Skip to main content

Energy-yielding and energy-consuming reactions

  • Chapter
The Rumen Microbial Ecosystem

Abstract

The work of biological growth depends on the transfer of energy from catabolic (yielding) to anabolic (consuming) reactions (Figure 6.1). Classically, the two reactions have been depicted to be connected by ATP, in the sense that the energy released by, for example, the glycolytic breakdown of sugars is conserved in the form of ATP, which then provides the energy necessary for the biosynthesis of cell material. It is now clear that most organisms, including anaerobes, can conserve energy, in the form of a transmembrane electrochemical gradient of protons, or protonmotive force (Mitchell, 1961; Thauer et al., 1977; Dawes, 1986). However, the protonmotive force drives few biosynthetic processes directly, and the transfer of energy from the protonmotive force to ATP via a membrane-bound reversible ATPase is a vital link between catabolic and anabolic reactions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allison, M. J. (1978). Production of branched-chain volatile fatty acids by certain anaerobic bacteria. Appl. Environ. Microbiol., 35, 872–7.

    PubMed  CAS  Google Scholar 

  • Ayers, W. A. (1958). Phosphorylation of cellobiose and glucose by Ruminococcus flavefaciens. J. Bacteriol., 76, 515–17.

    PubMed  CAS  Google Scholar 

  • Bailey, R. W. (1963). The intracellular galactosidase of a rumen strain of Streptococcus bovis. Biochem. J., 86, 509–14.

    PubMed  CAS  Google Scholar 

  • Bakker, E. P., Booth, I. R., Dinnbier, U. et al. (1987). Evidence for multiple K+ export systems in Escherichia coli. J. Bacteriol., 169, 3743–9.

    PubMed  CAS  Google Scholar 

  • Baldwin, R. L. (1965). Pathways of carbohydrate metabolism in the rumen. In Physiology of Digestion in the Ruminant, ed. R. W. Dougherty. Butterworth, Washington DC, pp. 379–89.

    Google Scholar 

  • Baldwin, R. L., Wood W. A. and Emery, R. S. (1963). Conversion of glucose 14C to propionate by the rumen microbiota. J. Bacteriol., 85, 1346–9.

    PubMed  CAS  Google Scholar 

  • Barnes, E. M. Jr and Jayakumar, A. (1993) NH4 + transport systems in Escherichia coli. In Alkali Cation Transport Systems in Prokaryotes, Vol. 1, ed. E. P. Bakker. CRC Press, Inc., Boca Raton, FL, pp. 397–409.

    Google Scholar 

  • Bates, D. B., Gillett, J. A., Barao, S. A. and Bergen, W. G. (1985). The effect of specific growth rate and stage of growth on nucleic acid-protein values of pure cultures and mixed ruminal bacteria. J. Anim. Sci., 61, 713–24.

    CAS  Google Scholar 

  • Bauchop, T. and Elsden, S. R. (1960). The growth of microorganisms in relation to their energy supply. J. Gen. Microbiol., 23, 457–69.

    PubMed  CAS  Google Scholar 

  • Beck, B. J. and Russell, J. B. (1994). Electrogenic glutamine uptake by Peptostreptococcus anaerobius and generation of a transmembrane potential. J. Bacteriol., 176, 1303–8.

    PubMed  CAS  Google Scholar 

  • Bladen, H. A., Bryant, M. P. and Doetsch, R. N. (1961). A study of bacterial species from the rumen which produce ammonia from protein hydrolyzate. Appl Microbiol., 9, 175–80.

    PubMed  CAS  Google Scholar 

  • Blaut, M. Muller, V. and Gottschalk, G. (1990). Energetics of methanogens. In Bacterial Energetics, ed. T. A. Krulwich. Academic Press, New York, pp. 505–30.

    Google Scholar 

  • Breznak, J. A. and Kane, M. D. (1990). Microbial H2/CO2 acetogenesis in animal guts: nature and nutritional significance. FEMS Microbiol. Rev., 87, 309–41.

    Article  CAS  Google Scholar 

  • Breznak, J. A. and Switzer, J. M. (1986). Acetate synthesis from H2 plus CO2 by termite gut microbes. Appl. Environ. Microbiol., 52, 623–30.

    PubMed  CAS  Google Scholar 

  • Brockman, H. L. and Wood, W. A. (1975). Electron-transferring flavoprotein of Peptostreptococcus elsdenii that functions in the reduction of acrylyl-coenzyme A. J. Bacteriol., 123, 1447–53.

    Google Scholar 

  • Broderick, G. A. and Balthrop, J. E. (1979). Chemical inhibition of amino acid deamination by ruminal microbes in vitro. J. Anim. Sci., 49, 1101–11.

    CAS  Google Scholar 

  • Buurman, E. T., Teixeira de Mattos, M. J. and Neijssel, O. M. (1991). Futile cycling of ammonium ions via the high affinity potassium uptake system (Kdp) of Escherichia coli. Arch. Microbiol., 155, 391–5.

    Article  PubMed  CAS  Google Scholar 

  • Caldwell, D. R., White, D. C., Bryant, M. P. and Doetsch, R. N. (1965). Specificity of the heme requirement for growth of Bacteroides ruminicola. J. Bacteriol., 90, 1645–54.

    PubMed  CAS  Google Scholar 

  • Chen, G. and Russell, J. B. (1989a). More monensin-sensitive, ammonia-producing bacteria from the rumen. Appl. Environ. Microbiol., 55, 1052–7.

    PubMed  CAS  Google Scholar 

  • Chen, G. and Russell, J. B. (1989b). Sodium-dependent transport of branched chain amino acids by a monensin-sensitive ruminal peptostreptococcus. Appl. Environ. Microbiol., 55, 2658–63.

    PubMed  CAS  Google Scholar 

  • Chen, G. and Russell, J. B. (1990). Transport and deamination of amino acids by a Gram-positive, monensin-sensitive ruminal bacterium. Appl. Environ. Microbiol., 56, 2186–92.

    PubMed  CAS  Google Scholar 

  • Chen, M. and Wolin, M. J. (1979). Effect of monensin and lasalocid-sodium on the growth of methanogenic and rumen saccharolytic bacteria. Appl. Environ. Microbiol., 38, 72–7.

    PubMed  CAS  Google Scholar 

  • Cheng, K.-J., Hironaka, R., Roberts, D. W. A. and Costerton, J. W. (1973). Cytoplasmic glycogen inclusions in cells of anaerobic Gram-negative rumen bacteria. Can. J. Microbiol., 19, 1501–6.

    Article  PubMed  CAS  Google Scholar 

  • Chow, J. M. and Russell, J. B. (1990). Effect of ionophores and pH on growth of Streptococcus bovis in batch and continuous culture. Appl. Environ. Microbiol., 56, 1588–93.

    PubMed  CAS  Google Scholar 

  • Chow, J. M. and Russell, J. B. (1992). Effect of pH and monensin on glucose transport by Fibrobacter succinogenes, a cellulolytic ruminal bacterium. Appl. Environ. Microbiol., 58, 1115–20.

    PubMed  CAS  Google Scholar 

  • Cook, G. M. and Russell, J. B. (1994). Energy spilling reactions of Streptococcus bovis and resistance of its membrane to proton conductance. Appl. Environ. Microbiol., 60, 1942–8.

    PubMed  CAS  Google Scholar 

  • Cook, G. M., Kearns, D. B., Russell, J. B. et al. (1995a). The regulation of the lactose phosphotransferase system of Streptococcus bovis by glucose: the independence of inducer exclusion and expulsion mechanisms. Microbiology, 141, 2261–9.

    Article  PubMed  CAS  Google Scholar 

  • Cook, G. M., Ye, J. J., Russell, J. B. and Saier, M. H. (1995b). Properties of two sugar phosphate phosphatases from Streptococcus bovis and their involvement in inducer expulsion.J. Bacteriol., 177, 7007–9.

    PubMed  CAS  Google Scholar 

  • Cotta, M. A. (1988). Amylolytic activity of selected species of ruminal bacteria. Appl. Environ. Microbiol., 54, 772–6.

    PubMed  CAS  Google Scholar 

  • Cotta, M. A., Wheeler, M. B. and Whitehead, T. R. (1994). Cyclic AMP in ruminal and other anaerobic bacteria. FEMS Microbiol. Lett., 124, 355–60.

    Article  PubMed  CAS  Google Scholar 

  • Counotte, G. H. M., deGroot, M. and Prins, R. A. (1980). Kinetic parameters of lactate dehydrogenase of some rumen bacterial species, the anaerobic ciliateIsotricha prostoma and mixed rumen microorganisms. Ant. van Leeuwenhoek, 46, 363–81.

    Article  CAS  Google Scholar 

  • Counotte, G. H. M., Prins, R. A., Jansen, R. H. A. M. and de Bie, M. J. A. (1981). Role of Megasphaera elsdenii in the fermentation of DL-[2–13C]-lactate in the rumen of dairy cattle. Appl. Environ. Microbiol., 42, 649–55.

    PubMed  CAS  Google Scholar 

  • Counotte, G. H. M., Lankhorst, M. and Prins, R. A. (1983). Role of DL-lactic acid as an intermediate in rumen metabolism of dairy cows. J. Anim. Sci., 56, 1222–35.

    PubMed  CAS  Google Scholar 

  • Czerkawski, J. W. (1978). Reassessment of efficiency of synthesis of microbial matter in the rumen. J. Dairy Sci., 61, 1261–73.

    Article  CAS  Google Scholar 

  • Czerkawski, J. W. and Breckenridge, G. (1972). Fermentation of various glycolytic intermediates and other compounds by rumen microorganisms with particular reference to methane production. Br. J. Nutr., 27, 131–46.

    Article  PubMed  CAS  Google Scholar 

  • Dawes, E. A. (1986). Microbial Energetics. Blackie, London.

    Google Scholar 

  • Dawes, E. A. and Sutherland, I. W. (1992). Microbial Physiology, 2nd edn. Blackwell Scientific Publications, London, p. 45.

    Google Scholar 

  • Dawson, K. A. and Boling, J. A. (1984). Factors affecting resistance of monensin-resistant and sensitive strains of Bacteroides ruminicola. Can. J. Anim. Sci., 64(Suppl. I), 132–3.

    Article  CAS  Google Scholar 

  • Dawson, K. A. and Boling, J. (1987). Effects of potassium ion concentrations on the antimicrobial activities of ionophores against ruminal anaerobes. Appl. Environ. Microbiol., 53, 2636–2367.

    Google Scholar 

  • Dawson, K. A., Preziosi, M. C. and Caldwell, D. R. (1979). Some effects of uncouplers and inhibition on growth and electron transport in rumen bacteria. J. Bacteriol., 139, 384–92.

    PubMed  CAS  Google Scholar 

  • DeGraeve, K. G., Grivet, J. P., Durand, M. et al. (1994). Competition between reductive acetogenesis and methanogenesis in the pig large-intestine flora.J. Appl. Bacteriol., 76, 55–61.

    CAS  Google Scholar 

  • DeJong, A. and Berschauer, F. (1983). Adaptation effects of ionophores on rumen fermentation. S. Afr. J. Anim. Sci., 13, 67–70.

    Google Scholar 

  • Demeyer, D. I. and Van Nevel, C. J. (1979). Effect of defaunation on the metabolism of rumen microorganisms. Br. J. Nutr., 42, 515–24.

    Article  PubMed  CAS  Google Scholar 

  • Dills, S. S., Lee, C. A. and Saier, M. H. (1981). Phosphoenolpyruvate-dependent sugar phosphotransferase activity in Megasphaera elsdenii. Can. J. Microbiol., 27, 949–52.

    Article  PubMed  CAS  Google Scholar 

  • Erfle, J. D., Sauer, F. D. and Mahadevan, S. (1980). Energy metabolism in rumen microbes. In Control of Digestion and Metabolism in Ruminants, ed. L. P. Milligan, W. L. Groveneur and A. Dobson. Prentice-Hall, Englewood Cliffs, NJ, pp. 81–99.

    Google Scholar 

  • Forrest, W. W. (1969). Energetic aspects of microbial growth. Proc. Symp. Gen. Microbiol., 19, 65–86.

    Google Scholar 

  • Forrest, W. W. and Walker, D. J. (1971). The generation and utilization of energy during growth. In Advances in Microbial Physiology, Vol. 5, ed. A. H. Rose and J. F. Wilkinson. Academic Press Inc., New York, pp. 213–74.

    Google Scholar 

  • Fox, D. G., Sniffen, C. J., O’Connor, J. D. et al. (1992). A net-carbohydrate and protein system for evaluating cattle diets: III. Cattle requirements and diet adequacy. J. Anim. Sci., 70, 3578–96.

    PubMed  CAS  Google Scholar 

  • Franklund, C. V. and Glass, T. L. (1986). Glucose uptake by the cellulolytic ruminal anaerobe Bacteroides succinogenes. J. Bacteriol., 169, 500–6.

    Google Scholar 

  • Freedberg, W. B., Kistler, W. S. and Lin, E. C. C. (1971). Lethal synthesis of methylglyoxal by Escherichia coli during unregulated glycerol metabolism. J. Bacteriol., 108, 137–44.

    PubMed  CAS  Google Scholar 

  • Gilmour, M., Flint, H. J. and Mitchell, W. J. (1994). Multiple lactate dehydrogenase activities of the rumen bacterium, Selenomonas ruminantium. Microbiology, 140, 2077–84.

    CAS  Google Scholar 

  • Glass, T. L. and Sherwood, J. S. (1994). Phosphorylation of glucose by a guanosine 5’-triphosphate (GTP)-dependent glucokinase inFibrobacter succinogenes subsp. succinogenes. Arch. Microbiol., 162, 180–6.

    PubMed  CAS  Google Scholar 

  • Glass, T. L., Bryant, M. P. and Wolin, M. J. (1977). Partial purification of ferredoxin from Ruminococcus albus and its role in pyruvate metabolism and reduction of nicotinamide adenine dinucleotide by H2. J. Bacteriol., 131, 463–72.

    PubMed  CAS  Google Scholar 

  • Gottschalk, G. (1979). In Bacterial Metabolism, Springer Verlag, New York, pp. 15, 212–19.

    Google Scholar 

  • Greening, R. C. and Leedle, J. A. Z. (1989). Enrichment and isolation of Acetitomaculum ruminis gen. nov., sp. nov.: acetogenic bacteria from the bovine rumen. Arch. Microbiol., 1551, 399–406.

    Article  Google Scholar 

  • Harrison, D. G. and McAllan, A. B. (1980). Factors affecting microbial growth yields in the reticulo-rumen. In Digestive Physiology and Metabolism in Ruminants, ed. Y. Ruckebusch and P. Thivend. MTP Press, Lancaster, pp. 205–26.

    Google Scholar 

  • Harrison, D. G., Beever, D. E., Thomson, D. J. and Osbourn, D. F. (1975). Manipulation of rumen fermentation in sheep by increasing the rate of flow of water from the rumen. J. Agric. Sci. (Camb.), 85, 93–101.

    Article  Google Scholar 

  • Hayashi, T. and Kozaki, M. (1980). Growth yield of an orange coloredStreptococcus bovis No. 148. J. Gen. Appl. Microbiol., 25, 245–53.

    Article  Google Scholar 

  • Helaszek, C. T. and White, B. A. (1991). Cellobiose uptake and metabolism byRuminococcus flavefaciens Appl. Environ. Microbiol., 57, 64–8.

    PubMed  CAS  Google Scholar 

  • Henderson, C. (1980). The influence of extracellular hydrogen in the metabolism of Bacteroides ruminicola, Anaerovibrio lipolytica and Selenomonas ruminantium. J. Gen. Microbiol., 119, 485–91.

    PubMed  CAS  Google Scholar 

  • Henderson, C., Stewart, C. S. and Nekrep, F. V. (1981). The effect of monensin on pure and mixed cultures of rumen bacteria. J. Appl. Bacteriol., 51, 159–69.

    CAS  Google Scholar 

  • Hengge, R. and Boos, W. (1983). Maltose and lactose transport inEscherichia coli. Examples of two different types of concentrative transport systems. Biochim. Biophys. Acta, 737, 443–78.

    PubMed  CAS  Google Scholar 

  • Herbert, D., Elsworth, R. and Telling, R. O. (1956). The continuous culture of bacteria: a theoretical and experimental study. J. Gen. Microbiol., 25, 227–38.

    Google Scholar 

  • Hespell, R. B. and Bryant, M. P. (1979). Efficiency of rumen microbial growth: influence of same theoretical and experimental factors on YATP. J. Dairy Sci., 49, 1640–59.

    CAS  Google Scholar 

  • Hino, T. and Russell, J. B. (1985). The effect of reducing equivalent disposal and NADH/NAD on the deamination of amino acids by intact and cell-free extracts of rumen microorganisms. Appl. Environ. Microbiol., 50, 1368–74.

    PubMed  CAS  Google Scholar 

  • Hobson, P. N. and Summers, R. (1967). The continuous culture of anaerobic bacteria. J. Gen. Microbiol., 47, 53–65.

    PubMed  CAS  Google Scholar 

  • Hobson, P. N. and Summers, R. (1972). ATP pool and growth yield in Selenomonas ruminantium. J. Gen. Microbiol., 70, 351–60.

    CAS  Google Scholar 

  • Hobson, P. N. and Wallace, R. J. (1982). Microbial ecology and activities in the rumen: part II. Crit. Rev. Microbiol., 9, 253–320.

    Article  PubMed  CAS  Google Scholar 

  • Hollowell, C. A. and Wolin, M. J. (1965). Basis of the exclusion of Escherichia coli from the rumen ecosystem. Appl. Microbiol., 13, 918–24.

    PubMed  CAS  Google Scholar 

  • Hoogenraad, N. J. and Hird, F. J. R. (1970). Factors concerned in the lysis of bacteria in the alimentary tract of sheep. J. Gen. Microbiol., 62, 261–4.

    PubMed  CAS  Google Scholar 

  • Hoogenraad, N. J., Hird, F. J. R., Holmes, J. and Millis, N. F. (1967). Bacteriophages in rumen contents of sheep. J. Gen. Virol., 1, 575–6.

    Article  PubMed  CAS  Google Scholar 

  • Hopgood, M. F. and Walker, D. J. (1967). Succinic acid production by rumen bacteria. 1. Isolation and metabolism of Ruminococcus flavefaciens. Aust. J. Biol. Sci., 20, 165–82.

    PubMed  CAS  Google Scholar 

  • Howlett, M. R., Mountfort, D. O., Turner, K. W. and Roberton, A. M. (1976). Metabolism and growth yields inBacteroides ruminicola strain B14. Appl. Environ. Microbiol., 32, 274–83.

    PubMed  CAS  Google Scholar 

  • Hungate, R. E. (1963). Polysaccharide storage and growth efficiency in Ruminococcus albus. J. Bacteriol., 86, 848–54.

    PubMed  CAS  Google Scholar 

  • Hungate, R. E. (1967). Hydrogen as an intermediate in the rumen fermentation. Arch. Mikrobiol., 59, 158–64.

    Article  PubMed  CAS  Google Scholar 

  • Hungate, R. E. (1979). Evolution of a microbial ecologist. Annu. Rev. Microbiol., 33, 1–20.

    Article  PubMed  CAS  Google Scholar 

  • Hungate, R. E., Smith, W., Bauchop, T. et al. (1970). Formate as an intermediate in the bovine rumen fermentation. J. Bacteriol., 102, 389–97.

    PubMed  CAS  Google Scholar 

  • Isaacson, H. R., Hinds, F. C., Bryant, M. P. and Owens, F. N. (1975). Efficiency of energy utilisation by mixed rumen bacteria in continuous culture. J. Dairy Sci., 58, 1645–59.

    Article  PubMed  CAS  Google Scholar 

  • Jenkinson, H. F. and Woodbine, M. (1979). Growth and energy production in Bacteroides amylophilus. Arch. Microbiol., 120, 275–81.

    Article  CAS  Google Scholar 

  • Jensen, K. F. and Pedersen, S. (1990). Metabolic growth rate control in Escherichia coli may be a consequence of subsaturation of the macromolecular biosynthetic apparatus with substrates and catalytic components. Microbiol. Rev., 54, 89–100.

    PubMed  CAS  Google Scholar 

  • Joyner, A. E. and Baldwin, R. L. (1966). Enzymatic studies of pure cultures of rumen microorganisms. J. Bacteriol., 92, 1321–30.

    PubMed  CAS  Google Scholar 

  • Kadner, R. J., Murphy, G. P. and Stephens, C. M. (1992). Two mechanisms for growth inhibition by elevated transport of sugar phosphates in Escherichia coli. J. Gen. Microbiol., 138, 2007–14.

    PubMed  CAS  Google Scholar 

  • Kearns, D. B., Cook, G. M. and Russell, J. B. (1996). Inducer expulsion is not a determinant of diauxic growth in Streptococcus bovis. Curr. Microbiol., 32, 1–5.

    Article  Google Scholar 

  • Kell, D. G., Peck, M. W., Rodger, G. and Morris, J. G. (1981). On the permeability to weak acids and bases of the cytoplasmic membrane ofClostridium pasteurianum. Biochem. Biophys. Res. Commun., 99, 81–8.

    Article  PubMed  CAS  Google Scholar 

  • Kennedy, P. M. and Milligan, L. P. (1978). Effects of cold exposure on digestion, microbial synthesis and nitrogen transformations in sheep. Br. J. Nutr., 39, 105–17.

    Article  PubMed  CAS  Google Scholar 

  • Kleiner, D. (1985). Bacterial ammonium transport. FEMS Microbiol. Rev., 32, 87–100.

    Article  CAS  Google Scholar 

  • Kobayashi, Y., Wakita, M. and Hashino, S. (1989). Persistency of salinomycin effect on ruminal fermentation in wethers. Nutr. Rep. Int., 38, 987–1000.

    Google Scholar 

  • Konings, W. N., Otto, R. and ten Brink, B. (1986). Energy transduction and solute transport in streptococci. In Control of Digestion and Metabolism in Ruminants, ed. L. P. Milligan, W. L. Grovum and A. Dobson. Prentice-Hall, Englewood Cliffs, NJ, pp. 100–21.

    Google Scholar 

  • Krause, D. O. and Russell, J. B. (1996). An rRNA approach for assessing the role of obligate amino acid-fermenting bacteria in ruminal amino acid degradation. Appl. Environ. Microbiol., 62, 815–21.

    PubMed  CAS  Google Scholar 

  • Kroger, A. and Winkler, E. (1981). Phosphorylative fumarate reduction in Vibrio succinogenes: stoichiometry of ATP synthesis.Arch. Microbiol., 129, 100–4.

    Article  Google Scholar 

  • Ladd, J. N. and Walker, D. J. (1965). Fermentation of lactic acid by the rumen microorganism Peptostreptococcus elsdenii. Ann. NY Acad. Sci., 119, 1038–45.

    Article  PubMed  CAS  Google Scholar 

  • Large, P. J. (1983). Methylotrophy and Methanogenesis. American Society for Microbiology, Washington, DC, pp. 11–24.

    Google Scholar 

  • Lehninger, A. L. (1975). Biochemistry. Worth Publishers Inc., New York, p. 411.

    Google Scholar 

  • Lewis, T. R. and Emery, R. S. (1962). Relative deamination rates of amino acids by rumen microorganisms. J. Dairy Sci., 45, 765–8.

    Article  CAS  Google Scholar 

  • Lindsay, J. R. and Hogan, J. P. (1972). Digestion of two legumes and rumen bacterial growth in defaunated sheep. Aust. J. Agric. Res., 23, 321–30.

    Article  Google Scholar 

  • Linker, C. and Wilson, T. H. (1985). Cell volume regulation in Mycoplasma gallisepticum. J. BacterioL, 163, 1243–9.

    PubMed  CAS  Google Scholar 

  • Lipmann, F. (1941). Metabolic generation and utilization of phosphate bond energy. Adv. Enzymol., 1, 99–162.

    CAS  Google Scholar 

  • Maaloe, O. and Kjeldgaard, N. O. (1966). Control of Macromolecular Synthesis. W. A. Benjamin Inc., New York.

    Google Scholar 

  • Maas, L. K. and Glass, T. L. (1991). Cellobiose uptake by the cellulolytic ruminal anaerobe Fibrobacter (Bacteroides) succinogenes. Can. J. Microbiol., 37, 141–7.

    Article  PubMed  CAS  Google Scholar 

  • Mackie, R. I., Gilchrist, F. M. C. and Heath, S. (1984). An in vivo study of ruminal microorganisms influencing lactate turnover and its contribution to volatile fatty acid production. J. Agric. Sci. (Camb.), 103, 37–51.

    Article  CAS  Google Scholar 

  • Macy, J., Probst, J. and Gottschalk, G. (1975). Evidence for cytochrome involvement in fumarate reduction and adenosine 5’ triphosphate synthesis by Bacteroides fragilis grown in the presence of hemin. J. Bacteriol., 123, 436–42.

    PubMed  CAS  Google Scholar 

  • Magasanik, B. (1961). Catabolite repression. Cold Spring Harbor Svmp. Quant. Biol., 26, 249–56.

    CAS  Google Scholar 

  • Marounek, M. and Wallace, R. J. (1984). Influence of culture Eh on the growth and metabolism of the rumen, bacteriaSelenomonas ruminantium, Bacteroides amylophilus, Bacteroides succinogenes and Streptococcus bovis in batch culture. J. Gen. Microbiol., 130, 223–9.

    CAS  Google Scholar 

  • Marr, A. G., Nilson, E. H. and Clark, D. J. (1962). The maintenance requirement of Escherichia coli. Ann. NY Acad. Sci., 102, 536–48.

    Article  Google Scholar 

  • Martin, S. A. (1992). Factors affecting glucose uptake by the ruminal bacterium Bacteroides ruminicola. Appl. Microbiol. Biotechnol., 37, 104–8.

    Article  CAS  Google Scholar 

  • Martin, S. A. (1994). Nutrient transport by ruminal bacteria – a review. J. Anim. Sci., 72, 3019–31.

    PubMed  CAS  Google Scholar 

  • Martin, S. A. and Russell, J. B. (1986). Phosphoenolpyruvate-dependent phosphorylation of hexoses by ruminal bacteria: evidence for the phosphotransferase transport system. Appl. Environ. Microbiol., 52, 1348–52.

    PubMed  CAS  Google Scholar 

  • Martin, S. A. and Russell, J. B. (1987). Transport and phosphorylation of disaccharides by the ruminal bacterium, Streptococcus bovis. Appl. Environ. Microbiol., 53, 2388–93.

    PubMed  CAS  Google Scholar 

  • Martin, S. A. and Russell, J. B. (1988). Sugar transport and regulation in the ruminal bacterium, Selenomonas ruminantium. J. Gen. Microbiol., 134, 819–27.

    CAS  Google Scholar 

  • Marvin-Sikkema, F. D., Gomes, T. M. P., Grivet, J. P. et al. (1993). Characterization of hydrogenosomes and their role in glucose metabolism of Neocallimastix sp. L2.Arch. Microbiol., 160, 388–96.

    Article  PubMed  CAS  Google Scholar 

  • Marvin-Sikkema, F. D., Driessen, A. J. M., Gottschal, J. C. and Prins, R. A. (1994). Metabolic energy generation in hydrogenosomes of the anaerobic fungus Neocallimastix – evidence for a functional relationship. Mycol. Res., 98, 205–12.

    Article  CAS  Google Scholar 

  • McSweeney, C. S., Allison, M. J. and Mackie, R. I. (1993). Amino acid utilization by the ruminal bacterium Synergistes jonesii. Arch. Microbiol., 159, 131–5.

    Article  Google Scholar 

  • McSweeney, C. S., Mackie, R. J. and White, B. A. (1994). Transport and intracellular metabolism of major feed compounds by ruminal bacteria — the potential for metabolic manipulation. Aust. J. Agric. Res., 45, 731–56.

    Article  CAS  Google Scholar 

  • Meinhardt, S. W. and Glass, T. L. (1994). Characterization of the NADH dehydrogenase and fumarate reductase of Fibrobacter succinogenes subsp.succinogenes. Arch. Microbiol., 162, 329–34.

    Article  Google Scholar 

  • Miller, T. L. (1978). The pathway of formation of acetate and succinate from pyruvate by Bacteroides succinogenes. Arch. Microbiol., 117, 145–52.

    Article  PubMed  CAS  Google Scholar 

  • Miller, T. L. and Jenesel, S. E. (1979). Enzymology of butyrate formation by Butyrivibrio fibrisolvens. J. Bacteriol., 138, 99–104.

    PubMed  CAS  Google Scholar 

  • Miller, T. L. and Wolin, M. J. (1979). Fermentations by saccharolytic intestinal bacteria.Am. J. Clin. Nutr., 32, 164–72.

    PubMed  CAS  Google Scholar 

  • Mink, R. M. and Hespell, R. B. (1981a). Long-term nutrient starvation of continuously cultured (glucose-limited) Selenomonas ruminantium. J. Bacteriol., 148, 541–50.

    PubMed  CAS  Google Scholar 

  • Mink, R. M. and Hespell, R. B. (1981b). Survival ofMegasphaera elsdenii during starvation. Gen. Microbiol., 5, 51–6.

    CAS  Google Scholar 

  • Mitchell, P. (1961). Coupling of phosphorylation to electron and hydrogen transfer by a chemiosmotic type of mechanism. Nature, Lond., 191, 144–7, 423–7.

    Article  Google Scholar 

  • Miyazaki, K., Hino, T. and Itabashi, H. (1992). Effects of extracellular pH on the intracellular pH and membrane potential of cellulolytic ruminal bacteria, Ruminococcus albus, Ruminococcus flavefaciens, and Fibrobacter succinogenes. J. Gen. Appl. Microbiol., 38, 567–73.

    Article  CAS  Google Scholar 

  • Monod, J. (1947). The phenomenon of enzymatic adaptation. Growth, 11, 223–89.

    CAS  Google Scholar 

  • Morehead, M. C. and Dawson, U. A. (1992). Some growth and metabolic characteristics of monensin-sensitive and monensin-resistant strains of Prevotella (Bacteroides)ruminicola. Appl. Environ. Microbiol., 58, 1617–23.

    PubMed  CAS  Google Scholar 

  • Morvan, B., Dore, J., Rieu-Lesme, F. et al. (1994). Establishment of hydrogen-utilizing bacteria in the rumen of the newborn lamb. FE MS Microbiol. Lett., 117, 249–56.

    Article  CAS  Google Scholar 

  • Mountfort, D. O. and Robertson, A. M. (1978). Origins of fermentation products formed during growth of Bacteroides ruminicola on glucose. J. Gen. Microbiol., 106, 353–60.

    PubMed  CAS  Google Scholar 

  • Mountfort, D. O. and Asher, R. A. (1983). Role of catabolite regulatory mechanisms in control of carbohydrate utilization by the rumen anaerobic fungusNeocallimastix frontalis. Appl. Environ. Microbiol., 46, 1331–8.

    PubMed  CAS  Google Scholar 

  • Mulder, M. M., Teixeira, M. J., Postma, P. W. and van Dam, K. (1986). Energetic consequences of multiple K+ uptake systems in Escherichia coli. Biochim. Biophys. Acta, 851, 223–8.

    Article  PubMed  CAS  Google Scholar 

  • Neill, A. R., Grime, D. W. and Dawson, R. M. C. (1978). Conversion of choline methyl groups through trimethylamine into methane in the rumen. Biochem. J., 170, 529–35.

    PubMed  CAS  Google Scholar 

  • Newbold, C. J., Wallace, R. J. and McKain, N. (1990). Effect of the ionophore tetronasin on nitrogen metabolism of rumen microorganisms in vitro. J. Anim. Sci., 68, 1103–9.

    PubMed  CAS  Google Scholar 

  • Newbold, C. J., Wallace, R. J. and Watt, N. D. (1992). Properties of ionophore-resistant Bacteroides ruminicola enriched by cultivation in the presence of tetronasin. J. Appl. Bacteriol., 72, 65–70.

    PubMed  CAS  Google Scholar 

  • Nichols, D. G. (1982). Bioenergetics: An Introduction to the Chemiosmotic Theory, Academic Press, London, p. 48.

    Google Scholar 

  • Nisman, B. (1954). The Stickland reaction. Bacteriol. Rev., 18, 16–42.

    PubMed  CAS  Google Scholar 

  • O’Brien, W. E., Bowein, S. and Wood, H. G. (1975). Isolation and characterization of a pyrophosphate dependent phosphofructokinase from Propionibacterium shermanii. J. Biol. Chem., 250, 8690–5.

    PubMed  Google Scholar 

  • Opperman, R. A., Nelson, W. O. and Brown, R. E. (1961). In vivo studies of methanogenesis in the bovine rumen: dissimilation of acetate. J. Gen. Microbiol., 25, 103–11.

    Google Scholar 

  • Padan, E., Zilberstein, D. and Schuldiner, S. (1981). pH homeostasis in bacteria.Biochim. Biophys. Acta, 650, 151–66.

    PubMed  CAS  Google Scholar 

  • Paster, B., Russell, J. B., Yang, C. M. J. et al. (1993). Phylogeny of ammonia-producing ruminal bacteria, Peptostreptococcus anaerobius, Clostridium sticklandii and Clostridium aminophilum sp. nov. Int. J. Syst. Bacteriol., 43, 107–10.

    Article  PubMed  CAS  Google Scholar 

  • Paynter, M. J. B. and Elsden, S. R. (1970). Mechanism of propionate formation by Selemononas ruminantium, a rumen bacterium. J. Gen. Microbiol., 61, 1–7.

    PubMed  CAS  Google Scholar 

  • Pettipher, G. L. and Latham, M. J. (1979). Production of enzymes degrading plant cell walls and fermentation of cellobiose by Ruminococcus flavefaciens in batch and continuous culture. J. Gen. Microbiol., 110, 29–38.

    CAS  Google Scholar 

  • Pirt, S. J. (1965). The maintenance energy of bacteria in growing cultures. Proc. R. Soc. London Ser. B, 163, 224–31.

    Article  CAS  Google Scholar 

  • Pirt, S. J. (1982). Maintenance energy: a general model for energy-limited and energy-sufficient growth. Arch. Microbiol., 133, 300–2.

    Article  PubMed  CAS  Google Scholar 

  • Postma, P. W. (1986). Catabolite repression and related processes. In Regulation of Gene Expression – 25 Years On, ed. I. R. Booth and C. F. Higgins. Society for General Microbiology Symposium, No. 39. Cambridge University Press, New York, pp. 21–9.

    Google Scholar 

  • Postma, P. W. and Lengeler, J. W. (1985). Phosphoenol pyruvate: carbohydrate phosphotransferase system of bacteria. Microbiol. Rev., 49, 232–69.

    PubMed  CAS  Google Scholar 

  • Postma, P. W. and Roseman, S. (1976). The bacterial phosphoenolpyruvate: sugar phosphotransferase system. Biochim. Biophys. Acta, 457, 213–57.

    CAS  Google Scholar 

  • Prins, R. A. and Lankhorst, A. (1977). Synthesis of acetate from C02 in the cecum of some rodents. FEMS Microbiol. Lett., 1, 255–8.

    Article  CAS  Google Scholar 

  • Reizer, J. and Panos, C. (1980). Regulation of ß-galactoside phosphate accumulation in Streptococcus pyogenes by an expulsion mechanism. Proc. Natl. Acad. Sci. USA, 77, 5497–501.

    Article  PubMed  CAS  Google Scholar 

  • Reizer, J., Novotny, M. J., Hengstenberg, W. and Saier, M. H. Jr (1984). Properties of ATP-dependent protein kinase from Streptococcus pyogenes that phosphorylates a seryl residue in HPr, a phosphocarrier protein of the phosphotransferase system. J. Bacteriol., 160, 333–40.

    PubMed  CAS  Google Scholar 

  • Robinson, J. P. and Hungate, R. E. (1973). Acholeplasma bactoclasticum sp.n.. an anaerobic mycoplasma from the bovine rumen. Int. J. Syst. Bacteriol., 23, 171–81.

    Article  Google Scholar 

  • Rowe, J. B., Loughnan, M. L., Nolan, J. V. and Leng, R. A. (1979). Secondary fermentation in the rumen of a sheep given a diet based on molasses. Br. J. Nutr., 41, 393–7.

    Article  PubMed  CAS  Google Scholar 

  • Russell, J. B. (1983). Fermentation of peptides by Bacteroides ruminicola B14. Appl. Environ. Microbiol., 45, 1566–74.

    PubMed  CAS  Google Scholar 

  • Russell, J. B. (1986). Heat production by ruminal bacteria in continuous culture and its relationship to maintenance energy.J. Bacteriol., 168, 694–701.

    PubMed  CAS  Google Scholar 

  • Russell, J. B. (1987a). Effect of extracellular pH on the growth and protonmotive force of Bacteroides succinogenes, a cellulolytic ruminal bacterium. Appl. Environ. Microbiol., 53, 2379–83.

    PubMed  CAS  Google Scholar 

  • Russell, J. B. (1987b). A proposed model of monensin action in inhibiting rumen bacterial growth: effects on ion flux and protonmotive force. J. Anim. Sci., 64, 1519–24.

    PubMed  CAS  Google Scholar 

  • Russell, J. B. (1990). Low affinity, high capacity system of glucose transport in the ruminal bacterium Streptococcus bovis: evidence for a mechanism of facilitated diffusion. Appl. Environ. Microbiol., 56, 3304–7.

    PubMed  CAS  Google Scholar 

  • Russell, J. B. (1991a). Resistance ofStreptococcus bovis to acetic acid at low pH: relationship between intracellular pH and anion accumulation. Appl. Environ. Microbiol., 57, 255–9.

    PubMed  CAS  Google Scholar 

  • Russell, J. B. (1991b). Intracellular pH of acid-tolerant ruminal bacteria. Appl. Environ. Microbiol., 57, 3383–4.

    PubMed  CAS  Google Scholar 

  • Russell, J. B. (1991c). A re-assessment of bacterial growth efficiency: the heat production and membrane potential ofStreptococcus bovis in batch and continuous culture. Arch. Microbiol., 155, 559–65.

    Article  PubMed  CAS  Google Scholar 

  • Russell, J. B. (1992a). Glucose toxicity and the inability of Bacteroides ruminicola to regulate glucose transport and utilization. Appl. Environ. Microbiol., 58, 2040–5.

    PubMed  CAS  Google Scholar 

  • Russell, J. B. (1992b). Another explanation for the toxicity of fermentation acids at low pH: anion accumulation versus uncoupling. J. Appl. Bacteriol., 73, 363–70.

    CAS  Google Scholar 

  • Russell, J. B. (1993a). The glucose toxicity of Prevotella ruminicola: methylglyoxal accumulation and its effect of membrane physiology. Appl. Environ. Microbiol., 59, 2844–50.

    PubMed  CAS  Google Scholar 

  • Russell, J. B. (1993b). Effect of amino acids on the heat production and growth efficiency of Streptococcus bovis: balance of anabolic and catabolic rates. Appl. Environ. Microbiol., 59, 1747–7.

    PubMed  CAS  Google Scholar 

  • Russell, J. B. and Baldwin, R. L. (1978). Substrate preferences in rumen bacteria: evidence of catabolite regulatory mechanisms. Appl. Environ. Microbiol., 36, 319–29.

    PubMed  CAS  Google Scholar 

  • Russell, J. B. and Baldwin, R. L. (1979). Comparison of maintenance energy expenditures and growth yields among several rumen bacteria grown in continuous culture. Appl. Environ. Microbiol., 37, 537–43.

    PubMed  CAS  Google Scholar 

  • Russell, J. B. and Cook, G. M. (1995). Energetics of bacterial growth: balance of anabolic and catabolic reactions. Microbiol. Rev., 59, 48–62.

    PubMed  CAS  Google Scholar 

  • Russell, J. B. and Dombrowski, D. B. (1980). Effect of pH on the efficiency of growth by pure cultures of rumen bacteria in continuous culture.Appl. Environ. Microbiol., 39, 604–10.

    PubMed  CAS  Google Scholar 

  • Russell, J. B. and Hino, T. (1985). Regulation of lactate production inStreptococcus bovis: a spiraling effect that leads to rumen acidosis. J. Dairy Sci., 68, 1712–21.

    Article  PubMed  CAS  Google Scholar 

  • Russell, J. B. and Jeraci, J. L. (1984). Effect of carbon monoxide on fermentation of fiber, starch, and amino acids by mixed rumen microorganisms in vitro. Appl. Environ. Microbiol., 48, 211–17.

    PubMed  CAS  Google Scholar 

  • Russell, J. B. and Robinson, P. H. (1984). Compositions and characteristics of strains of Streptococcus bovis. J. Dairy Sci., 67, 1525–31.

    Article  PubMed  CAS  Google Scholar 

  • Russell, J. B. and Strobel, H. J. (1989). Mini-Review: the effect of ionophores on ruminal fermentation. Appl. Environ. Microbiol., 55, 1–6.

    PubMed  CAS  Google Scholar 

  • Russell, J. B. and Strobel, H. J. (1990). ATPase-dependent energy spilling by the ruminal bacterium, Streptococcus bovis. Arch. Microbiol., 153, 378–83.

    Article  PubMed  CAS  Google Scholar 

  • Russell, R. B., Cotta, M. A. and Dombrowski, D. B. (1981). Rumen bacterial competition in continuous culture: Streptococcus bovis versus Megasphaera elsdenii. Appl. Environ. Microbiol., 41, 1394–9.

    PubMed  CAS  Google Scholar 

  • Russell, J. B., Strobel, H. J. and Chen, G. (1988). The enrichment and isolation of a ruminal bacterium with a very high specific activity of ammonia production. Appl. Environ. Microbiol., 54, 872–7.

    PubMed  CAS  Google Scholar 

  • Russell, J. B., Strobel, H. J. and Martin, S. A. (1990). Strategies of nutrient transport by ruminal bacteria. J. Dairy Sci., 73, 2996–3012.

    Article  PubMed  CAS  Google Scholar 

  • Russell, J. B., O’Connor, J. D., Fox, D. G. et al. (1992). A net-carbohydrate and protein system for evaluating cattle diets: I. Ruminal fermentation. J. Anim. Sci., 70, 3551–61.

    PubMed  CAS  Google Scholar 

  • Saier, M. H. (1977). Bacterial phosphoenolpyruvate: sugar phosphotransferase systems: functional and evolutionary interrelationships. Bacteriol. Rev., 41, 856–71.

    PubMed  CAS  Google Scholar 

  • Scheifinger, C. C., Latham, M. J. and Wolin, M. J. (1975). Relationship of lactate dehydrogenase specificity and growth rate to lactate metabolism by Selenomonas ruminantium. Appl. Microbiol., 30, 916–21.

    CAS  Google Scholar 

  • Schwingel, W. R., Bates, D. B., Denham, S. C. and Beede, D. K. (1989). Lasalocid-catalyzed proton conductance inStreptococcus bovis as affected by extracellular potassium. Appl. Environ. Microbiol., 55, 259–60.

    PubMed  CAS  Google Scholar 

  • Sharak Genther, B. R. S., Davis, C. L. and Bryant, M. P. (1981). Features of rumen and sewage sludge strains of Eubacterium limosum, a methanol- and H2/CO2-utilising species.Appl. Environ. Microbiol., 42, 12–19.

    Google Scholar 

  • Shiloach, J. and Bauer, R. A. S. (1975). High-yield growth of E. coli at different temperatures in a bench-scale fermentor. Biotechnol. Bioeng., 17, 227–39.

    Article  CAS  Google Scholar 

  • Sih, C. J. and McBee, R. H. (1955). A cellobiose phosphorylase inClostridium thermocellum. Proc. Montana Acad. Sci., 15, 21–2.

    CAS  Google Scholar 

  • Sniffen, C. J., O’Connor, J. D., Van Soest, P. J. et al. (1992). A net-carbohydrate and protein system for evaluating cattle diets: II. Carbohydrate and protein availability. J. Anim. Sci., 70, 3562–77.

    PubMed  CAS  Google Scholar 

  • Stewart, C. S. (1977). Factors affecting the cellulolytic activity of rumen contents. Appl. Environ. Microbiol., 33, 497–502.

    PubMed  CAS  Google Scholar 

  • Stewart, C. S., Paniagua, C., Dinsdale, D. et al. (1981). Selective isolation and characteristics of Bacteroides succinogenes from the rumen of a cow. Appl. Environ. Microbiol., 41, 504–10.

    PubMed  CAS  Google Scholar 

  • Stouthamer, A. H. (1969). Determination and significance of molar growth yields. In Methods in Microbiology, Vol. 1, ed. J. R. Norris and D. W. Ribbons. Academic Press, London, pp. 629–63.

    Google Scholar 

  • Stouthamer, A. H. (1973). A theoretical study on the amount of ATP required for synthesis of microbial cell material. Ant. van Leeuwenhoek, 39, 545–65.

    Article  CAS  Google Scholar 

  • Stouthamer, A. H. (1979). The search for correlation between theoretical and experimental growth yields. In International Review of Biochemistry and Microbial Biochemistry, Vol. 21, ed. J. R. Quayle. University Park Press, Baltimore, MD, pp. 1–47.

    Google Scholar 

  • Stouthamer, A. H. and Bettenhaussen, C. (1973). Utilization of energy for growth and maintenance in continuous and batch cultures of microorganisms. Biochim. Biophys. Acta, 301, 53–70.

    PubMed  CAS  Google Scholar 

  • Strobel, H. J. (1993a). Evidence for catabolite inhibition in regulation of pentose utilization and transport in the ruminal bacterium Selenomonas ruminantium. Appl. Environ. Microbiol., 59, 40–6.

    PubMed  CAS  Google Scholar 

  • Strobel, H. J. (1993b). Pentose utilization and transport by the ruminal bacterium Prevotella ruminicola. Arch. Microbiol., 159, 465–71.

    Article  PubMed  CAS  Google Scholar 

  • Strobel, H. J. (1994). Pentose transport by the ruminal bacterium Butyrivibrio fibrisolvens. FEMS Microbiol. Lett., 122, 217–22.

    Article  PubMed  CAS  Google Scholar 

  • Strobel, H. J. and Dawson, K. A. (1993). Xylose and arabinose utilization by the rumen bacterium Butyrivibrio fibrisolvens. FEMS Microbiol. Lett., 113, 285–90.

    Article  Google Scholar 

  • Strobel, H. J. and Russell, J. B. (1991). Succinate transport by a ruminal selenomonad and its regulation by carbohydrate availability and osmotic strength. Appl. Environ. Microbiol., 57, 248–54.

    PubMed  CAS  Google Scholar 

  • Takahashi, S., Abbe, K. and Yamada, T. (1982). Purification of pyruvate-formate lyase from Streptococcus mutans and its regulatory properties. J. Bacteriol., 149, 1034–42.

    PubMed  CAS  Google Scholar 

  • Tempest, D. W. and Neijssel, O. M. (1984). The status of YATP and maintenance energy as biologically interpretable phenomena. Annu. Rev. Microbiol., 38, 459–86.

    Article  PubMed  CAS  Google Scholar 

  • Thauer, R. K., Jungermann, K. and Decker, K. (1977). Energy conservation in chemotrophic anaerobic bacteria. Bacteriol. Rev., 41, 100–80.

    PubMed  CAS  Google Scholar 

  • Therion, J. J., Kistner, A. and Kornelius, J. H. (1982). Effect of pH on growth rates of rumen amylolytic and lactilytic bacteria. Appl. Environ. Microbiol., 44, 428–34.

    PubMed  CAS  Google Scholar 

  • Thompson, J. (1987). Regulation of sugar transport and metabolism in lactic acid bacteria. FEMS Microbiol. Rev., 46, 221–31.

    Article  CAS  Google Scholar 

  • Thompson, J. and Torchia, D. A. (1984). Use of31P nuclear magnetic resonance spectroscopy and 14C fluorography in studies of glycolysis and regulation of pyruvate kinase in Streptococcus lactis. J. Bacteriol., 158, 791–800.

    PubMed  CAS  Google Scholar 

  • Thurston, B., Dawson, K. A. and Strobel, H. J. (1993). Cellobiose versus glucose utilization by the ruminal bacterium Ruminococcus albus. Appl. Environ. Microbiol., 59, 2631–7.

    PubMed  CAS  Google Scholar 

  • Thurston, B., Dawson, K. A. and Strobel, H. J. (1994). Pentose utilisation by the ruminal bacterium Ruminococcus albus. Appl. Environ. Microbiol., 60, 1087–92.

    PubMed  CAS  Google Scholar 

  • Turner, K. W. and Robertson, A. M. (1979). Xylose, arabinose, rhamnose fermentation by Bacteroides ruminicola. Appl. Environ. Microbiol., 38, 7–12.

    PubMed  CAS  Google Scholar 

  • Van den Hende, C., Oyaert, W. and Bouchaert, J. H. (1963). Metabolism of glycine, alanine, valine, leucine and isoleucine by rumen bacteria. Res. Vet. Sci., 4, 382–9.

    Google Scholar 

  • Van Gylswyk, N. O. (1977). Activation of NAD-dependent lactate dehydrogenase in Butyrivibrio fibrisolvens by fructose 1,6-disphosphate. J. Gen. Microbiol., 99, 441–3.

    PubMed  Google Scholar 

  • Van Kessel, J. S. and Russell, J. B. (1992). The energetics of arginine and lysine transport by whole cells and membrane vesicles of strain SR, a monensin-sensitive ruminal bacterium. Appl. Environ. Microbiol., 58, 969–75.

    PubMed  Google Scholar 

  • Van Kessel, J. S. and Russell, J. B. (1996). The effect of amino nitrogen on the energetics of ruminal bacteria and its impact on energy spilling.J. Dairy Sci., 79, 1237–43.

    Article  PubMed  Google Scholar 

  • Wachenheim, D. E. and Hespell, R. B. (1985). Responses ofRuminococcus flavefaciens, a ruminal cellulolytic species, to nutrient starvation. Appl. Environ. Microbiol., 50. 1361–7.

    PubMed  CAS  Google Scholar 

  • Wallace, R. J. (1978). Control of lactate production by Selenomonas ruminantiiinr. homotrophic activation of lactate dehydrogenase by pyruvate. J. Gen. Microbiol., 107, 45–52.

    PubMed  CAS  Google Scholar 

  • Wallace, R. J. (1980). Cytoplasmic reserve polysaccharide of Selenomonas ruminantium. Appl. Environ. Microbiol., 39, 630–4.

    PubMed  CAS  Google Scholar 

  • Wallace, R. J. (1986). Catabolism of amino acids by Megasphaera elsdenii LCI. Appl. Environ. Microbiol., 51, 1141–3.

    PubMed  CAS  Google Scholar 

  • Wallace, R. J. and McPherson, C. A. (1987). Factors affecting the rate of breakdown of bacterial protein in rumen fluid. Br. J. Nutr., 58, 313–23.

    Article  PubMed  CAS  Google Scholar 

  • Wallace, R. J. and Robertson, J. D. (1985). Lactate efflux from Selenomonas ruminantium. In Proceedings of 18th Conference on Rumen Function, Chicago IL, p. 18.

    Google Scholar 

  • Wallace, R. J., Falconer, M. L. and Bhargava, P. K. (1989). Toxicity of volatile fatty acids at rumen pH prevents enrichment of Escherichia coli by sorbitol in rumen contents. Curr. Microbiol., 19, 277–81.

    Article  CAS  Google Scholar 

  • Wallnofer, P., Baldwin, R. L. and Stagno, E. (1966). Conversion of l4C-labeled substrates to volatile fatty acids by the rumen microbiota. Appl. Microbiol., 14, 1004–10.

    PubMed  CAS  Google Scholar 

  • Wells, J. E. and Russell, J. B. (1994). The endogenous metabolism of Fibrobacter succinogenes and its relationship to cellobiose transport, viability and cellulose digestion. Appl. Microbiol. Biotechnol., 41, 471–6.

    CAS  Google Scholar 

  • Wetzstein, H. G., McCarthy, J. E. G. and Gottschalk, G. (1987). The membrane potential in cytochrome-deficient species of Bacteroides: its magnitude and mode of generation. J. Gen. Microbiol., 133, 73–83.

    CAS  Google Scholar 

  • White, D. C., Bryant, M. P. and Caldwell, D. R. (1962). Cytochrome-linked fermentation in Bacteroides ruminicola. J. Bacteriol., 84, 822–8.

    PubMed  CAS  Google Scholar 

  • Williams, A. G. (1986). Rumen holotrich ciliate protozoa. Microbiol. Rev., 50, 25–49.

    PubMed  CAS  Google Scholar 

  • Williams, A. G. and Coleman, A. G. (1992). The Rumen Protozoa. Springer-Verlag, New York.

    Book  Google Scholar 

  • Wolin, M. J. (1964). Fructose-l,6-diphosphate requirement of streptococcal lactic dehydrogenases. Science, 146, 775–7.

    Article  PubMed  CAS  Google Scholar 

  • Wolin, M. J. (1969). Volatile fatty acids and the inhibition of Escherichia coli growth by rumen fluid. Appl. Microbiol., 17, 83–7.

    PubMed  CAS  Google Scholar 

  • Wolin, M. J. (1979). The rumen fermentation: a model for microbial interactions in anaerobic ecosystems. Adv. Microbial. Ecol., 3, 49–77.

    CAS  Google Scholar 

  • Yang, C. M. J. and Russell, J. B. (1993). The effect of monensin supplementation on ruminal ammonia accumulation in vivo and the numbers of amino-acid fermenting bacteria. J. Anim. Sci., 71, 3470–6.

    PubMed  CAS  Google Scholar 

  • Yarlett, N., Hann, A. C., Lloyd, D. and Williams, A. G. (1981). Hydrogenosomes in the rumen protozoan Dasytricha ruminantium Schuberg. Biochem. J., 200, 365–72.

    PubMed  CAS  Google Scholar 

  • Yarlett, N., Lloyd, D. and Williams, A. G. (1982). Respiration of the rumen ciliate Dasytricha ruminantium Schuberg. Biochem. J., 206, 259–66.

    PubMed  CAS  Google Scholar 

  • Yarlett, N., Hann, A. C., Lloyd, D. and Williams, A. G. (1983). Hydrogenosomes in a mixed isolate of Isotricha prostoma and Isotricha intestinalis from ovine rumen contents. Comp. Biochem. Physiol., B, 74, 357–64.

    Article  PubMed  CAS  Google Scholar 

  • Ye, J. J., Reizer, J., Cui, X. and Saier, M. H. Jr (1994). Inhibition of the phosphoenolpyruvate: lactose phosphotransferase system and activation of a cytoplasmic sugar-phosphate phosphatase in Lactococcus lactis by ATP-dependent metabolite-activated phosphorylation of serine HPr in the phosphocarrier protein HPr. J. Biol. Chem., 269, 11837–44.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Chapman & Hall

About this chapter

Cite this chapter

Russell, J.B., Wallace, R.J. (1997). Energy-yielding and energy-consuming reactions. In: Hobson, P.N., Stewart, C.S. (eds) The Rumen Microbial Ecosystem. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-1453-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-1453-7_6

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-7149-9

  • Online ISBN: 978-94-009-1453-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics