Skip to main content

Cholesterol Hydroperoxides and Their Degradation Mechanism

  • Chapter
  • First Online:
Lipid Hydroperoxide-Derived Modification of Biomolecules

Part of the book series: Subcellular Biochemistry ((SCBI,volume 77))

Abstract

Cholesterol is one of the oxidizable lipids constituting biomembranes and plasma lipoproteins. Cholesterol hydroperoxides (Chol-OOH) are the primary products if cholesterol is subjected to attack by reactive oxygen species. In particular, singlet molecular oxygen reacts with cholesterol to yield cholesterol 5α-hydroperoxide as the major hydroperoxide species. Chol-OOH may accumulate in biological systems because of its resistance to glutathione-dependent enzymatic detoxification reactions. Their degradation products (including hydroxycholesterol and 7-ketocholesterol) participate in the pathophysiological functions of oxysterols. Highly reactive cholesterol 5,6-secosterol present in atherosclerotic lesions can be derived from the degradation of cholesterol 5α-hydroperoxide. Chol-OOH themselves may affect the lipid rafts of biomembranes, thereby leading to the modification of signal transduction pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adachi J, Asano M, Ueno Y, Reily M, Mantle D, Peters TJ, Preedy VR (2000) 7α-and 7β-Hydroperoxycholest-5-ene-3β-ol in muscle as indices of oxidative stress: response to ethanol dosage in rats. Alcohol Clin Exp Res 24:675–681

    CAS  PubMed  Google Scholar 

  • Anticoli S, Arciello M, Mancinetti A, De Martins M, Ginald L, Iuliano L, Balsano C (2009) 7-ketocholesterol and 5,6-secosterol modulate differently the stress-activated mitogen-activated protein kinase (MAPK) in liver cells. J Cell Physiol 222:586–595

    Google Scholar 

  • Ariyoshi K, Adachi J, Asano M, Ueno Y, Rejendram R, Preedy V (2002) Effect of chronic ethanol feeding on oxysterol in rat liver. Free Radic Res 36:661–666

    Article  CAS  PubMed  Google Scholar 

  • Berthier A, Lemaire-Ewing PC, Monier S, Athias A, Bessede G, de Barros J-PP, Laubrier A, Gambert P, Lizard G, Neel D (2004) Involvement of a calcium-dependent dephosphorylation of BAD associated with the localization of Trpc-1 within lipid rafts in 7-ketocholesterol-induced THP-1 cell apoptosis. Cell Death Differ 11:897–905

    Article  CAS  PubMed  Google Scholar 

  • Brinkhourt J, Nara SJ, Pratt DA (2008) Hock cleavage of cholesterol 5α-hydroperoxides: an ozone-free pathway to the cholesterol ozonolysis products identified in arterial plaque and brain tissue. J Am Chem Soc 130:12224–12225

    Article  Google Scholar 

  • Brown AJ, Jessup W (1999) Oxysterol and atherosclerosis. Atherosclerosis 142:1–28

    Article  CAS  PubMed  Google Scholar 

  • Freimer AA (1979) The reaction of singlet oxygen with olefins: the question of mechanism. Chem Rev 79:359–387

    Article  Google Scholar 

  • Girroti AW, Korytowski W (2000) Cholesterol as a singlet oxygen detector in biological system. Methods Enzymol 319:85–100

    Google Scholar 

  • Korytowski W, Schmitt JC, Girotti AW (2010) Surprising inability of singlet oxygen-generated 6-hydroperoxycholesterol to induce damaging free radical lipid peroxidation in cell membranes. Photochem Photobiol 86:747–751

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Korytowski W, Bachowski G, Girotti A (1992) Photoperoxidation of cholesterol in homogenious solution, isolated membranes and cells: comparison of the 5α-and 6-β-hydroperoxides as indicators of singlet oxygen intermediacy. Photochem Photobiol 56:1–8

    Article  CAS  PubMed  Google Scholar 

  • Korytowski W, Geiger PG, Girotti AW (1996) Enzymatic reducibility to cytotoxicity for various cholesterol hydroperoxides. Biochemistry 35:8770–8779

    Article  Google Scholar 

  • Kriska T, Pilat A, Schmitt JC, Girotti AW (2010) Sterolcarrierprotein-2(SCP-2) involvement in cholesterol hydroperoxide cytotoxicity as revealed by SCP-2 inhibitor effects. J Lipid Res 51:3174–3184

    Article  CAS  PubMed  Google Scholar 

  • Larsson DA, Baird S, Nyhalah JD, Yuan X-M, Li W (2006) Oxysterol mixtures, in atheroma-relevant proportions, display synergistic and proapoptiotic effects. Free Radic Biol Med 41:902–910

    Article  CAS  PubMed  Google Scholar 

  • Leonarduzzi G, Gamba P, Sottero B, Kadl A, Robbesyn F, Calogero RA, Biasi F, Chiarpotto E, Leitinger N, Sevanian A, Poli G (2005) Oxysterol-induced up-regulation of MCP-1 expression and synthesis in macrophage cells. Free Radic Biol Med 39:1152–1161

    Article  CAS  PubMed  Google Scholar 

  • Lordan S, Mackrill JJ, O’Brien NM (2009) Oxysterol and mechanism of apoptotic signaling: implications in the pathology of degenerative diseases. J Nutr Biochem 20:321–336

    Article  CAS  PubMed  Google Scholar 

  • Massey JB (2006) Membrane and protein interactions of oxysterols. Curr Opin Lipidol 17:296–301

    Article  CAS  PubMed  Google Scholar 

  • Minami Y, Yokoi S, Setoyama M, Bando N, Takeda S, Kawai Y, Terao J (2007) Combination of TLC blotting and gas chromatography–mass spectrometry for analysis of peroxidized cholesterol. Lipids 42:1055–1063

    Article  CAS  PubMed  Google Scholar 

  • Minami Y, Kawabata K, Kubo Y, Arase S, Hirasaka K, Nikawa T, Bando N, Kawai Y, Terao J (2009) Peroxidized cholesterol-induced matrix metalloproteinase-9 activation and its suppression by dietary β-carotene in photoaging of hairless mouse skin. J Nutr Biochem 20:389–398

    Article  CAS  PubMed  Google Scholar 

  • Miyamoto S, Arai H, Terao J (2010) Enzymatic antioxidant defenses. In: Aldini G, Yeum K-J, Niki E, Russell RM (eds) Biomarkers for antioxidant defenses and oxidative damage. Principles and practical applications. Wiley-Blackwell Publishing, Hoboken NJ, USA, pp 21–33

    Google Scholar 

  • Niki E (2005) Lipid peroxidation: mechanisms, inhibition, and biological effects. Biochem Biophys Res Comm 338:668–676

    Article  CAS  PubMed  Google Scholar 

  • Niki E (2009) Lipid peroxidation: physiological levels and dual biological effects. Free Radic Biol Med 47:469–484

    Article  CAS  PubMed  Google Scholar 

  • Olkkonen VM, Hynynen R (2009) Interactions of oxysterols with membranes and proteins. Mol Asp Med 30:123–133

    Article  CAS  Google Scholar 

  • Olsher M, Yoon S-I, Chong L-G (2005) Role of sterol superlattice in free radical-induced sterol oxidation in lipid membranes. Biochemistry 44:2080–2087

    Article  CAS  PubMed  Google Scholar 

  • Otaegui-Arrazola A, Carrno-Nenendez M, Ansorena D, Astiasaran I (2010) Oxysterols: a world to explore. Food Chem Toxicol 48:3289–3303

    Article  CAS  PubMed  Google Scholar 

  • Saito Y, Yoshida Y, Niki E (2007) Cholesterol is more susceptible to oxidation than linoleate in cultured cells under oxidative stress induced by selenium deficiency and free radicals. FEBS Lett 581:4349–4354

    Article  CAS  PubMed  Google Scholar 

  • Steffen Y, Wiswedel I, Petyer D, Schewe T, Sies H (2006) Cytotoxicity of myeloperoxidase/nitrite-oxidized low-density lipoprotein toward endothelial cells is due to a high 7β-hydroxy cholesterol to 7-ketocholesterol ratio. Free Radic Biol Med 41:1139–1150

    Article  CAS  PubMed  Google Scholar 

  • Takeuchi C, Galve R, Nieva J, Witter DP, Wentworth AD, Yroseth RP, Lerner RA, Wentworth P (2006) Proatherogenic effects of the cholesterol ozonolysis products, atheronal-A and atheronal-B. Biochemistry 45:7162–7170

    Article  CAS  PubMed  Google Scholar 

  • Uemi M, Ronsein GE, Fernanda M, Prado M, Motta FD, Miyamoto S, Medeiros MG, DiMascio PD (2011) Cholesterol hydroperoxides generates singlet molecular oxygen [O2 1Δg]: near-IR emission. 18O-labelled hydroperoxides, and mass spectrometry. Chem Res Toxicol 24:887–895

    Article  CAS  PubMed  Google Scholar 

  • van Reyk D, Brown A, Hult’en LM, Dean R, Jessup W (2006) Oxysterol in biological systems: sources, metabolism and pathophysiological releavance. Redox Rep 11:255–262

    Article  PubMed  Google Scholar 

  • Vejux A, Guyot S, Montange T, Riedinger J-M, Kahn E, Lizard G (2009) Phospholipidosis and down-regulation of the PI3-K/PDK-1/Akt signaling pathway are vitamin E inhibitable events associated with 7-ketocholesterol-induced apoptosis. J Nutr Biochem 20:45–61

    Article  CAS  PubMed  Google Scholar 

  • Vever-Bizet C, Dellinger M, Braut D, Rougee M, Bensasson RV (1989) Singlet molecular oxygen quenching by saturated and unsaturated fatty-acids and by cholesterol. Photochem Photobiol 50:321–325

    Article  CAS  PubMed  Google Scholar 

  • Vila A, Korytowski W, Girotti AW (2001) Spontaneous intermembrane transfer of various cholesterol-derived hydroperoxide species; kinetic studies with model membranes and cell. Biochemistry 40:14715–14726

    Article  CAS  PubMed  Google Scholar 

  • Yamazaki S, Ozawa N, Hiratsuka A, Watabe T (1999) Increase in cholesterol 7-hydroperoxides in lipids of human skin by sunlight exposure. Free Radic Biol Med 26:1126–1133

    Article  CAS  PubMed  Google Scholar 

  • Yaqoob P (2009) The nutritional significance of lipid rafts. Ann Rev Nutr 29:257–282

    Article  CAS  Google Scholar 

  • Yoshida Y, Saito Y, Hayakawa M, Habuchi Y, Imai Y, Sawai Y, Niki E (2007) Level of lipid peroxidation in human plasma and erythrocytes: comparison between fatty acid and cholesterol. Lipids 42:439–449

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junji Terao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Terao, J. (2014). Cholesterol Hydroperoxides and Their Degradation Mechanism. In: Kato, Y. (eds) Lipid Hydroperoxide-Derived Modification of Biomolecules. Subcellular Biochemistry, vol 77. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7920-4_7

Download citation

Publish with us

Policies and ethics