Skip to main content

The Reproducibility of Adaptation in the Light of Experimental Evolution with Whole Genome Sequencing

  • Chapter
  • First Online:
Book cover Ecological Genomics

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 781))

Abstract

A key question in evolutionary biology is the reproducibility of adaptation. This question can now be quantitatively analyzed using experimental evolution coupled to whole genome sequencing (WGS). With complete sequence data, one can assess convergence among replicate populations. In turn, convergence reflects the action of natural selection and also the breadth of the field of possible adaptive solutions. That is, it provides insight into how many genetic solutions or adaptive paths may lead to adaptation in a given environment. Convergence is both a property of an adaptive landscape and, reciprocally, a tool to study that landscape. In this chapter we present the links between convergence and the properties of adaptive landscapes with respect to two types of microbial experimental evolution. The first tries to reconstruct a full adaptive landscape using a handful of carefully identified mutations (the reductionist approach), while the second uses WGS of replicate experiments to infer properties of the adaptive landscape. Reductionist approaches have highlighted the importance of epistasis in shaping the adaptive landscape, but have also uncovered a wide diversity of landscape architectures. The WGS approach has uncovered a very high diversity of beneficial mutations that affect a limited set of genes or functions and also suggests some shortcomings of the reductionist approach. We conclude that convergence may be better defined at an integrated level, such as the genic level or even at a phenotypic level, and that integrated mechanistic models derived from systems biology may offer an interesting perspective for the analysis of convergence at all levels.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anderson JB, Funt J, Thompson DA, Prabhu S, Socha A, Sirjusingh C, Dettman JR, Parreiras L, Guttman DS, Regev A, Kohn LM (2010) Determinants of divergent adaptation and Dobzhansky-Muller interaction in experimental yeast populations. Curr Biol 20(15):1383–1388

    Article  PubMed  CAS  Google Scholar 

  • Applebee MK, Joyce AR, Conrad TM, Pettigrew DW, Palsson BO (2011) Functional and metabolic effects of adaptive glycerol kinase (GLPK) mutants in Escherichia coli. J Biol Chem 286(26):23150–23159

    Article  PubMed  CAS  Google Scholar 

  • Arendt J, Reznick D (2008) Convergence and parallelism reconsidered: what have we learned about the genetics of adaptation? Trends Ecol Evol 23(1):26–32

    Article  PubMed  Google Scholar 

  • Barrick JE, Yu DS, Yoon SH, Jeong H, Oh TK, Schneider D, Lenski RE, Kim JF (2009) Genome evolution and adaptation in a long-term experiment with Escherichia coli. Nat Genetics 461(7268):1243–1247

    CAS  Google Scholar 

  • Besnard G, Muasya AM, Russier F, Roalson EH, Salamin N, Christin PA (2009) Phylogenomics of C(4) photosynthesis in sedges (Cyperaceae): multiple appearances and genetic convergence. Mol Biol Evol 26(8):1909–1919

    Article  PubMed  CAS  Google Scholar 

  • Brown KM, Depristo MA, Weinreich DM, Hartl DL (2009) Temporal constraints on the incorporation of regulatory mutants in evolutionary pathways. Mol Biol Evol 26(11):2455–2462

    Article  PubMed  CAS  Google Scholar 

  • Burch CL, Chao L (1999) Evolution by small steps and rugged landscapes in the RNA virus phi6. Genetics 151(3):921–927

    PubMed  CAS  Google Scholar 

  • Burch CL, Chao L (2000) Evolvability of an RNA virus is determined by its mutational neighbourhood. Nat Genetics 406(6796):625–628

    CAS  Google Scholar 

  • Charusanti P, Conrad TM, Knight EM, Venkataraman K, Fong NL, Xie B, Gao Y, Palsson BO (2010) Genetic basis of growth adaptation of Escherichia coli after deletion of pgi, a major metabolic gene. PLoS Genet 6(11):e1001186

    Article  PubMed  Google Scholar 

  • Chevin LM, Martin G, Lenormand T (2010) Fisher’s model and the genomics of adaptation: restricted pleiotropy, heterogeneous mutation, and parallel evolution. Evolution 64(11):3213–3231

    Article  PubMed  Google Scholar 

  • Chou HH, Chiu HC, Delaney NF, Segre D, Marx CJ (2011) Diminishing returns epistasis among beneficial mutations decelerates adaptation. Science 332(6034):1190–1192

    Article  PubMed  CAS  Google Scholar 

  • Conrad TM, Joyce AR, Applebee MK, Barrett CL, Xie B, Gao Y, Palsson BO (2009) Whole-genome resequencing of Escherichia coli K-12 MG1655 undergoing short-term laboratory evolution in lactate minimal media reveals flexible selection of adaptive mutations. Genome Biol 10(10):R118

    Article  PubMed  Google Scholar 

  • Conrad TM, Frazier M, Joyce AR, Cho BK, Knight EM, Lewis NE, Landick R, Palsson BO (2010) RNA polymerase mutants found through adaptive evolution reprogram Escherichia coli for optimal growth in minimal media. Proc Natl Acad Sci USA 107(47):20500–20505

    Article  PubMed  CAS  Google Scholar 

  • Cooper TF, Rozen DE, Lenski RE (2003) Parallel changes in gene expression after 20,000 generations of evolution in Escherichia coli. Proc Natl Acad Sci USA 100(3):1072–1077

    Article  PubMed  CAS  Google Scholar 

  • Costanzo MS, Brown KM, Hartl DL (2011) Fitness trade-offs in the evolution of dihydrofolate reductase and drug resistance in Plasmodium falciparum. PLoS One 6(5):e19636

    Article  PubMed  CAS  Google Scholar 

  • da Silva J, Coetzer M, Nedellec R, Pastore C, Mosier DE (2010) Fitness epistasis and constraints on adaptation in a human immunodeficiency virus type 1 protein region. Genetics 185(1):293–303

    Article  PubMed  Google Scholar 

  • de Visser JAGM, Hoekstra RF, van den Ende H (1997) Test of interaction between genetic markers that affect fitness in Aspergillus niger. Evolution 51:1499–1505

    Article  Google Scholar 

  • de Visser JA, Park SC, Krug J (2009) Exploring the effect of sex on empirical fitness landscapes. Am Nat 174(Suppl 1):S15–S30

    Article  PubMed  Google Scholar 

  • DePristo MA, Hartl DL, Weinreich DM (2007) Mutational reversions during adaptive protein evolution. Mol Biol Evol 24(8):1608–1610

    Article  PubMed  CAS  Google Scholar 

  • Desai MM, Fisher DS (2007) Beneficial mutation selection balance and the effect of linkage on positive selection. Genetics 176(3):1759–1798

    Article  PubMed  Google Scholar 

  • Fisher RA (1930) The genetical theory of natural selection. Oxford University Press, Oxford

    Google Scholar 

  • Fong SS, Joyce AR, Palsson BO (2005) Parallel adaptive evolution cultures of Escherichia coli lead to convergent growth phenotypes with different gene expression states. Genome Res 15(10):1365–1372

    Article  PubMed  CAS  Google Scholar 

  • Freddolino PL, Goodarzi H, Tavazoie S (2012) Fitness landscape transformation through a single amino acid change in the rho terminator. PLoS Genet 8(5):e1002744

    Article  PubMed  CAS  Google Scholar 

  • Gerrish PJ, Lenski RE (1998) The fate of competing beneficial mutations in an asexual population. Genetica 103(1–6):127–144

    Article  Google Scholar 

  • Gerstein AC, Lo DS, Otto SP (2012) Parallel genetic changes and nonparallel gene-environment interactions characterize the evolution of drug resistance in yeast. Genetics 192(1):241–252

    Article  PubMed  CAS  Google Scholar 

  • Gould SJ (1989) Wonderful life: the burgess shale and the nature of history. Norton, New York

    Google Scholar 

  • Gros PA, Tenaillon O (2009) Selection for chaperone-like mediated genetic robustness at low mutation rate: impact of drift, epistasis and complexity. Genetics 182(2):555–564

    Article  PubMed  Google Scholar 

  • Gros PA, Le Nagard H, Tenaillon O (2009) The evolution of epistasis and its links with genetic robustness, complexity and drift in a phenotypic model of adaptation. Genetics 182(1):277–293

    Article  PubMed  CAS  Google Scholar 

  • Haas O, Simpson GG (1946) Analysis of some phylogenetic terms, with attempts at redefinition. Proc Am Philos Soc 90(319–49)

    Google Scholar 

  • Hartl DL, Taubes CH (1996) Compensatory nearly neutral mutations: selection without adaptation. J Theor Biol 182(3):303–309

    Article  PubMed  CAS  Google Scholar 

  • Hartl DL, Taubes CH (1998) Towards a theory of evolutionary adaptation. Genetica 102–103(1–6):525–533

    Article  PubMed  Google Scholar 

  • Herring CD, Raghunathan A, Honisch C, Patel T, Applebee MK, Joyce AR, Albert TJ, Blattner FR, van den Boom D, Cantor CR, Palsson BO (2006) Comparative genome sequencing of Escherichia coli allows observation of bacterial evolution on a laboratory timescale. Nat Genet 38(12):1406–1412

    Article  PubMed  CAS  Google Scholar 

  • Hindre T, Knibbe C, Beslon G, Schneider D (2012) New insights into bacterial adaptation through in vivo and in silico experimental evolution. Nat Rev Microbiol 10(5):352–365

    PubMed  CAS  Google Scholar 

  • Hoekstra HE, Hirschmann RJ, Bundey RA, Insel PA, Crossland JP (2006) A single amino acid mutation contributes to adaptive beach mouse color pattern. Science 313(5783):101–104

    Article  PubMed  CAS  Google Scholar 

  • Kauffman S (1993) The origin of order. Oxford University Press, New York

    Google Scholar 

  • Khan AI, Dinh DM, Schneider D, Lenski RE, Cooper TF (2011) Negative epistasis between beneficial mutations in an evolving bacterial population. Science 332(6034):1193–1196

    Article  PubMed  CAS  Google Scholar 

  • Kogenaru M, de Vos MG, Tans SJ (2009) Revealing evolutionary pathways by fitness landscape reconstruction. Crit Rev Biochem Mol Biol 44(4):169–174

    Article  PubMed  Google Scholar 

  • Kvitek DJ, Sherlock G (2011) Reciprocal sign epistasis between frequently experimentally evolved adaptive mutations causes a rugged fitness landscape. PLoS Genet 7(4):e1002056

    Article  PubMed  CAS  Google Scholar 

  • Le Gac M, Brazas MD, Bertrand M, Tyerman JG, Spencer CC, Hancock RE, Doebeli M (2008) Metabolic changes associated with adaptive diversification in Escherichia coli. Genetics 178(2):1049–1060

    Article  PubMed  Google Scholar 

  • Le Gac M, Plucain J, Hindre T, Lenski RE, Schneider D (2012) Ecological and evolutionary dynamics of coexisting lineages during a long-term experiment with Escherichia coli. Proc Natl Acad Sci USA 109(24):9487–9492

    Article  PubMed  Google Scholar 

  • Le Nagard H, Chao L, Tenaillon O (2011) The emergence of complexity and restricted pleiotropy in adapting networks. BMC Evol Biol. In press 11:326

    Google Scholar 

  • Lee YH, LM DS, Fox GE (1997) Equally parsimonious pathways through an RNA sequence space are not equally likely. J Mol Evol 45(3):278–284

    Article  PubMed  CAS  Google Scholar 

  • Lenski RE, Rose MR, Simpson SC, Tadler SC (1991) Long-term experimental evolution in Escherichia coli. I. Adaptation and divergence during 2,000 generations. Am Nat 138:1315–1341

    Article  Google Scholar 

  • Lewis NE, Hixson KK, Conrad TM, Lerman JA, Charusanti P, Polpitiya AD, Adkins JN, Schramm G, Purvine SO, Lopez-Ferrer D, Weitz KK, Eils R, Konig R, Smith RD, Palsson BO (2010) Omic data from evolved E. coli are consistent with computed optimal growth from genome-scale models. Mol Syst Biol 6:390

    Article  PubMed  Google Scholar 

  • Lobkovsky AE, Koonin EV (2012) Replaying the tape of life: quantification of the predictability of evolution. Front Genet 3:246

    Article  PubMed  Google Scholar 

  • Lobkovsky AE, Wolf YI, Koonin EV (2011) Predictability of evolutionary trajectories in fitness landscapes. PLoS Comput Biol 7(12):e1002302

    Article  PubMed  CAS  Google Scholar 

  • Lourenco J, Galtier N, Glemin S (2011) Complexity, pleiotropy, and the fitness effect of mutations. Evolution 65(6):1559–1571

    Article  PubMed  Google Scholar 

  • Lozovsky ER, Chookajorn T, Brown KM, Imwong M, Shaw PJ, Kamchonwongpaisan S, Neafsey DE, Weinreich DM, Hartl DL (2009) Stepwise acquisition of pyrimethamine resistance in the malaria parasite. Proc Natl Acad Sci USA 106(29):12025–12030

    Article  PubMed  CAS  Google Scholar 

  • Lunzer M, Miller SP, Felsheim R, Dean AM (2005) The biochemical architecture of an ancient adaptive landscape. Science 310(5747):499–501

    Article  PubMed  CAS  Google Scholar 

  • Martin G, Lenormand T (2006a) The fitness effect of mutations across environments: a survey in light of fitness landscape models. Evolution 60(12): 2413–2427

    PubMed  Google Scholar 

  • Martin G, Lenormand T (2006b) A general multivariate extension of Fisher’s geometrical model and the distribution of mutation fitness effects across species. Evolution 60(5):893–907

    PubMed  Google Scholar 

  • Martin G, Lenormand T (2008) The distribution of beneficial and fixed mutation fitness effects close to an optimum. Genetics 179(2):907–916

    Article  PubMed  Google Scholar 

  • Martin G, Elena SF, Lenormand T (2007) Distributions of epistasis in microbes fit predictions from a fitness landscape model. Nat Genet 39(4):555–560

    Article  PubMed  CAS  Google Scholar 

  • O’Maille PE, Malone A, Dellas N, Andes Hess B Jr, Smentek L, Sheehan I, Greenhagen BT, Chappell J, Manning G, Noel JP (2008) Quantitative exploration of the catalytic landscape separating divergent plant sesquiterpene synthases. Nat Chem Biol 4(10):617–623

    Article  PubMed  Google Scholar 

  • Orr HA (1998) The population genetics of adaptation: the distribution of factors fixed during adaptive evolution. Evolution 52(4):935–949

    Article  Google Scholar 

  • Orr HA (2000) Adaptation and the cost of complexity. Evolution 54(1):13–20

    Article  PubMed  CAS  Google Scholar 

  • Orr HA (2005) The genetic theory of adaptation: a brief history. Nat Rev Genet 6(2):119–127

    Article  PubMed  CAS  Google Scholar 

  • Orr H (2006) The distribution of fitness effects among beneficial mutations in Fisher’s geometric model of adaptation. J Theor Biol 238(2):279–285

    Article  PubMed  Google Scholar 

  • Ostrowski EA, Rozen DE, Lenski RE (2005) Pleiotropic effects of beneficial mutations in Escherichia coli. Evolution 59(11):2343–2352

    PubMed  CAS  Google Scholar 

  • Ostrowski EA, Woods RJ, Lenski RE (2008) The genetic basis of parallel and divergent phenotypic responses in evolving populations of Escherichia coli. Proc Biol Sci 275(1632):277–284

    Article  PubMed  CAS  Google Scholar 

  • Pelosi L, Kuhn L, Guetta D, Garin J, Geiselmann J, Lenski RE, Schneider D (2006) Parallel changes in global protein profiles during long-term experimental evolution in Escherichia coli. Genetics 173(4):1851–1869

    Article  PubMed  CAS  Google Scholar 

  • Philippe N, Pelosi L, Lenski RE, Schneider D (2009) Evolution of penicillin-binding protein 2 concentration and cell shape during a long-term experiment with Escherichia coli. J Bacteriol 191(3):909–921

    Article  PubMed  CAS  Google Scholar 

  • Poelwijk FJ, Kiviet DJ, Weinreich DM, Tans SJ (2007) Empirical fitness landscapes reveal accessible evolutionary paths. Nat Genetics 445(7126):383–386

    CAS  Google Scholar 

  • Poelwijk FJ, Tanase-Nicola S, Kiviet DJ, Tans SJ (2011) Reciprocal sign epistasis is a necessary condition for multi-peaked fitness landscapes. J Theor Biol 272(1):141–144

    Article  PubMed  Google Scholar 

  • Poon A, Otto SP (2000) Compensating for our load of mutations: freezing the meltdown of small populations. Evolution 54(5):1467–1479

    PubMed  CAS  Google Scholar 

  • Rainey PB, Travisano M (1998) Adaptive radiation in a heterogeneous environment. Nat Genetics 394(6688):69–72

    CAS  Google Scholar 

  • Reynolds MG (2000) Compensatory evolution in rifampin-resistant Escherichia coli. Genetics 156(4):1471–1481

    PubMed  CAS  Google Scholar 

  • Ritland K, Newton C, Marshall HD (2001) Inheritance and population structure of the white-phased “Kermode” black bear. Curr Biol 11(18):1468–1472

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez-Verdugo A, Gaut BS, Tenaillon O (2013) Evolution of Escherichia coli rifampicin resistance in an antibiotic-free environment during thermal stress. BMC Evol Biol 13:50

    Article  PubMed  CAS  Google Scholar 

  • Rose MR, Passananti HB, Chippindale AK, Phelan JP, Matos M, Teotonio H, Mueller LD (2005) The effects of evolution are local: evidence from experimental evolution in Drosophila. Integr Comp Biol 45(3):486–491

    Article  PubMed  CAS  Google Scholar 

  • Salverda ML, Dellus E, Gorter FA, Debets AJ, van der Oost J, Hoekstra RF, Tawfik DS, de Visser JA (2011) Initial mutations direct alternative pathways of protein evolution. PLoS Genet 7(3):e1001321

    Article  PubMed  CAS  Google Scholar 

  • Silander OK, Tenaillon O, Chao L (2007) Understanding the evolutionary fate of finite populations: the dynamics of mutational effects. PLoS Biol 5(4):e94

    Article  PubMed  Google Scholar 

  • Sousa A, Magalhaes S, Gordo I (2012) Cost of antibiotic resistance and the geometry of adaptation. Mol Biol Evol 29(5):1417–1428

    Article  PubMed  CAS  Google Scholar 

  • Steiner CC, Weber JN, Hoekstra HE (2007) Adaptive variation in beach mice produced by two interacting pigmentation genes. PLoS Biol 5(9):e219

    Article  PubMed  Google Scholar 

  • Tan L, Serene S, Chao HX, Gore J (2011) Hidden randomness between fitness landscapes limits reverse evolution. Phys Rev Lett 106(19):198102

    Article  PubMed  Google Scholar 

  • Tenaillon O, Silander OK, Uzan JP, Chao L (2007) Quantifying organismal complexity using a population genetic approach. PLoS One 2:e217

    Article  PubMed  Google Scholar 

  • Tenaillon O, Rodriguez-Verdugo A, Gaut RL, McDonald P, Bennett AF, Long AD, Gaut BS (2012) The molecular diversity of adaptive convergence. Science 335(6067):457–461

    Article  PubMed  CAS  Google Scholar 

  • Toprak E, Veres A, Michel JB, Chait R, Hartl DL, Kishony R (2012) Evolutionary paths to antibiotic resistance under dynamically sustained drug selection. Nat Genet 44(1):101–105

    Article  CAS  Google Scholar 

  • Trindade S, Sousa A, Gordo I (2012) Antibiotic resistance and stress in the light of Fisher’s model. Evolution 66(12):3815–3824

    Article  PubMed  Google Scholar 

  • Tyerman JG, Bertrand M, Spencer CC, Doebeli M (2008) Experimental demonstration of ecological character displacement. BMC Evol Biol 8:34

    Article  PubMed  Google Scholar 

  • Wagner GP (2010) The measurement theory of fitness. Evolution 64(5):1358–1376

    PubMed  Google Scholar 

  • Wagner GP, Zhang J (2011) The pleiotropic structure of the genotype-phenotype map: the evolvability of complex organisms. Nat Rev Genet 12(3):204–213

    Article  PubMed  CAS  Google Scholar 

  • Wang Z, Liao BY, Zhang J (2010) Genomic patterns of pleiotropy and the evolution of complexity. Proc Natl Acad Sci USA 107(42):18034–18039

    Article  PubMed  CAS  Google Scholar 

  • Waxman D, Welch JJ (2005) Fisher’s microscope and Haldane’s ellipse. Am Nat 166(4):447–457

    Article  PubMed  CAS  Google Scholar 

  • Weinreich DM (2005) The rank ordering of genotypic fitness values predicts genetic constraint on natural selection on landscapes lacking sign epistasis. Genetics 171(3):1397–1405

    Article  PubMed  CAS  Google Scholar 

  • Weinreich DM, Delaney NF, Depristo MA, Hartl DL (2006) Darwinian evolution can follow only very few mutational paths to fitter proteins. Science 312(5770):111–114

    Article  PubMed  CAS  Google Scholar 

  • Welch JJ, Waxman D (2003) Modularity and the cost of complexity. Evolution 57(8):1723–1734

    PubMed  Google Scholar 

  • Wichman HA, Badgett MR, Scott LA, Boulianne CM, Bull JJ (1999) Different trajectories of parallel evolution during viral adaptation. Science 285(5426):422–424

    Article  PubMed  CAS  Google Scholar 

  • Woods R, Schneider D, Winkworth CL, Riley MA, Lenski RE (2006) Tests of parallel molecular evolution in a long-term experiment with Escherichia coli. Proc Natl Acad Sci USA 103(24):9107–9112

    Article  PubMed  CAS  Google Scholar 

  • Wright S (1932) The roles of mutation, inbreeding, cross breeding and selection in evolution. In: Proceeding of the sixth international congress of genetics. Ithaca, New York pp 356–366

    Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the Agence Nationale de la Recherche (Grant ANR-12-JSV7-0007-01 to G.A., Grant ANR-08-GENM-023-001 to O.T.) and NSF grant DEB-0748903 to BS.G and A.RV.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olivier Tenaillon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Achaz, G., Rodriguez-Verdugo, A., Gaut, B.S., Tenaillon, O. (2014). The Reproducibility of Adaptation in the Light of Experimental Evolution with Whole Genome Sequencing. In: Landry, C., Aubin-Horth, N. (eds) Ecological Genomics. Advances in Experimental Medicine and Biology, vol 781. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7347-9_11

Download citation

Publish with us

Policies and ethics