic versus Antarctic. NATO ASI Series, vol 308. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-2029-3_15

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-2029-3_15

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-7410-0

  • Online ISBN: 978-94-009-2029-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics