Skip to main content

Circuit Solutions

  • Chapter
  • First Online:
Stochastic Process Variation in Deep-Submicron CMOS

Part of the book series: Springer Series in Advanced Microelectronics ((MICROELECTR.,volume 48))

  • 1595 Accesses

Abstract

CMOS technologies move steadily towards finer geometries, which provide higher digital capacity, lower dynamic power consumption and smaller area resulting in integration of whole systems, or large parts of systems, on the same chip. However, due to technology scaling, integrated circuits are becoming more susceptible to variations in process parameters and noise effects like power supply noise, cross-talk reduced supply voltage and threshold voltage operation severely impacting the yield [1]. Since parameter variations depend on unforeseen operational conditions, chips may fail despite they pass standard test procedures. Similarly, the magnitude of thermal gradients and associated thermo-mechanical stress increase further as CMOS designs move into nanometer processes and multi-GHz frequencies [1]. Higher temperature increases the risk of damaging the devices and interconnects since major back-end and front-end reliability issues including electro-migration, time-dependent dielectric breakdown, and negative-bias temperature instability have strong dependence on temperature. As a consequence, continuous observation of process variation and thermal monitoring becomes necessity. Such observation is enhanced with dedicated monitors embedded within the functional cores [2]. In order to maximize the coverage, the process variation and thermal sensing devices are scattered across the entire chip to meet the control requirements. The monitors are networked by an underlying infrastructure, which provides the bias currents to the sensing devices, collects measurements, and performs analog to digital signal conversion. Therefore, the supporting infrastructure is an on-chip element at a global scale, growing in complexity with each emerging design.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. ITRS, International Technology Roadmap for Semiconductors (2009)

    Google Scholar 

  2. V. Petrescu, M. Pelgrom, H. Veendrick, P. Pavithran, J. Wieling, Monitors for a signal integrity measurement system, in Proceedings of IEEE European Solid-State Circuit Conference, 2006, pp. 122–125

    Google Scholar 

  3. M. Bhushan, M.B. Ketchen, S. Polonksy, A. Gattiker, Ring oscillator based technique for measuring variability statistics, in Proceedings of IEEE International Conference on Microelectronic Test Structures, 2006, pp. 87–92

    Google Scholar 

  4. N. Izumi et al., Evaluation of transistor property variations within chips on 300 mm wafers using a new MOSFET array test structure. IEEE Trans. Semicond. Manuf. 17(3), 248–254 (2004)

    Article  MathSciNet  Google Scholar 

  5. P. Chen, C. Chen, C. Tsai, W. Lu, A time-to-digital-converter based CMOS smart temperature sensor. IEEE J. Solid-State Circ. 40(8), 1642–1648 (2005)

    Article  Google Scholar 

  6. V. Szekely, C. Marta, Z. Kohari, M. Rencz, CMOS sensors for online thermal monitoring of VLSI circuits. IEEE Trans. VLSI Syst. 5(3), 270–276 (1997)

    Article  Google Scholar 

  7. B. Datta, W. Burleson, Temperature effects on energy optimization in sub-threshold circuit design, in Proceedings of IEEE International Symposium on Quality Electronic Design, 2009, pp. 680–685

    Google Scholar 

  8. G.C.M. Meijer, G. Wang, F. Fruett, Temperature sensors and voltage references implemented in CMOS technology. IEEE Sens. J. 1(3), 225–234 (2001)

    Article  Google Scholar 

  9. G.J. McLachlan, T. Krishnan, The EM Algorithm and Extensions, (Wiley-Interscience, New York, 1997)

    Google Scholar 

  10. C. Cortes, V. Vapnik, Support-vector networks. Machine Learning 20, 273–297 (1995)

    MATH  Google Scholar 

  11. IEEE Standard Test Access Port and Boundary-Scan Architecture, IEEE Std. 1149.1-2001, Test Technol. Tech. Committee. IEEE Computer Soc

    Google Scholar 

  12. E. Sackinger, W. Guggenuhl, A high-swing, high-impedance MOS cascode circuit. IEEE J. Solid-State Circ. 25(1), 89–298 (1990)

    Article  Google Scholar 

  13. P. Coban, A. Allen, 1.75-V rail-to-rail CMOS opamp, in Proceedings of IEEE International Symposium on Circuits and Systems, 1994, vol. 5, pp. 497–500

    Google Scholar 

  14. T. Kumamoto, M. Nakaya, H. Honda, S. Asai, Y. Akasaka, Y. Horiba, An 8-bit high-speed CMOS A/D converter. IEEE J. Solid-State Circ. 21(6), 976–982 (1986)

    Article  Google Scholar 

  15. A. Yukawa, An 8-bit high-speed CMOS A/D converter, IEEE J. Solid-State Circuits, 20(3), 775–779 (1985)

    Google Scholar 

  16. C–.C. Huang, J.-T. Wu, A background comparator calibration technique for flash analog-to-digital converters. IEEE Trans. Circ. Syst. I 52(9), 1732–1740 (2005)

    Article  Google Scholar 

  17. F. Fruett, G.C.M. Meijer, A. Bakker, Minimization of the mechanical-stress-induced inaccuracy in bandgap voltage references. IEEE J. Solid-State Circ. 38(7), 1288–1291 (2003)

    Article  Google Scholar 

  18. M.A.P. Pertijs, G.C.M. Meijer, J.H. Huijsing, Precision temperature measurement using CMOS substrate PNP transistors. IEEE Sens. J. 4(3), 294–300 (2004)

    Article  Google Scholar 

  19. F. Fruett, G. Wang, G.C.M. Meijer, The piezojunction effect in NPN and PNP vertical transistors and its influence on silicon temperature sensors. Sens. Actuators A Sens. 85, 70–74 (2000)

    Article  Google Scholar 

  20. M.R. Valer, S. Celma, B. Calvo, N. Medrano, CMOS voltage-to-frequency converter with temperature drift compensation. IEEE Trans. Instrum. Meas. 60(9), 3232–3234 (2011)

    Article  Google Scholar 

  21. A. Bakker, J.H. Huijsing, A low-cost high-accuracy CMOS smart temperature sensor, in Proceedings of IEEE European Solid-State Circuit Conference, 1999, pp. 302–305

    Google Scholar 

  22. C.H. Brown, Asymptotic comparison of missing data procedures for estimating factor loadings. Psychometrika 48, 269–292 (1983)

    Article  Google Scholar 

  23. R.B. Kline, Principles and practices of structural equation modeling, (Guilford, New York 1998)

    Google Scholar 

  24. B. Muthen, D. Kaplan, M. Hollis, On structural equation modeling with data that are not missing completely at random. Psychometrika 52, 431–462 (1987)

    Article  MATH  Google Scholar 

  25. A.P. Dempster, N.M. Laird, D.B. Rubin, Maximum likelihood from incomplete data via the EM Algorithm. J. Roy. Stat. Soc. B. 39, 1–38 (1977)

    MathSciNet  MATH  Google Scholar 

  26. R.A. Redner, H.F. Walker, Mixture densities, maximum likelihood and the EM algorithm. Surv. Math. Ind. 26, 195–239 (1984)

    MathSciNet  MATH  Google Scholar 

  27. V. Franc, V. Hlavac, Multi-class support vector machine, in Proceedings of IEEE International Conference on Pattern Recognition, vol. 2, 2002, pp. 236–239

    Google Scholar 

  28. A. Zjajo, J. Pineda de Gyvez, A 1.2 V 55mW 12 bits self-calibrated dual-residue analog to digital converter in 90 nm CMOS, in Proceedings of IEEE International Symposium on Low Power Electronic Design, 2011, pp. 187–192

    Google Scholar 

  29. A. Zjajo, J. Pineda de Gyvez, An adaptive digital calibration of multi-step A/D converters, in Proceedings of IEEE International Conference on Signal Processing, 2010, pp. 2456–2459

    Google Scholar 

  30. D.M. Hummels, F.H. Irons, R. Cook, I. Papantonopoulos, Characterization of ADCs using a non-iterative procedure, in Proceedings of IEEE International Symposium on Circuits and Systems, vol. 2, 1994, pp. 5–8

    Google Scholar 

  31. D. Hummels, Performance improvement of all-digital wide-bandwidth receivers by linearization of ADCs and DACs. Measurement 31(1), 35–45 (2002)

    Article  Google Scholar 

  32. S.-U. Kwak, B.-S. Song, K. Bacrania, A 15 b 5 MSample/s low-spurious CMOS ADC, IEEE International Solid-State Circuits Conference Digest of Technical Papers, 1997, pp. 146–147

    Google Scholar 

  33. K. Dyer, D. Fu, S. Lewis, P. Hurst, Analog background calibration technique for time-interleaved analog-to-digital converters. IEEE J. Solid-State Circ. 33(12), 1912–1919 (1998)

    Article  Google Scholar 

  34. D. Fu, K.C. Dyer, S.H. Lewis, P.J. Hurst, A digital background calibration technique for time-interleaved analog-to-digital converters. IEEE J. Solid-State Circ. 33(12), 1904–1911 (1998)

    Article  Google Scholar 

  35. G. Erdi, A precision trim technique for monolithic analog circuits. IEEE J. Solid-State Circ. 10(6), 412–416 (1975)

    Article  Google Scholar 

  36. M. Mayes, S. Chin, L. Stoian, A low-power 1 MHz 25 mW 12-bit time-interleaved analog-to-digital converter. IEEE J. Solid-State Circ. 31(2), 169–178 (1996)

    Article  Google Scholar 

  37. H.-S. Lee, D. Hodges, P. Gray, A self-calibrating 15 bit CMOS A/D converter. IEEE J. Solid-State Circ. 19(6), 813–819 (1984)

    Article  Google Scholar 

  38. P. Yu, S. Shehata, A. Joharapurkar, P. Chugh, A. Bugeja, X. Du, S.-U. Kwak, Y. Panantonopoulous, T. Kuyel, A 14b 40MSample/s pipelined ADC with DFCA, IEEE International Solid-State Circuit Conference Digest of Technical Papers, 2001, pp. 136–137

    Google Scholar 

  39. I. Galton, Digital cancellation of D/A converter noise in pipelined A/D converters. IEEE Trans. Circ. Syst. I, 47(3), 185–196 (2000)

    Google Scholar 

  40. J.M. Ingino, B.A. Wooley, A continuously calibrated 12-b, 10-MS/s, 3.3-V A/D converter. IEEE J. Solid-State Circ. 33(12), 1920–1931 (1998)

    Article  Google Scholar 

  41. O.E. Erdogan, P.J. Hurst, S.H. Lewis, A 12-b digital-background-calibrated algorithmic ADC with -90-dB THD. IEEE J. Solid-State Circ. 34(12), 1812–1820 (1999)

    Article  Google Scholar 

  42. U.-K. Moon, B.-S. Song, Background digital calibration techniques for pipelined ADC’s. IEEE Trans. Circ. Syst. II, 44(2), 102–109 (1997)

    Google Scholar 

  43. T.-H. Shu, B.-S. Song, K. Bacrania, A 13-b 10-Msample/s ADC digitally calibrated with oversampling delta-sigma converter. IEEE J. Solid-State Circ. 30(4), 443–452 (1994)

    ADS  Google Scholar 

  44. J.E. Dennis, R.B. Schnabel, Numerical Methods for Unconstrained Optimization and Nonlinear Equations, (Prentice-Hall, Englewood Cliffs, 1983)

    Google Scholar 

  45. B. Widrow, S.D. Stearns, Adaptive Signal Processing, (Prentice-Hall, Englewood Cliffs 1985)

    Google Scholar 

  46. H.-W. Ting, B.-D. Liu, S.J. Chang, A histogram-based testing method for estimating A/D converter performance. IEEE Trans. Instrum. Meas. 57(2), 420–427 (2007)

    Article  Google Scholar 

  47. C.-C. Chung, C.-R. Yang, An all-digital smart temperature sensor with auto-calibration in 65 nm CMOS technology, in Proceedings of IEEE International Symposium on Circuits and Systems, 2010, pp. 4089–4092

    Google Scholar 

  48. K. Woo, S. Meninger, T. Xanthopoulos, E. Crain, D. Ha, D. Ham, Dual-DLL-based CMOS all-digital temperatrue sensor for microprocessor thermal monitoring, in Proceedings of IEEE International Solid-State Circuit Conference, 2009, pp. 68–70

    Google Scholar 

  49. M.A.P. Pertijs, K.A.A. Makinwa, J.H. Huijsing, A CMOS smart temperature sensor with a 3σ inaccuracy of ± 0.1°C from 55 to 125°C. IEEE J. Solid-State Circ. 40(12), 2805–2815 (2005)

    Article  Google Scholar 

  50. D. Schinkel, R.P. de Boer, A.J. Annema, A.J.M. van Tuijl, A 1-V 15 μW high-precision temperature switch, Proceedings of IEEE European Solid-State Circuit Conference, 2001, pp. 77–80

    Google Scholar 

  51. A. Zjajo, J. Pineda de Gyvez, DfT for full accessibility of multi-step analog to digital converters, in Proceedings of IEEE International Symposium on VLSI Design, Automation and Test, 2008, pp. 73–76

    Google Scholar 

  52. M. Shinagawa, Y. Akazawa, T. Wakimoto, Jitter analysis of high-speed sampling systems. IEEE J. Solid-State Circ. 25(5), 220–224 (1990)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amir Zjajo .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Zjajo, A. (2014). Circuit Solutions. In: Stochastic Process Variation in Deep-Submicron CMOS. Springer Series in Advanced Microelectronics, vol 48. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7781-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-7781-1_5

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-7780-4

  • Online ISBN: 978-94-007-7781-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics