Skip to main content

Measuring Genetic Distance

  • Chapter

Abstract

A common assumption about genetic distance is that it is a measure of the evolutionary divergence between copies of homologous genes which share a common ancestor. Under this assumption. an ideal measure of genetic distance is where the difference between the two genes is proportional to the time since they shared a common ancestor. While this is true, it is important to remember that genetic distance was originally devised as a means to estimate the degree of genetic differentiation between populations. Indeed, in his landmark text ‘Molecular Evolutionary Genetics’ written in 1987, Nei (1) formally defines genetic distance in a way which embraces both of these ideas: ‘Genetic distance is the extent of gene differences... between populations or species that is measured by some numerical quantity’.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Nei, M. (1987) Molecular Evolutionary Genetics. Columbia University Press. NewYork.

    Google Scholar 

  2. Siatkin, M. (1993) Isolation by distance in equilibrium and non-equilibrium populations. Evolution 47: 264–279.

    Article  Google Scholar 

  3. Ohta, T. and Kimura, M. (1973). A model of mutation appropriate to estimate the number of electrophoretically detectable alleles in a finite population. Genetical Research 22: 201–204.

    Article  Google Scholar 

  4. Goldstein, D.B., Ruíz-Linares, A., Feldman, M. and Cavalli-Sforza, L.L. (1995). An evaluation of genetic distances for use with microsatellite loci. Genetics 139:463–471. Microsat site — http://lotka.stanford.edu/distance.html

    Google Scholar 

  5. Siatkin, M. (1995) A measure of population subdivision based on microsatellite allele frequencies. Genetics 139: 457–462.

    Google Scholar 

  6. Shriver, M.D., Jin, L., Boerwinkle, E., Deka, R., Ferrell, R.E., and Chakraborty, R. (1995). A novel measure of genetic distance for highly polymorphic tandem repeat loci. Molecular Biology and Evolution 12:914–920.

    CAS  Google Scholar 

  7. Michalakis, Y. and Excoffier, L. (1996). A generic estimation of population subdivision using distances between alleles with special reference for microsatellite loci. Genetics 142, 1061–1064.

    CAS  Google Scholar 

  8. Wright S. (1978). Evolution and the Genetics of Popultions Vol 4. Variability Within and Among Natural Populations. University of Chicago Press, Chicago Ill.

    Google Scholar 

  9. Cavalli-Sforza L.L., Edwards A.W.F. (1967). Phylogentic analysis: Models and estimation procedures. American Journal of Human Genetics. 19: 233–257.

    CAS  Google Scholar 

  10. Nei M, Tajima F. and Tateno Y (1983). Accuracy of estimated phylogenetic trees from molecular data II: Gene frequency data. Journal of Molecular Evolution. 19: 153–170.

    Article  CAS  Google Scholar 

  11. Takezaki N and Nei M (1996). Genetic distances and reconstruction of phylogenetic trees from microsatellite data. Genetics 144: 389–399.

    CAS  Google Scholar 

  12. Weir, B.S. and Cockerham, C.C. (1984). Estimating F-statistics for the analysis of population structure. Evolution 38, 1358–1370.

    Article  Google Scholar 

  13. Weir, B.S. (1996). Genetic Data Analysis II: Methods for Discrete Population Genetic Data. Sinauer Associates Inc., Sanderland, Massachusetts. GDA web site (β version): http://biology001.unm.edu/ ~ lewis/gda.htm

    Google Scholar 

  14. Lynch, M. and Milligan, B.G. (1994). Analysis of population genetic structure with RAPD markers. Molecular Ecology 3: 91–99.

    Article  CAS  Google Scholar 

  15. Bowcock, A.M., Ruíz-Linares, A., Tomfohrde, J., Minch, E., Kidd, J.R. and Cavalli-Sforza, L.L. (1994) High resolution human evolutionary trees with polymorphic microsatellites. Nature, 368: 455–457.

    Article  CAS  Google Scholar 

  16. Goldstein, D.B., Ruíz-Linares, A., Feldman, M. and Cavalli-Sforza, L.L. (1995) Genetic absolute dating based on microsatellites and the origin of modern humans. Proceedings of the National Academy of Sciences USA, 92: 6720–6727.

    Google Scholar 

  17. Zhivotosky, L.A. and Feldman M.W. (1995) Microsatellite variability and genetic distances. Proceedings of the National Academy of Sciences USA 92: 11549–11552.

    Google Scholar 

  18. Lynch, M. and Crease, T.J. (1990) The analysis of population survey data on DNA sequence variation. Molecular Biology and Evolution 7: 377–394.

    CAS  Google Scholar 

  19. Excoffier, L. (1995). AMOVA 1.55 (Analysis of Molecular Variance) University of Geneva. Amova site — http://anthroplogie.unige.ch/ftp/comp/win/amova

    Google Scholar 

  20. Siatkin, M. and Madison, W.R (1990) Detecting isolation by distance using phytogenies of genes. Genetics 126: 249–260.

    Google Scholar 

  21. Higgins, D.G., Bleasby, A.J. and Fuchs, R. (1992). CLUSTAL V — Improved software for multiple sequence alignment. Computer Applications in the Biosciences. 8: 189–191.

    CAS  Google Scholar 

  22. Thompson, J.D., Higgins, D.G. and Gibson, T.J. (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positions-specific gap penalties and weight matrix choice. Nucleic Acids Research, 22: 4673–4680.

    Article  CAS  Google Scholar 

  23. Higgins, D.G. and Sharp, P.M. (1989) Fast and sensitive multiple sequence alignments on a microcomputer. CABIOS 5, 151–153.

    CAS  Google Scholar 

  24. Li, W.-H. (1993). Unbiased estimation of the rates of synonymous and nonsynonymous substitution. Journal of Molecular Evolution 36: 96–99.

    Article  CAS  Google Scholar 

  25. Felsenstein, J. (1991). PHYLIP (Phylogeny Inference Package) version 3.5. University of Washington, Seattle. Web site — http://evolution. genetics.washington.edu/phylip.html

    Google Scholar 

  26. Sudhir, K., Tamura, K., and Nei, M. (1993).“MEGA: Molecular Evolutionary Genetic Analysis, Version 1.01. The Pennsylvania State University, University Park, PA 16802.

    Google Scholar 

  27. Cooper, S.J.B., Ibrahim, K.M. and Hewitt, G.M. (1995). Postglacial expansion and genome subdivision in the European grasshopper Chorthippus parallelus. Molecular Ecology 4: 49–60.

    Article  CAS  Google Scholar 

  28. Hudson, R.R., Boos, D.D. and Kaplan, N.L. (1992). A statistical test for detecting geographic subdivision. Molecular Biology and Evolution 9: 138–151.

    CAS  Google Scholar 

  29. Swofford, DL and Seiander, RB (1981). BIOSYS-1: a FORTRAN program for the comprehensive analysis of electrophretic data in population genetics and systematics. Journal of Heredity 72: 281–283.

    Google Scholar 

  30. Goudet, J. (1995) FSTAT version 1.2: a computer program to calculate F-statistics. Journal of Heredity 86: 485–486.

    Google Scholar 

  31. Raymond, M. and Rousset, F. (1995) GENEPOP (version 1.2): population genetics software for exact tests and ecumenicism. Journal of Heredity 86 248–249. Genepop download site: ftp://ftp.cefe.cnrs-mop.fr/pub/msdos/genepop

    Google Scholar 

  32. Nei, M. and Tajima, F. (1981). DNA polymorphism detectable by restriction endonucleases. Genetics 97: 145–163.

    CAS  Google Scholar 

  33. Nei M and Miller JC (1990) A simple method for estimating average number of nucleotide substitutions within and between populations from restricted data. Genetics 4: 873–879.

    Google Scholar 

  34. Roques, S (1996). Population Structure of the Whiting, Odontogandus merlangus in the North Atlantic: An Evaluation by Mitochndrial DNA Analysis. M.Sc. Thesis. School of Biology. University of East Anglia, Norwich, UK.

    Google Scholar 

  35. Rico C., Ibrahim K.M., Rico C., Hewitt, G.M. (1997). Stock composition in North Atlantic populations of whiting using microsatellite markers. Journal of Fish Biology (in press).

    Google Scholar 

  36. Yeh F.C., Boyle T (1997). POPGENE version 1.2. Microsoft Windows based software for population genetic analysis. University of Alberta, Department of Renewable Resources. Edmonton, Canada. Popgene site — http://www.rr.ualberta.ca/profs/yeh.htm

    Google Scholar 

  37. Goodnight, K.F., Queller, D.C. and Poznansky, T. (1997). KINSHIP 1.1.2. Department of Ecology and Evolutionary Biology, Rice University, Texas, USA. Kinship web site — http://www.bioc.rice.edu/ ~ kfg/GSoft.html

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Chapman & Hall

About this chapter

Cite this chapter

Beaumont, M.A., Ibrahim, K.M., Boursot, P., Bruford, M.W. (1998). Measuring Genetic Distance. In: Karp, A., Isaac, P.G., Ingram, D.S. (eds) Molecular Tools for Screening Biodiversity. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-0019-6_58

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-0019-6_58

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6496-5

  • Online ISBN: 978-94-009-0019-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics