Skip to main content

Sirtuins as Markers of Bone Disease: A Focus on Osteoarthritis and Osteoporosis

  • Reference work entry
  • First Online:
Biomarkers in Bone Disease

Abstract

Sirtuins are widely distributed class III NAD+-dependent histone deacetylases (HDAC) involved in epigenetic regulation. There are seven protein members of the sirtuins, SIRT1-7, each of which specific sites of action linked with the intracellular localization, and acting on selective target proteins. Sirtuins are involved in a number of processes ranging from cell cycle regulation, apoptosis/proliferation, DNA repair, tumor suppression, energy metabolism, mitochondrial homeostasis, metabolism, cellular senescence/aging, and inflammation. Sirtuins also play a key role on the recruitment and differentiation of mesenchymal stem cells and via this pathway play an important role in the maintenance and function of bone tissue. Hence, sirtuins are involved in bone pathologies such as osteoarthritis and osteoporosis and can serve as biomarkers for these pathologies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 379.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ADP:

Adenosine diphosphate

AMPK:

5’ Adenosine monophosphate-activated protein kinase

AP1:

Activator protein-1 complex IkBα and NF-kB

BMI:

Body mass index

BMP2:

Bone morphogenetic protein-2

Cbfa1/Runx2:

Core-binding factor alpha 1/ Runt-related transcription factor 2

cWnt:

Canonical Wnt/β-catenin

DAN:

Cysteine-knot protein abberative in neuroblastoma

DKK1:

Dickkoft-1

EP300:

E1A binding protein p300

FoxO:

Forkhead box O

Fz:

Frizzled

GSK3β:

Glycogen synthase kinase 3 beta

H3K9:

Histone 3 is deacetylated at lysine

HATs:

Histone acetyl transferases

hBMSC:

Human bone marrow stromal cellsMmp13 matrix metalloproteinase-13

HDAC:

NAD + -dependent histone deacetylases

HGF:

Hepatocyte growth factor

IL:

Interleukin

JNK:

c-Jun N-terminal kinase

Lef:

Lymphoid enhancer-binding factor

LRP5/6:

Low-density lipoprotein receptor-related protein 5/6

LXR:

Liver X receptor

MSC:

Mesenchymal stem cell

NAD:

Nicotinamide adenine dinucleotide

NANOG:

Transcription factor critically involved with self-renewal of undifferentiated embryonic stem cells

OA:

Osteoarthritis

OCT4:

Octamer-binding transcription factor 4

OP:

Osteoporosis

OPG:

Osteoprotegerin

PGC-1α:

Peroxisome proliferator-activated receptor gamma coactivator 1-alpha

PKC:

Protein kinase C

PPARγ:

Peroxisome proliferator-activated receptor γ

PTH:

Parathyroid hormone

RANKL:

Receptor activator of nuclear factor kappa-B ligand

Rho GTPase:

Rho family of guanosine triphosphate hydrolase

sFRP:

Secreted frizzled-related proteins

SIRT1:

Sirtuin 1

SIRT6:

Sirtuin 6

SOST:

Sclerostin

SOX2:

SRY (sex determining region Y)-box 2

T2D:

Type 2 diabetes

TCF:

T cell factor

TGF-β1:

Transforming growth factor beta-1

TNF:

Tumor necrosis factor

Wif1:

Wnt inhibitory factor 1

Wnt:

Wingless

References

  • Abdallah BM, Kassem M. Human mesenchymal stem cells: from basic biology to clinical applications. Gene Ther. 2008;15(2):109–16.

    Article  CAS  PubMed  Google Scholar 

  • Abed E, Couchourel D, Delalandre A, Duval N, Pelletier JP, Martel-Pelletier J, Lajeunesse D. Low sirtuin 1 levels in human osteoarthritis subchondral osteoblasts lead to abnormal sclerostin expression which decreases Wnt/beta-catenin activity. Bone. 2014;59:28–36.

    Article  CAS  PubMed  Google Scholar 

  • Abed E, Bouvard B, Martineau X, Jouzeau JY, Reboul P, Lajeunesse D. Elevated hepatocyte growth factor levels in osteoarthritis osteoblasts contribute to their altered response to bone morphogenetic protein-2 and reduced mineralization capacity. Bone. 2015;75:111–9.

    Article  CAS  PubMed  Google Scholar 

  • Artsi H, Cohen-Kfir E, Gurt I, Shahar R, Bajayo A, Kalish N, Bellido TM, Gabet Y, Dresner-Pollak R. The Sirtuin1 activator SRT3025 down-regulates sclerostin and rescues ovariectomy-induced bone loss and biomechanical deterioration in female mice. Endocrinology. 2014;155(9):3508–15.

    Article  PubMed  Google Scholar 

  • Aspden RM, Scheven BAA, Hutchison JD. Osteoarthritis as a systemic disorder including stromal cell differentiation and lipid metabolism. Lancet. 2001;357:1118–20.

    Article  CAS  PubMed  Google Scholar 

  • Avalos JL, Bever KM, Wolberger C. Mechanism of sirtuin inhibition by nicotinamide: altering the NAD(+) cosubstrate specificity of a Sir2 enzyme. Mol Cell. 2005;17(6):855–68.

    Article  CAS  PubMed  Google Scholar 

  • Basu-Roy U, Ambrosetti D, Favaro R, Nicolis SK, Mansukhani A, Basilico C. The transcription factor Sox2 is required for osteoblast self-renewal. Cell Death Differ. 2010;17(8):1345–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blander G, Guarente L. The Sir2 family of protein deacetylases. Annu Rev Biochem. 2004;73:417–35.

    Article  CAS  PubMed  Google Scholar 

  • Boily G, Seifert EL, Bevilacqua L, He XH, Sabourin G, Estey C, Moffat C, Crawford S, Saliba S, Jardine K, Xuan J, Evans M, Harper ME, McBurney MW. SirT1 regulates energy metabolism and response to caloric restriction in mice. PLoS One. 2008;3(3), e1759.

    Article  PubMed  PubMed Central  Google Scholar 

  • Burr DB. Increased biological activity of subchondral mineralized tissues underlies the progressive deterioration of articular cartilage in osteoarthritis. J Rheumatol. 2005;32(6):1156–8. discussion 1158–1159.

    PubMed  Google Scholar 

  • Canto C, Jiang LQ, Deshmukh AS, Mataki C, Coste A, Lagouge M, Zierath JR, Auwerx J. Interdependence of AMPK and SIRT1 for metabolic adaptation to fasting and exercise in skeletal muscle. Cell Metab. 2010;11(3):213–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carlsson A, Nillson BE, Westlin NE. Bone mass in primary coxarthrosis. Acta Orthop Scand. 1979;50:187–9.

    Article  CAS  PubMed  Google Scholar 

  • Chan BY, Fuller ES, Russell AK, Smith SM, Smith MM, Jackson MT, Cake MA, Read RA, Bateman JF, Sambrook PN, Little CB. Increased chondrocyte sclerostin may protect against cartilage degradation in osteoarthritis. Osteoarthritis Cartilage. 2011;19(7):874–85.

    Article  CAS  PubMed  Google Scholar 

  • Chen H, Liu X, Chen H, Cao J, Zhang L, Hu X, Wang J. Role of SIRT1 and AMPK in mesenchymal stem cells differentiation. Ageing Res Rev. 2014;13:55–64.

    Article  CAS  PubMed  Google Scholar 

  • Chen JR, Lazarenko OP, Blackburn ML, Badger TM, Ronis MJ. Soy protein isolate inhibits high-fat diet-induced senescence pathways in osteoblasts to maintain bone acquisition in male rats. Endocrinology. 2015;156(2):475–87.

    Article  PubMed  Google Scholar 

  • Christensen R, Bartels EM, Astrup A, Bliddal H. Effect of weight reduction in obese patients diagnosed with knee osteoarthritis: a systematic review and meta-analysis. Ann Rheum Dis. 2007;66(4):433–9.

    Article  PubMed  PubMed Central  Google Scholar 

  • Cohen-Kfir E, Artsi H, Levin A, Abramowitz E, Bajayo A, Gurt I, Zhong L, D’Urso A, Toiber D, Mostoslavsky R, Dresner-Pollak R. Sirt1 is a regulator of bone mass and a repressor of Sost encoding for sclerostin, a bone formation inhibitor. Endocrinology. 2011;152(12):4514–24.

    Article  CAS  PubMed  Google Scholar 

  • Coste A, Louet JF, Lagouge M, Lerin C, Antal MC, Meziane H, Schoonjans K, Puigserver P, O’Malley BW, Auwerx J. The genetic ablation of SRC-3 protects against obesity and improves insulin sensitivity by reducing the acetylation of PGC-1{alpha}. Proc Natl Acad Sci U S A. 2008;105(44):17187–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • D’Onofrio N, Vitiello M, Casale R, Servillo L, Giovane A, Balestrieri ML. Sirtuins in vascular diseases: emerging roles and therapeutic potential. Biochim Biophys Acta. 2015;1852(7):1311–22.

    Article  PubMed  Google Scholar 

  • Davies-Tuck ML, Hanna F, Davis SR, Bell RJ, Davison SL, Wluka AE, Adams J, Cicuttini FM. Total cholesterol and triglycerides are associated with the development of new bone marrow lesions in asymptomatic middle-aged women – a prospective cohort study. Arthritis Res Ther. 2009;11(6):R181.

    Article  PubMed  PubMed Central  Google Scholar 

  • Day TF, Guo X, Garrett-Beal L, Yang Y. Wnt/beta-catenin signaling in mesenchymal progenitors controls osteoblast and chondrocyte differentiation during vertebrate skeletogenesis. Dev Cell. 2005;8(5):739–50.

    Article  CAS  PubMed  Google Scholar 

  • de Boer J, Siddappa R, Gaspar C, van Apeldoorn A, Fodde R, van Blitterswijk C. Wnt signaling inhibits osteogenic differentiation of human mesenchymal stem cells. Bone. 2004;34(5):818–26.

    Article  PubMed  Google Scholar 

  • Dumond H, Presle N, Terlain B, Mainard D, Loeuille D, Netter P, Pottie P. Evidence for a key role of leptin in osteoarthritis. Arthritis Rheum. 2003;48:3118–29.

    Article  CAS  PubMed  Google Scholar 

  • Dvir-Ginzberg M, Gagarina V, Lee EJ, Hall DJ. Regulation of cartilage-specific gene expression in human chondrocytes by SirT1 and nicotinamide phosphoribosyltransferase. J Biol Chem. 2008;283(52):36300–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Edwards JR, Perrien DS, Fleming N, Nyman JS, Ono K, Connelly L, Moore MM, Lwin ST, Yull FE, Mundy GR, Elefteriou F. Silent information regulator (Sir)T1 inhibits NF-kappaB signaling to maintain normal skeletal remodeling. J Bone Miner Res. 2013;28(4):960–9.

    Article  CAS  PubMed  Google Scholar 

  • Ehnert S, Freude T, Ihle C, Mayer L, Braun B, Graeser J, Flesch I, Stockle U, Nussler AK, Pscherer S. Factors circulating in the blood of type 2 diabetes mellitus patients affect osteoblast maturation – Description of a novel in vitro model. Exp Cell Res. 2015. Mar 15;332(2):247–58.

    Google Scholar 

  • Fei Y, Shimizu E, McBurney MW, Partridge NC. Sirtuin 1 is a negative regulator of parathyroid hormone stimulation of matrix metalloproteinase 13 expression in osteoblastic cells. J Biol Chem. 2015. Mar 27;290(13):8373–82.

    Google Scholar 

  • Felson DT, Anderson JJ, Naimark A, Walker AM, Meenan RF. Obesity and knee osteoarthritis. Ann Intern Med. 1988;109:18–24.

    Article  CAS  PubMed  Google Scholar 

  • Felson DT, Zhang Y, Hannan MT, Naimark A, Weissman B, Aliabadi P, Levy D. Risk factors for incident radiographic knee osteoarthritis in the elderly: the Framingham Study. Arthritis Rheum. 1997;40:728–33.

    Article  CAS  PubMed  Google Scholar 

  • Feng J, Liu S, Ma S, Zhao J, Zhang W, Qi W, Cao P, Wang Z, Lei W. Protective effects of resveratrol on postmenopausal osteoporosis: regulation of SIRT1-NF-kappaB signaling pathway. Acta Biochim Biophys Sin (Shanghai). 2014;46(12):1024–33.

    Article  CAS  Google Scholar 

  • Finkel T, Deng CX, Mostoslavsky R. Recent progress in the biology and physiology of sirtuins. Nature. 2009;460(7255):587–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Foss MVL, Byers PD. Bone density, osteoarthrosis of the hip and fracture of the upper end of the femur. Ann Rheum Dis. 1972;31:259–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fujita N, Matsushita T, Ishida K, Kubo S, Matsumoto T, Takayama K, Kurosaka M, Kuroda R. Potential involvement of SIRT1 in the pathogenesis of osteoarthritis through the modulation of chondrocyte gene expressions. J Orthop Res. 2011;29(4):511–5.

    Article  CAS  PubMed  Google Scholar 

  • Fulco M, Sartorelli V. Comparing and contrasting the roles of AMPK and SIRT1 in metabolic tissues. Cell Cycle. 2008;7(23):3669–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gabay O, Oppenhiemer H, Meir H, Zaal K, Sanchez C, Dvir-Ginzberg M. Increased apoptotic chondrocytes in articular cartilage from adult heterozygous SirT1 mice. Ann Rheum Dis. 2012;71(4):613–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gaur T, Lengner CJ, Hovhannisyan H, Bhat RA, Bodine PV, Komm BS, Javed A, van Wijnen AJ, Stein JL, Stein GS, Lian JB. Canonical WNT signaling promotes osteogenesis by directly stimulating Runx2 gene expression. J Biol Chem. 2005;280(39):33132–40.

    Article  CAS  PubMed  Google Scholar 

  • Ghosh HS, McBurney M, Robbins PD. SIRT1 negatively regulates the mammalian target of rapamycin. PLoS One. 2010;5(2), e9199.

    Article  PubMed  PubMed Central  Google Scholar 

  • Gordon MD, Nusse R. Wnt signaling: multiple pathways, multiple receptors, and multiple transcription factors. J Biol Chem. 2006;281(32):22429–33.

    Article  CAS  PubMed  Google Scholar 

  • Gregory CA, Gunn WG, Reyes E, Smolarz AJ, Munoz J, Spees JL, Prockop DJ. How Wnt signaling affects bone repair by mesenchymal stem cells from the bone marrow. Ann N Y Acad Sci. 2005;1049:97–106.

    Article  CAS  PubMed  Google Scholar 

  • Guévremont M, Martel-Pelletier J, Massicotte F, Tardif G, Pelletier JP, Ranger P, Lajeunesse D, Reboul P. Human adult chondrocytes express hepatocyte growth factor (HGF) isoforms but not HGF. Potential implication of osteoblasts for the HGF presence in cartilage. J Bone Miner Res. 2003;18:1073–81.

    Article  PubMed  Google Scholar 

  • Haigis MC, Guarente LP. Mammalian sirtuins – emerging roles in physiology, aging, and calorie restriction. Genes Dev. 2006;20(21):2913–21.

    Article  CAS  PubMed  Google Scholar 

  • Henriksen M, Christensen R, Danneskiold-Samsoe B, Bliddal H. Changes in lower extremity muscle mass and muscle strength after weight loss in obese patients with knee osteoarthritis: a prospective cohort study. Arthritis Rheum. 2012;64(2):438–42.

    Article  PubMed  Google Scholar 

  • Herranz D, Munoz-Martin M, Canamero M, Mulero F, Martinez-Pastor B, Fernandez-Capetillo O, Serrano M. Sirt1 improves healthy ageing and protects from metabolic syndrome-associated cancer. Nat Commun. 2010;1:3.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hordon LD, Stewart SP, Troughton PR, Wright V, Horsman A, Smith MA. Primary generalized osteoarthritis and bone mass. Br J Rheumatol. 1993;32:1059–61.

    Article  CAS  PubMed  Google Scholar 

  • Hurley MV. Quadriceps weakness in osteoarthritis. Curr Opin Rheumatol. 1998;10:246–50.

    Article  CAS  PubMed  Google Scholar 

  • Hurley MV. The role of muscle weakness in the pathogenesis of osteoarthritis. Rheum Dis Clin North Am. 1999;25(2):283–98.

    Article  CAS  PubMed  Google Scholar 

  • Imai S, Armstrong CM, Kaeberlein M, Guarente L. Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase. Nature. 2000;403(6771):795–800.

    Article  CAS  PubMed  Google Scholar 

  • Iyer S, Han L, Bartell SM, Kim HN, Gubrij I, de Cabo R, O’Brien CA, Manolagas SC, Almeida M. Sirtuin1 (Sirt1) promotes cortical bone formation by preventing beta-catenin sequestration by FoxO transcription factors in osteoblast progenitors. J Biol Chem. 2014;289(35):24069–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kok SH, Hou KL, Hong CY, Chao LH, Hsiang-Hua Lai E, Wang HW, Yang H, Shun CT, Wang JS, Lin SK. Sirtuin 6 modulates hypoxia-induced apoptosis in osteoblasts via inhibition of glycolysis: implication for pathogenesis of periapical lesions. J Endod. 2015;41(10):1631–7.

    Article  PubMed  Google Scholar 

  • Komori T. Regulation of osteoblast differentiation by transcription factors. J Cell Biochem. 2006;99(5):1233–9.

    Article  CAS  PubMed  Google Scholar 

  • Kumar R, Mohan N, Upadhyay AD, Singh AP, Sahu V, Dwivedi S, Dey AB, Dey S. Identification of serum sirtuins as novel noninvasive protein markers for frailty. Aging Cell. 2014;13(6):975–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kwon HS, Ott M. The ups and downs of SIRT1. Trends Biochem Sci. 2008;33(11):517–25.

    Article  CAS  PubMed  Google Scholar 

  • Lajeunesse D, Reboul P. Subchondral bone in osteoarthritis: a biologic link with articular cartilage leading to abnormal remodeling. Curr Opin Rheumatol. 2003;15:628–33.

    Article  PubMed  Google Scholar 

  • Lam YY, Peterson CM, Ravussin E. Resveratrol vs. calorie restriction: data from rodents to humans. Exp Gerontol. 2013;48(10):1018–24.

    Article  CAS  PubMed  Google Scholar 

  • Landry J, Sutton A, Tafrov ST, Heller RC, Stebbins J, Pillus L, Sternglanz R. The silencing protein SIR2 and its homologs are NAD-dependent protein deacetylases. Proc Natl Acad Sci U S A. 2000;97(11):5807–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leslie WD, Morin SN. Osteoporosis epidemiology 2013: implications for diagnosis, risk assessment, and treatment. Curr Opin Rheumatol. 2014;26(4):440–6.

    Article  CAS  PubMed  Google Scholar 

  • Ling L, Nurcombe V, Cool SM. Wnt signaling controls the fate of mesenchymal stem cells. Gene. 2009;433(1–2):1–7.

    Article  CAS  PubMed  Google Scholar 

  • Lisignoli G, Cristino S, Toneguzzi S, Grassi F, Piacentini A, Cavallo C, Facchini A, Mariani E. IL1beta and TNFalpha differently modulate CXCL13 chemokine in stromal cells and osteoblasts isolated from osteoarthritis patients: evidence of changes associated to cell maturation. Exp Gerontol. 2004;39(4):659–65.

    Article  CAS  PubMed  Google Scholar 

  • Liu G, Vijayakumar S, Grumolato L, Arroyave R, Qiao H, Akiri G, Aaronson SA. Canonical Wnts function as potent regulators of osteogenesis by human mesenchymal stem cells. J Cell Biol. 2009;185(1):67–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu M, Wilk SA, Wang A, Zhou L, Wang RH, Ogawa W, Deng C, Dong LQ, Liu F. Resveratrol inhibits mTOR signaling by promoting the interaction between mTOR and DEPTOR. J Biol Chem. 2010;285(47):36387–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lohmander LS. Articular cartilage and osteoarthrosis. The role of molecular markers to monitor breakdown, repair and disease. J Anat. 1994;184:477–92.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lupsa BC, Insogna K. Bone health and osteoporosis. Endocrinol Metab Clin North Am. 2015;44(3):517–30.

    Article  PubMed  Google Scholar 

  • Luyten FP. Mesenchymal stem cells in osteoarthritis. Curr Opin Rheumatol. 2004;16(5):599–603.

    Article  PubMed  Google Scholar 

  • Magnusson K, Hagen KB, Osteras N, Nordsletten L, Natvig B, Haugen IK. Diabetes is associated with increased hand pain in erosive hand osteoarthritis: data from a population-based study. Arthritis Care Res. 2015;67(2):187–95.

    Article  Google Scholar 

  • Matsuzaki T, Matsushita T, Takayama K, Matsumoto T, Nishida K, Kuroda R, Kurosaka M. Disruption of Sirt1 in chondrocytes causes accelerated progression of osteoarthritis under mechanical stress and during ageing in mice. Ann Rheum Dis. 2014;73(7):1397–404.

    Article  CAS  PubMed  Google Scholar 

  • Michan S, Sinclair D. Sirtuins in mammals: insights into their biological function. Biochem J. 2007;404(1):1–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murphy JM, Dixon K, Beck S, Fabian D. Reduced chondrogenic and adipogenic activity of mesenchymal stem cells from patients with advanced osteoarthritis. Arthritis Rheum. 2002;46:704–13.

    Article  PubMed  Google Scholar 

  • Muschler GF, Nitto H, Boehm CA, Easley KA. Age- and gender-related changes in the cellularity of human bone marrow and the prevalence of osteoblastic progenitors. J Orthop Res. 2001;19:117–25.

    Article  CAS  PubMed  Google Scholar 

  • Mutabaruka MS, Aoulad Aissa M, Delalandre A, Lavigne M, Lajeunesse D. Local leptin production in osteoarthritis subchondral osteoblasts may be responsible for their abnormal phenotypic expression. Arthritis Res Ther. 2010;12:R20.

    Article  PubMed  PubMed Central  Google Scholar 

  • Nemoto S, Fergusson MM, Finkel T. Nutrient availability regulates SIRT1 through a forkhead-dependent pathway. Science. 2004;306(5704):2105–8.

    Article  CAS  PubMed  Google Scholar 

  • Park SB, Seo KW, So AY, Seo MS, Yu KR, Kang SK, Kang KS. SOX2 has a crucial role in the lineage determination and proliferation of mesenchymal stem cells through Dickkopf-1 and c-MYC. Cell Death Differ. 2012;19(3):534–45.

    Article  CAS  PubMed  Google Scholar 

  • Picard F, Kurtev M, Chung N, Topark-Ngarm A, Senawong T, Machado De Oliveira R, Leid M, McBurney MW, Guarente L. Sirt1 promotes fat mobilization in white adipocytes by repressing PPAR-gamma. Nature. 2004;429(6993):771–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Powell A, Teichtahl AJ, Wluka AE, Cicuttini FM. Obesity: a preventable risk factor for large joint osteoarthritis which may act through biomechanical factors. Br J Sports Med. 2005;39(1):4–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramis MR, Esteban S, Miralles A, Tan DX, Reiter RJ. Caloric restriction, resveratrol and melatonin: role of SIRT1 and implications for aging and related-diseases. Mech Ageing Dev. 2015;146–148:28–41.

    Article  PubMed  Google Scholar 

  • Reya T, Clevers H. Wnt signalling in stem cells and cancer. Nature. 2005;434(7035):843–50.

    Article  CAS  PubMed  Google Scholar 

  • Rizzoli R, Bruyere O, Cannata-Andia JB, Devogelaer JP, Lyritis G, Ringe JD, Vellas B, Reginster JY. Management of osteoporosis in the elderly. Curr Med Res Opin. 2009;25(10):2373–87.

    Article  CAS  PubMed  Google Scholar 

  • Sauve AA, Wolberger C, Schramm VL, Boeke JD. The biochemistry of sirtuins. Annu Rev Biochem. 2006;75:435–65.

    Article  CAS  PubMed  Google Scholar 

  • Scharstuhl A, Vitters EL, van der Kraan PM, van den Berg WB. Reduction of osteophyte formation and synovial thickening by adenoviral overexpression of transforming growth factor beta/bone morphogenetic protein inhibitors during experimental osteoarthritis. Arthritis Rheum. 2003;48:3442–51.

    Article  CAS  PubMed  Google Scholar 

  • Schemies J, Uciechowska U, Sippl W, Jung M. NAD(+) -dependent histone deacetylases (sirtuins) as novel therapeutic targets. Med Res Rev. 2010;30(6):861–89.

    Article  CAS  PubMed  Google Scholar 

  • Seo E, Basu-Roy U, Gunaratne PH, Coarfa C, Lim DS, Basilico C, Mansukhani A. SOX2 regulates YAP1 to maintain stemness and determine cell fate in the osteo-adipo lineage. Cell Rep. 2013;3(6):2075–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shakibaei M, Buhrmann C, Mobasheri A. Resveratrol-mediated SIRT-1 interactions with p300 modulate receptor activator of NF-kappaB ligand (RANKL) activation of NF-kappaB signaling and inhibit osteoclastogenesis in bone-derived cells. J Biol Chem. 2011;286(13):11492–505.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Simic P, Zainabadi K, Bell E, Sykes DB, Saez B, Lotinun S, Baron R, Scadden D, Schipani E, Guarente L. SIRT1 regulates differentiation of mesenchymal stem cells by deacetylating beta-catenin. EMBO Mol Med. 2013;5(3):430–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sugatani T, Agapova O, Malluche HH, Hruska KA. SIRT6 deficiency culminates in low-turnover osteopenia. Bone. 2015;81:168–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun H, Wu Y, Fu D, Liu Y, Huang C. SIRT6 regulates osteogenic differentiation of rat bone marrow mesenchymal stem cells partially via suppressing the nuclear factor-kappaB signaling pathway. Stem Cells. 2014;32(7):1943–55.

    Article  CAS  PubMed  Google Scholar 

  • Taipaleenmaki H, Abdallah BM, Aldamash A, Saamanen AM, Kassem M. Wnt signalling mediates the cross-talk between bone marrow derived preadipocytic and pre-osteoblastic cell populations. Exp Cell Res. 2011.

    Google Scholar 

  • Thomas T, Gori F, Khosla S, Jensen MD, Burguera B, Riggs BL. Leptin acts on human marrow stromal cells to enhance differentiation to osteoblasts and to inhibit differentiation to adipocytes. Endocrinology. 1999;140:1630–8.

    Article  CAS  PubMed  Google Scholar 

  • Tsai CC, Su PF, Huang YF, Yew TL, Hung SC. Oct4 and Nanog directly regulate Dnmt1 to maintain self-renewal and undifferentiated state in mesenchymal stem cells. Mol Cell. 2012;47(2):169–82.

    Article  CAS  PubMed  Google Scholar 

  • Vandermeersch S, Geusens P, Nijs J, Dequeker J. Total body mineral measurements in osteoarthritis, osteoporosis and normal controls. Current Research in Osteoporosis and Bone Mineral Measurement. In: Ring EF, editor. London: British Institute of Radiology; 1990. p. 49.

    Google Scholar 

  • Vaquero A, Scher MB, Lee DH, Sutton A, Cheng HL, Alt FW, Serrano L, Sternglanz R, Reinberg D. SirT2 is a histone deacetylase with preference for histone H4 Lys 16 during mitosis. Genes Dev. 2006;20(10):1256–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Veeman MT, Axelrod JD, Moon RT. A second canon. Functions and mechanisms of beta-catenin-independent Wnt signaling. Dev Cell. 2003;5(3):367–77.

    Article  CAS  PubMed  Google Scholar 

  • Watts NB, Lewiecki EM, Miller PD, Baim S. National Osteoporosis Foundation 2008 clinician’s guide to prevention and treatment of osteoporosis and the World Health Organization Fracture Risk Assessment Tool (FRAX): what they mean to the bone densitometrist and bone technologist. J Clin Densitom. 2008;11(4):473–7.

    Article  PubMed  Google Scholar 

  • Yoon DS, Choi Y, Jang Y, Lee M, Choi WJ, Kim SH, Lee JW. SIRT1 directly regulates SOX2 to maintain self-renewal and multipotency in bone marrow-derived mesenchymal stem cells. Stem Cells. 2014;32(12):3219–31.

    Article  CAS  PubMed  Google Scholar 

  • Yuan HF, Zhai C, Yan XL, Zhao DD, Wang JX, Zeng Q, Chen L, Nan X, He LJ, Li ST, Yue W, Pei XT. SIRT1 is required for long-term growth of human mesenchymal stem cells. J Mol Med (Berl). 2012;90(4):389–400.

    Article  CAS  Google Scholar 

  • Zhen G, Wen C, Jia X, Li Y, Crane JL, Mears SC, Askin FB, Frassica FJ, Chang W, Yao J, Carrino JA, Cosgarea A, Artemov D, Chen Q, Zhao Z, Zhou X, Riley L, Sponseller P, Wan M, Lu WW, Cao X. Inhibition of TGF-beta signaling in mesenchymal stem cells of subchondral bone attenuates osteoarthritis. Nat Med. 2013;19(6):704–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Élie Abed , Pascal Reboul or Daniel Lajeunesse .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media Dordrecht

About this entry

Cite this entry

Abed, É., Reboul, P., Lajeunesse, D. (2017). Sirtuins as Markers of Bone Disease: A Focus on Osteoarthritis and Osteoporosis. In: Patel, V., Preedy, V. (eds) Biomarkers in Bone Disease. Biomarkers in Disease: Methods, Discoveries and Applications. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7693-7_41

Download citation

Publish with us

Policies and ethics