Skip to main content

Bone Turnover Markers and Glucocorticoid Treatments

  • Living reference work entry
  • First Online:
Biomarkers in Bone Disease

Abstract

Glucocorticoids (GCs) remain as the cornerstone of therapy in most inflammatory diseases, even if newly developed biological molecules became available. GCs are potent, possess a fast action, and are cheap and relatively easy to prescribe. However, their beneficial therapeutic activity has a nasty counterpart: quite a lot of complications, notably secondary osteoporosis, aseptic bone osteonecrosis, and fractures. The skeleton is continuously remodeling, old bone being resorbed and replaced by new young bone. GCs interfere with the bone turnover and provoke a disequilibrium in favor of bone loss and fragility. The mechanisms of bone fragility consist of a decreased activity and in apoptosis of osteoblasts, as well as an increase in bone resorption. These changes have already been observed histomorphometrically a long time ago in transiliac bone biopsies. Biological parameters of bone turnover, chiefly degradation products of type I collagen, can help to assess atraumatically the bone metabolism. If, in idiopathic osteoporosis, they can have a predictive value of bone loss, they cannot be considered as surrogates for bone mineral density measurements. In GC-OP, the concentrations of the bone turnover markers (BTMs) of bone formation dramatically and rapidly decrease, whereas the BTMs of bone resorption slightly increase. During GC therapy, they cannot be used as predictive tools of bone fragility on an individual basis. Other markers such as RANKL/RANK/osteoprotegerin seem to be promising in this aim, but this still awaits confirmation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

ALN:

Alendronate

BDP:

Beclomethasone dipropionate

BMD:

Bone mineral density

BSAP:

Bone-specific alkaline phosphatase

BTMs:

Bone turnover markers

BUD:

Budenoside

CD:

Crohn’s disease

COMP:

Cartilage oligomeric matrix protein

COPD:

Chronic obstructive pulmonary disease

CTX:

Carboxy-terminal cross-linking telopeptide of type I collagen

DAS:

Disease activity score

Dkk-1:

Dickkopf-1

FN:

Femoral neck

GC:

Glucocorticoid

ICTP:

Carboxy-terminal telopeptide of type I collagen

Il-6:

Interleukin-6

JIA:

Juvenile idiopathic arthritis

MMP:

Metalloproteinase

MP:

Methylprednisolone

NTX:

Amino-terminal cross-linking telopeptide of type I collagen

OBS:

Osteoblasts

OC:

Osteocalcin

OCS:

Osteoclasts

OP:

Osteoporosis

OPG:

Osteoprotegerin

PICP:

Procollagen type I C-terminal propeptide

PINP:

Procollagen type I N-terminal propeptide

PTH:

Parathyroid hormone

RA:

Rheumatoid arthritis

RANK:

Receptor activator of nuclear factor NF-kB

RANK-L:

Receptor activator of nuclear factor NF-kB-ligand

rh:

Recombinant human

RIS:

Risedronate

Scl:

Sclerostin

SLE:

Systemic lupus erythematosus

TPTD:

Teriparatide

TRAP:

Tartrate-resistant acid phosphatase

UC:

Ulcerative colitis

uDPD:

Urinary deoxypyridinoline

uPYD:

Urinary pyridinoline

VF:

Vertebral fracture

References

  • Aaron JE, et al. Contrasting microanatomy of idiopathic and corticosteroid-induced osteoporosis. Clin Orthop Relat Res. 1989;243:294–305.

    PubMed  Google Scholar 

  • Al-Awadhi A, et al. Serum concentrations of interleukin 6, osteocalcin, intact parathyroid hormone, and markers of bone resorption in patients with rheumatoid arthritis. J Rheumatol. 1999;26(6):1250–6.

    CAS  PubMed  Google Scholar 

  • Balemans W, et al. Increased bone density in sclerosteosis is due to the deficiency of a novel secreted protein (SOST). Hum Mol Genet. 2001;10(5):537–43.

    Article  CAS  PubMed  Google Scholar 

  • Bischoff SC, et al. Altered bone metabolism in inflammatory bowel disease. Am J Gastroenterol. 1997;92(7):1157–63.

    CAS  PubMed  Google Scholar 

  • Bjarnason I, et al. Reduced bone density in patients with inflammatory bowel disease. Gut. 1997;40(2):228–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boivin GY, et al. Alendronate increases bone strength by increasing the mean degree of mineralization of bone tissue in osteoporotic women. Bone. 2000;27(5):687–94.

    Article  CAS  PubMed  Google Scholar 

  • Bornefalk E, et al. Age-dependent effect of oral glucocorticoids on markers of bone resorption in patients with acute asthma. Calcif Tissue Int. 1998;63(1):9–13.

    Article  CAS  PubMed  Google Scholar 

  • Boutsen Y, et al. Primary prevention of glucocorticoid-induced osteoporosis with intravenous pamidronate and calcium. A prospective controlled 1-year study comparing a single infusion, an infusion given every 3 months, and calcium alone. J Bone Miner Res. 2001;16(1):104–12.

    Article  CAS  PubMed  Google Scholar 

  • Brabnikova Maresova K, Pavelka K, Stepan JJ. Acute effects of glucocorticoids on serum markers of osteoclasts, osteoblasts, and osteocytes. Calcif Tissue Int. 2013;92(4):354–61.

    Article  CAS  PubMed  Google Scholar 

  • Bressot C, et al. Histomorphometric profile, pathophysiology and reversibility of corticosteroid-induced osteoporosis. Metab Bone Dis Relat Res. 1979;1(4):303–11.

    Article  Google Scholar 

  • Burshell AL, et al. Correlations between biochemical markers of bone turnover and bone density responses in patients with glucocorticoid-induced osteoporosis treated with teriparatide or alendronate. Bone. 2010;46(4):935–9.

    Article  CAS  PubMed  Google Scholar 

  • Camozzi V, et al. Persistent increase of osteoprotegerin levels after cortisol normalization in patients with Cushing’s syndrome. Eur J Endocrinol. 2010;162(1):85–90.

    Article  CAS  PubMed  Google Scholar 

  • Cortet B, et al. Is bone turnover a determinant of bone mass in rheumatoid arthritis? J Rheumatol. 1998;25(12):2339–44.

    CAS  PubMed  Google Scholar 

  • de Andrade JR, McCormick JN, Hill AGS. Small doses of prednisolone in the management of rheumatoid arthritis. Ann Rheum Dis. 1964;23(2):158–62.

    Article  PubMed Central  Google Scholar 

  • Devogelaer J-P. Glucocorticoid-induced osteoporosis: mechanisms and therapeutic approach. Rheum Dis Clin North Am. 2006;32(4):733–57.

    Article  PubMed  Google Scholar 

  • Devogelaer J-P, et al. Baseline glucocorticoid dose and bone mineral density response with teriparatide or alendronate therapy in patients with glucocorticoid-induced osteoporosis. J Rheumatol. 2010;37(1):141–8.

    Article  CAS  PubMed  Google Scholar 

  • Devogelaer J-P, et al. Is there a place for bone turnover markers in the assessment of osteoporosis and its treatment? Rheum Dis Clin N Am. 2011;37(3):365–86.

    Article  Google Scholar 

  • Devogelaer J-P, et al. Effect of bone turnover markers of once-yearly intravenous infusion of zoledronic acid versus daily oral risedronate in patients treated with glucocorticoids. Rheumatology (Oxford). 2013;52(6):1058–69.

    Article  CAS  Google Scholar 

  • Dhar S, Seth J, Parikh D. Systemic side-effects of topical corticosteroids. Indian J Dermatol. 2014;59(5):460–4.

    Article  PubMed  PubMed Central  Google Scholar 

  • Dovio A, et al. Immediate fall of bone formation and transient increase in bone resorption in the course of high-dose, short-term glucocorticoid therapy in young patients with multiple sclerosis. J Clin Endocrinol Metab. 2004;89(10):4923–8.

    Article  CAS  PubMed  Google Scholar 

  • Eastell R, et al. Bone formation markers in patients with glucocorticoid-induced osteoporosis treated with teriparatide or alendronate. Bone. 2010;46(4):929–34.

    Article  CAS  PubMed  Google Scholar 

  • Emkey RD, et al. The systemic effect of intraarticular administration of corticosteroid on markers of bone formation and bone resorption in patients with rheumatoid arthritis. Arthritis Rheum. 1996;39(2):277–82.

    Article  CAS  PubMed  Google Scholar 

  • Engvall IL, et al. Low-dose prednisolone in early rheumatoid arthritis inhibits collagen type I degradation by matrix metalloproteinases as assessed by serum 1CTP – a possible mechanism for specific inhibition of radiological destruction. Rheumatology. 2013;52(4):733–42.

    Article  CAS  PubMed  Google Scholar 

  • Fahrleitner A, et al. Serum osteoprotegerin is a major determinant of bone density development and prevalent vertebral fracture status following cardiac transplantation. Bone. 2003;32(1):96–106.

    Article  CAS  PubMed  Google Scholar 

  • Franchimont N, et al. Increased expression of receptor activator of NF-kappaB ligand (RANKL), its receptor RANK and its decoy receptor osteoprotegerin in the colon of Crohn’s disease patients. Clin Exp Immunol. 2004;138(3):491–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frediani B, et al. Effects of high dose methylprednisolone pulse therapy on bone mass and biochemical markers of bone metabolism in patients with active rheumatoid arthritis: a 12-month randomized prospective controlled study. J Rheumatol. 2004;31(6):1083–7.

    CAS  PubMed  Google Scholar 

  • Fujii N, et al. Risedronate, an effective treatment for glucocorticoid-induced bone loss in CKD patients with or without concomitant active vitamin D (PRIUS-CKD). Nephrol Dial Transplant. 2007;22(6):1601–7.

    Article  CAS  PubMed  Google Scholar 

  • Garnero P, et al. Uncoupling of bone metabolism in rheumatoid arthritis patients with or without joint destruction: assessment with serum type I collagen breakdown products. Bone. 1999;24(4):381–5.

    Article  CAS  PubMed  Google Scholar 

  • Garnero P, et al. The type I collagen fragments ICTP and CTX reveal distinct enzymatic pathways of bone collagen degradation. J Bone Miner Res. 2003;18(51):859–67.

    Article  CAS  PubMed  Google Scholar 

  • Gifre L, et al. Effects of glucocorticoid treatment on Wnt signalling antagonists (sclerostin and DKK-1) and their relationship with bone turnover. Bone. 2013;57(1):272–6.

    Article  CAS  PubMed  Google Scholar 

  • Godschalk MF, Downs RW. Effect of short-term glucocorticoids on serum osteocalcin in healthy young men. J Bone Miner Res. 1988;3(1):113–5.

    Article  CAS  PubMed  Google Scholar 

  • Hanania NA, et al. Dose-related decrease in bone density among asthmatic patients treated with inhaled corticosteroids. J Allergy Clin Immunol. 1995;96(5Pt1):571–9.

    Article  CAS  PubMed  Google Scholar 

  • Haynes RC. Adrenocorticotropic hormone. In Goodman LS, Gilman’s AG, editors. The pharmacological basis of therapeutics. 8th ed. Pergamon Press; New York, USA. 1990.

    Google Scholar 

  • Hofbauer LC, et al. Stimulation of osteoprotegerin ligand and inhibition of osteoprotegerin production by glucocorticoids in human osteoblastic lineage cells: potential paracrine mechanisms of glucocorticoid-induced osteoporosis. Endocrinology. 1999;140(10):4382–9.

    CAS  PubMed  Google Scholar 

  • Ivaska KK, et al. Effect of fracture on bone turnover markers: a longitudinal study comparing marker levels before and after injury in 113 elderly women. J Bone Miner Res. 2007;22(8):1155–64.

    Article  CAS  PubMed  Google Scholar 

  • Jansen LM, et al. Serological bone markers and joint damage in early polyarthritis. J Rheumatol. 2004;31(8):1491–6.

    PubMed  Google Scholar 

  • Jiang CL, et al. The novel strategy of glucocorticoid drug development via targeting nongenomic mechanisms. Steroids. 2015;102(Oct):27–31.

    Article  CAS  PubMed  Google Scholar 

  • Jones A, et al. Inhaled corticosteroid effects on bone metabolism in asthma and mild chronic obstructive pulmonary disease. Cochrane Database Syst Rev. 2002;1:CD003537.

    PubMed  Google Scholar 

  • Kaji H, et al. Effect of alendronate on bone metabolic indices and bone mineral density in patients treated with high-dose glucocorticoid: a prospective study. Osteoporos Int. 2010a;21(9):1565–71.

    Article  CAS  PubMed  Google Scholar 

  • Kaji H, et al. Urinary deoxypyridinoline is a BMD-independent marker for prevalent vertebral fractures in postmenopausal women treated with glucocorticoid. Osteoporos Int. 2010b;21(9):1585–90.

    Article  CAS  PubMed  Google Scholar 

  • Kanis JA, et al. A meta-analysis of prior corticosteroid use and fracture risk. J Bone Miner Res. 2004;15(6):893–9.

    Article  Google Scholar 

  • Kipen Y, et al. Urinary excretion of the pyridinium cross-links of collagen in systemic lupus erythematosus. Clin Rheumatol. 1998;17(4):271–6.

    Article  CAS  PubMed  Google Scholar 

  • Kotowicz MA, et al. Relationship of glucocorticoid dosage to serum bone GLA-protein concentration in patients with rheumatologic disorders. Arthritis Rheum. 1990;33(10):1487–92.

    Article  CAS  PubMed  Google Scholar 

  • Lems WF, et al. Transient decrease in osteocalcin and markers of type 1 collagen turnover during high-dose corticosteroid pulse therapy in rheumatoid arthritis. Br J Rheumatol. 1993;32(9):787–9.

    Article  CAS  PubMed  Google Scholar 

  • Lems WF, et al. Changes in calcium and bone metabolism during treatment with low dose prednisone in young, healthy, male volunteers. Clin Rheumatol. 1995;14(4):420–4.

    Article  CAS  PubMed  Google Scholar 

  • Lems WF, et al. Changes in (markers of) bone metabolism during high dose corticosteroid pulse treatment in patients with rheumatoid arthritis. Ann Rheum Dis. 1996;55(5):288–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lems WF, et al. Effect of low-dose prednisolone (with calcium and calcitriol supplementation) on calcium and bone metabolism in healthy volunteers. Br J Rheumatol. 1998;37(1):27–33.

    Article  CAS  PubMed  Google Scholar 

  • Lems WF, et al. Positive effect of alendronate on bone mineral density and markers of bone turnover in patients with rheumatoid arthritis on chronic treatment with low-dose prednisone. Osteoporos Int. 2006;17(5):716–23.

    Article  CAS  PubMed  Google Scholar 

  • Levinger I, et al. Undercarboxylated osteocalcin, muscle strength and indices of bone health in older women. Bone. 2014;64:8–12.

    Article  CAS  PubMed  Google Scholar 

  • Manolagas SC. Birth and death of bone cells: basic regulatory mechanisms and implications for the pathogenesis and treatment of osteoporosis. Endocr Rev. 2000;21(2):115–37.

    CAS  PubMed  Google Scholar 

  • Mokuda S, et al. Post-menopausal women with rheumatoid arthritis who are treated with raloxifene or alendronate or glucocorticoids have lower serum undercarboxylated osteocalcin levels. J Endocrinol Invest. 2012;35(7):661–4.

    CAS  PubMed  Google Scholar 

  • Morris HA, et al. Malabsorption of calcium in corticosteroid-induced osteoporosis. Calcif Tissue Int. 1990;46(5):305–8.

    Article  CAS  PubMed  Google Scholar 

  • Nagant de Deuxchaisnes C, et al. The effect of low dosage glucocorticoids on bone mass in rheumatoid arthritis: a cross-sectional and a longitudinal study using single photon absorptiometry. Adv Exp Med Biol. 1984;171:209–39.

    Google Scholar 

  • Nielsen HK, et al. The effects of high-dose glucocorticoid administration on serum bone carboxyglutamic acid-containing protein, serum alkaline phosphatase and vitamin D metabolites in normal subjects. Bone Miner. 1988a;4(1):105–13.

    CAS  PubMed  Google Scholar 

  • Nielsen HK, Charles P, Mosekilde L. The effect of single oral doses of prednisone on the circadian rhythm of serum osteocalcin in normal subjects. J Clin Endocrinol Metab. 1988b;67(5):1025–30.

    Article  CAS  PubMed  Google Scholar 

  • Ohnaka K, et al. Glucocorticoid enhances the expression of dickkopf-1 in human osteoblasts: novel mechanism of glucocorticoid-induced osteoporosis. Biochem Biophys Res Commun. 2004;318(1):259–64.

    Article  CAS  PubMed  Google Scholar 

  • Oxlund H, et al. The anabolic effect of PTH on bone is attenuated by simultaneously glucocorticoid treatment. Bone. 2006;39(2):244–52.

    Article  CAS  PubMed  Google Scholar 

  • Paglia F, et al. Biomarkers of bone turnover after a short period of steroid therapy in elderly men. Clin Chem. 2001;47(4):1314–6.

    CAS  PubMed  Google Scholar 

  • Paz-Pacheco E, Fuleihan GE, LeBoff MS. Intact parathyroid hormone levels are not elevated in glucocorticoid-treated subjects. J Bone Miner Res. 1995;10(11):1713–8.

    Article  CAS  PubMed  Google Scholar 

  • Pereira RMR, et al. Abnormalities in the biochemical markers of bone turnover in children with juvenile chronic arthritis. Clin Exp Rheumatol. 1999;17(2):251–5.

    CAS  PubMed  Google Scholar 

  • Rapuri PB, et al. Seasonal changes in calciotropic hormones, bone markers, and bone mineral density in elderly women. J Clin Endocrinol Metab. 2002;87(5):2024–32.

    Article  CAS  PubMed  Google Scholar 

  • Redlich K, et al. Bone mineral density and biochemical parameters of bone metabolism in female patients with systemic lupus erythematosus. Ann Rheum Dis. 2000;59(4):308–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Richy F, et al. Inhaled corticosteroids effects on bone in asthmatic and COPD patients: a quantitative systematic review. Osteoporos Int. 2003;14(3):179–90.

    CAS  PubMed  Google Scholar 

  • Saag KG, et al. Effects of teriparatide versus alendronate for treating glucocorticoid-induced osteoporosis. Arthritis Rheum. 2009;60(11):3346–55.

    Article  CAS  PubMed  Google Scholar 

  • Sasaki N, et al. Glucocorticoid decreases circulating osteoprotegerin (OPG): possible mechanism for glucocorticoid induced osteoporosis. Nephrol Dial Transplant. 2001;16(3):479–82.

    Article  CAS  PubMed  Google Scholar 

  • Sasaki N, et al. Changes in osteoprotegerin and markers of bone metabolism during glucocorticoid treatment in patients with chronic glomerulonephritis. Bone. 2002;30(6):853–8.

    Article  CAS  PubMed  Google Scholar 

  • Siomou E, et al. Biochemical markers of bone metabolism in infants and children under intravenous corticosteroid therapy. Calcif Tissue Int. 2003;73(4):319–25.

    Article  CAS  PubMed  Google Scholar 

  • Stahn C, Buttgereit F. Genomic and non genomic effects of glucocorticoids. Nat Clin Pract Rheumatol. 2008;4(10):525–33.

    Article  CAS  PubMed  Google Scholar 

  • Struijs A, Mulder H. The effects of inhaled glucocorticoids on bone mass and biochemical markers of bone homeostasis: a 1-year study of beclomethasone versus budesonide. Neth J Med. 1997;50(6):233–7.

    Article  CAS  PubMed  Google Scholar 

  • Suzuki Y, et al. Importance of increased urinary calcium excretion in the development of secondary hyperparathyroidism of patients under glucocorticoid therapy. Metabolism. 1983;32(2):151–6.

    Article  CAS  PubMed  Google Scholar 

  • Syversen SW, et al. Testing of the OMERACT 8 draft validation criteria for a soluble biomarker reflecting structural damage in rheumatoid arthritis: a systematic literature search on 5 candidate biomarkers. J Rheumatol. 2009;36(8):1769–84.

    Article  CAS  PubMed  Google Scholar 

  • Tattersfield AE, et al. Bone mineral density in subjects with mild asthma randomised to treatment with inhaled corticosteroids or non-corticosteroid treatment for 2 years. Thorax. 2001;56(4):272–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Teichmann J, et al. Bone metabolism and bone mineral density of systemic lupus erythematosus at the time of diagnosis. Rheumatol Int. 1999;18(4):137–40.

    Article  CAS  PubMed  Google Scholar 

  • Ton FN, et al. Effects of low-dose prednisone on bone metabolism. J Bone Miner Res. 2005;23(3):464–70.

    Google Scholar 

  • Ueland T, et al. Increased serum osteoprotegerin in disorders characterized by persistent immune activation or glucocorticoid excess. Possible role in bone homeostasis. Eur J Endocrinol. 2001;145(6):685–90.

    Article  CAS  PubMed  Google Scholar 

  • van Everdingen AA, et al. Low-dose prednisone therapy for patients with early active rheumatoid arthritis: clinical efficacy, disease-modifying properties, and side effects: a randomized, double-blind, placebo-controlled clinical trial. Ann Intern Med. 2002;136(1):1–12.

    Article  PubMed  Google Scholar 

  • Van Staa TP, et al. Use of oral corticosteroids and risk of fractures. J Bone Miner Res. 2000a;15(6):993–1000.

    Article  PubMed  Google Scholar 

  • Van Staa TP, et al. Oral corticosteroids and fracture risk: relationship to daily and cumulative doses. Rheumatology. 2000b;39(12):1383–9.

    Article  PubMed  Google Scholar 

  • Van Staa TP, Leufkens HGM, Cooper C. The epidemiology of corticosteroid-induced osteoporosis: a meta-analysis. Osteoporos Int. 2002;13(10):777–87.

    Article  PubMed  Google Scholar 

  • van Tuyl LH, et al. Baseline RANKL: OPG ratio and markers of bone and cartilage degradation predict annual radiological progression over 11 years in rheumatoid arthritis. Ann Rheum Dis. 2010;69(9):1623–8.

    Article  PubMed  Google Scholar 

  • von Tirpitz C, et al. Effect of systemic glucocorticoid therapy on bone metabolism and the osteoprotegerin system in patients with active Crohn’s disease. Eur J Gastroenterol Hepatol. 2003;15(11):1165–70.

    Article  Google Scholar 

  • Wang FS, et al. Modulation of Dickkopf-1 attenuates glucocorticoid induction of osteoblast apoptosis, adipocytic differentiation, and bone mass loss. Endocrinology. 2008;149(4):1793–801.

    Article  CAS  PubMed  Google Scholar 

  • Weinstein RS, et al. Inhibition of osteoblastogenesis and promotion of apoptosis of osteoblasts and osteocytes by glucocorticoids: potential mechanisms of their deleterious effects on bone. J Clin Invest. 1998;102(2):274–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weinstein RS, Nicholas RW, Manolagas SC. Apoptosis of osteocytes in glucocorticoid-induced osteonecrosis of the hip. J Clin Endocrinol Metab. 2000;85(8):2907–12.

    CAS  PubMed  Google Scholar 

  • Weinstein RS, et al. Promotion of osteoclast survival and antagonism of bisphosphonate-induced osteoclast apoptosis by glucocorticoids. J Clin Invest. 2002;109(8):1041–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weitoft T, et al. Changes of cartilage and bone markers after intraarticular glucocorticoid treatment with and without postinjection rest in patients with rheumatoid arthritis. Ann Rheum Dis. 2005;64(4):1750–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wisniewski AF, et al. Cross sectional investigation of the effects on inhaled corticosteroids on bone density and bone metabolism in patients with asthma. Thorax. 1997;52(10):853–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jean-Pierre Devogelaer , Anne Durnez , Damien Gruson or Daniel H. Manicourt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this entry

Cite this entry

Devogelaer, JP., Durnez, A., Gruson, D., Manicourt, D.H. (2015). Bone Turnover Markers and Glucocorticoid Treatments. In: Preedy, V. (eds) Biomarkers in Bone Disease. Biomarkers in Disease: Methods, Discoveries and Applications. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7745-3_23-1

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-7745-3_23-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Online ISBN: 978-94-007-7745-3

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics