Skip to main content

Plant Phenological “Fingerprints”

  • Chapter
  • First Online:

Abstract

Given the sensitivity of plant phenology to small changes in temperature and the fact that this relationship is universally understood by politicians and the general public it has been widely used in recent years as an indicator of anthropogenically driven climate warming. The timing of plant life-cycle events particularly in spring, in a range of different environments and locations across the world has clearly demonstrated an advance attributable to global warming. Here, a review of trends in direct observations of the response of plant phenology to warming is presented together with a comparison with other methods of landscape level phenological observations such as remote sensing. In addition, the need for meaningful correlations between satellite data and in situ phenological observations is highlighted.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abu-Asab MS, Peterson PM, Shelter SG, Orli SS (2001) Earlier plant flowering in spring as a response to global warming in the Washington, DC, area. Biodivers Conserv 10:597–612

    Article  Google Scholar 

  • Ahas R (1999) Long-term phyto-, ornitho- and ichthyophenological time-series analyses in Estonia. Int J Biometeorol 42:119–123

    Article  Google Scholar 

  • Ahas R, Aasa A (2006) The effects of climate change on the phenology of selected Estonian plant, bird and fish populations. Int J Biometeorol 51:17–26

    Article  PubMed  Google Scholar 

  • Ahas R, Aasa A, Menzel A, Fedotova VG, Scheifinger H (2002) Changes in European spring phenology. Int J Climatol 22:1727–1738

    Article  Google Scholar 

  • Barbraud C, Weimerskirch H (2006) Antarctic birds breed later in response to climate change. Proc Natl Acad Sci U S A 103:6248–6251

    Article  PubMed  CAS  Google Scholar 

  • Beaubien EG, Freeland HJ (2000) Spring phenology trends in Alberta, Canada: links to ocean temperature. Int J Biometeorol 44:53–59

    Article  PubMed  CAS  Google Scholar 

  • Beaumont LJ, McAllan IAW, Hughes LA (2006) Matter of timing: changes in the first date of arrival and last date of departure of Australian migratory birds. Glob Change Biol 12:1339–1354

    Article  Google Scholar 

  • Bradley NL, Leopold AC, Ross J, Huffaker W (1999) Phenological changes reflect climate change in Wisconsin. Proc Natl Acad Sci U S A 96:9701–9704

    Article  PubMed  CAS  Google Scholar 

  • Cayan DR, Kammerdiener SA, Dettinger MD, Caprio JM, Peterson DH (2001) Changes in the onset of spring in the western United States. Bull Am Meteorol Soc 82:399–415

    Article  Google Scholar 

  • Chmielewski FM, Rötzer T (2001) Response of tree phenology to climate changes across Europe. Agric For Meteorol 108:101–112

    Article  Google Scholar 

  • Chmielewski FM, Rötzer T (2002) Annual and spatial variability of the beginning of growing season in Europe in relation to air temperature changes. Clim Res 19:257–264

    Article  Google Scholar 

  • Chmielewski FM, Müller A, Bruns E (2004) Climate changes and trends in phenology of fruit trees and field crops in Germany, 1961–2000. Agric For Meteorol 121:69–78

    Article  Google Scholar 

  • Cleland EE et al (2006) Diverse responses of phenology to global changes in a grassland ecosystem. Proc Natl Acad Sci U S A 103:13740–13744

    Article  PubMed  CAS  Google Scholar 

  • Cleland EE, Chuine I, Menzel A, Mooney HA, Schwartz MD (2007) Shifting plant phenology in response to global change. Trends Ecol Evol 22:357–365

    Article  PubMed  Google Scholar 

  • Clot B (2003) Trends in airborne pollen: An overview of 21 years of data in Neuchatel (Switzerland). Aerobiologia 19:227–234

    Article  Google Scholar 

  • Cook BI, Wolkovich EM, Parmesan C (2012) Divergent responses to spring and winter warming drive community level flowering trends. Proc Natl Acad Sci U S A 109(23):9000–9005

    Article  PubMed  CAS  Google Scholar 

  • Defila C, Clot B (2001) Phytophenological trends in Switzerland. Int J Biometeorol 45:203–207

    Article  PubMed  CAS  Google Scholar 

  • Delpierre N et al (2009) Modelling interannual and spatial variability of leaf senescence for three deciduous tree species in France. Agric For Meteorol 149:938–948

    Article  Google Scholar 

  • Doi H (2007) Winter flowering phenology of Japanese apricot Prunus mume reflects climate change across Japan. Clim Res 34:99–104

    Article  Google Scholar 

  • Donnelly A, Caffarra A, O’Neill BF (2011) A review of climate-driven mismatches between inter-dependent phenophases in terrestrial, aquatic and agricultural ecosystems. Int J Biometeorol 55(6):805–817

    Article  PubMed  Google Scholar 

  • Dose V, Menzel A (2004) Bayesian analysis of climate change impacts in phenology. Glob Change Biol 10:259–272

    Article  Google Scholar 

  • Dunn PO, Winkler DW (1999) Climate change has affected the breeding date of tree swallows throughout North America. Proc R Soc Lond B 266:2487–2490

    Article  Google Scholar 

  • Edwards M, Richardson AJ (2004) Impact of climate change on marine pelagic phenology and trophic mismatch. Nature 430:881–884

    Article  PubMed  CAS  Google Scholar 

  • Estrella N, Sparks TH, Menzel A (2007) Trends and temperature response in the phenology of crops in Germany. Glob Change Biol 13:1737–1747

    Article  Google Scholar 

  • Feng S, Hu Q (2004) Changes in agro-meteorological indicators in the contiguous United States: 1951–2000. Theor Appl Climatol 78:247–264

    Article  Google Scholar 

  • Fitter AH, Fitter RSR (2002) Rapid changes in flowering time in British plants. Science 296:1689–1691

    Article  PubMed  CAS  Google Scholar 

  • Gange AC, Gange EG, Sparks TH, Boddy L (2007) Rapid and recent changes in fungal fruiting patterns. Science 316:71

    Article  PubMed  CAS  Google Scholar 

  • Gibbs JP, Breisch AR (2001) Climate warming and calling phenology of frogs near Ithaca, New York, 1900–1999. Conserv Biol 15:1175–1178

    Article  Google Scholar 

  • Gordo O, Sanz JJ (2006) Temporal trends in phenology of the honey bee Apis mellifera (L.) and the small white Pieris rapae (L.) in the Iberian Peninsula (1952–2004). Ecol Ent 31:261–268

    Article  Google Scholar 

  • Hughes L (2000) Biological consequences of global warming: is the signal already apparent? Trends Ecol Evol 15:56–61

    Article  PubMed  Google Scholar 

  • Inouye DW et al (2000) Climate change is affecting altitudinal migrants and hibernating species. Proc Natl Acad Sci U S A 97:1630–1633

    Article  PubMed  CAS  Google Scholar 

  • IPCC (2007) Summary for Policymakers. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. Contribution of Working Group I to the fourth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge/New York

    Google Scholar 

  • Jeong SJ, Ho GCH, Gim HJ, Brown ME (2011) Phenology shifts at start vs. end of growing season in temperate vegetation over the northern Hemisphere for the period 1982–2008. Glob Change Biol 17(7):2385–2399

    Article  Google Scholar 

  • Jochner S, Sparks TH, Estrella N, Menzel A (2011) The influence of altitude and urbanisation on trends and mean dates in phenology (1980–2009). Int J Biometeorol 56:387–394

    Article  PubMed  Google Scholar 

  • Jones GV, Davis RE (2000) Climate influences on grapevine phenology, grape composition, and wine production and quality for Bordeaux, France. Am J Enol Vitic 51:249–261

    Google Scholar 

  • Karlsen SR et al (2009) Growing-season trends in Fennoscandia 1982–2006, determined from satellite and phenology data. Clim Res 39:275–286

    Article  Google Scholar 

  • Kauserud H et al (2008) Mushroom fruiting and climate change. Proc Natl Acad Sci USA 105:3811–3814

    Article  PubMed  CAS  Google Scholar 

  • Keeling CD, Chin FJS, Whorf TP (1996) Increased activity of northern vegetation inferred from atmospheric CO2 measurements. Nature 382:146–149

    Article  CAS  Google Scholar 

  • Kozlov M, Berlina N (2002) Decline in the length of the summer season on the Kola peninsula, Russia. Clim Change 54:387–398

    Article  CAS  Google Scholar 

  • Lehikoinen E, Sparks TH (2010) Changes in migration. In: Møller AP, Fiedler W, Berthold P (eds) Effects of climate change on birds. Oxford University Press, Oxford

    Google Scholar 

  • Linderholm HW (2006) Growing season changes in the last century. Agric For Meteorol 137:1–14

    Article  Google Scholar 

  • Magnuson JJ, Robertson DM, Benson BJ, Wynne RH, Livingstone DM, Arai T, Assel RA, Barry RG, Card V, Kuusisto E, Granin NG, Prowse TD, Stewart KM, Vuglinski VS (2000) Historical trends in lake and river ice cover in the northern hemisphere. Science 289:1743–1746

    Article  PubMed  CAS  Google Scholar 

  • Matsumoto K, Ohta T, Irasawa M, Nakamura T (2003) Climate change and extension of the Ginkgo biloba L. growing season in Japan. Glob Change Biol 9:1634–1642

    Article  Google Scholar 

  • Menzel A (2000) Trends in phenological phases in Europe between 1951 and 1996. Int J Biometeorol 44:76–81

    Article  PubMed  CAS  Google Scholar 

  • Menzel A (2002) Phenology: its importance to the global change community. Clim Change 54:379–385

    Article  Google Scholar 

  • Menzel A (2003) Plant phenological anomalies in Germany and their relation to air temperature and NAO. Clim Change 57:243–263

    Article  Google Scholar 

  • Menzel A, Estrella N (2001) Plant phenological changes. In: Walther GR, Burga CA, Edwards PJ (eds) “Fingerprints” of climate change – adapted behaviour and shifting species ranges. Kluwer Academic/Plenum Publishers, New York

    Google Scholar 

  • Menzel A, Fabian P (1999) Growing season extended in Europe. Nature 397:659

    Article  CAS  Google Scholar 

  • Menzel A, Estrella N, Fabian P (2001) Spatial and temporal variability of the phenological seasons in Germany from 1951–1996. Glob Change Biol 7:657–666

    Article  Google Scholar 

  • Menzel A, Jakobi G, Ahas R, Scheifinger H, Estrella N (2003) Variations of the climatological growing season (1951–2000) in Germany compared to other countries. Int J Climatol 23:793–812

    Article  Google Scholar 

  • Menzel A, Sparks T, Estrella N, Koch E et al (2006) European phenological response to climate change matches the warming pattern. Glob Change Biol 12:1969–1976

    Article  Google Scholar 

  • Miller-Rushing AJ, Inouye DW, Primack RB (2008) How well do first flowering dates measure plant responses to climate change? The effect of population size and sampling frequency. J Ecol 96:1289–1296

    Article  Google Scholar 

  • Morin X et al (2010) Changes in leaf phenology of three European oak species in response to experimental climate change. New Phytol 186:900–910

    Article  PubMed  Google Scholar 

  • Myneni RB, Keeling CD, Tucker CJ, Asrar G, Nemani RR (1997) Increased plant growth in the northern high latitudes from 1981 to 1991. Nature 386:698–702

    Article  CAS  Google Scholar 

  • Ottersen G, Planque B, Belgrano A, Post E, Reid PC, Stenseth NC (2001) Ecological effects of the North Atlantic Oscillation. Oecologia 128:1–14

    Article  Google Scholar 

  • Parmesan C (2006) Ecological and evolutionary responses to recent climate change. Ann Rev Ecol Evol Syst 37:637–669

    Article  Google Scholar 

  • Parmesan C, Yohe G (2003) A globally coherent fingerprint of climate change impacts across natural systems. Nature 421:37–42

    Article  PubMed  CAS  Google Scholar 

  • Parry ML, Canziani OF, Palutikof JP, and Co-authors (2007) Technical summary. Climate change 2007: impacts, adaptation and vulnerability. In: Parry ML, Canziani OF, Palutikof JP, van der Linden PJ, Hanson CE (eds) Contribution of Working Group II to the fourth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge

    Google Scholar 

  • Peñuelas J, Filella I, Comas P (2002) Changed plant and animal life cycles from 1952 to 2000 in the Mediterranean region. Glob Change Biol 8:531–544

    Article  Google Scholar 

  • Post E, Stenseth NC (1999) Climatic variability, plant phenology, and northern ungulates. Ecology 80:1322–1339

    Article  Google Scholar 

  • Primack RB et al (2009) Spatial and interspecific variability in phenological responses to warming temperatures. Biol Conserv 142:2569–2577

    Article  Google Scholar 

  • Rapp J (2002) Konzeption, Problematik and Ergebnisse klimatologischer Trendanalysen für Europa und Deutschland. Berichte des Deutschen Wetterdienstes

    Google Scholar 

  • Rapp J, Schönwiese CD (1994) “Thermische Jahreszeiten” als anschauliche Charakteristik klimatischer Trends. Meteorol Z 3:91–94

    Google Scholar 

  • Reed BC, Schwartz MD (2009) Remote sensing phenology: status and the way forward. In: Noortmets A (ed) Phenology of ecosystem processes, applications in global change research. Springer, Dordrecht

    Google Scholar 

  • Robeson SM (2002) Increasing growing-season length in Illinois during the 20th century. Clim Change 52:219–238

    Article  Google Scholar 

  • Root TL, Price JT, Hall KR, Schneider SH, Rosenzweig C, Pounds A (2003) Fingerprints of global warming on wild animals and plants. Nature 421:57–60

    Article  PubMed  CAS  Google Scholar 

  • Rosenzweig C, Casassa G, Karoly DJ, Imeson A, Liu C, Menzel A, Rawlins S, Root TL, Seguin B, Tryjanowski P (2007) Assessment of observed changes and responses in natural and managed systems. In: Parry ML, Canziani OF, Palutikof JP, van der Linden PJ, Hanson CE (eds) Climate change 2007: impacts, adaptation and vulnerability. Contribution of Working Group II to the fourth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge

    Google Scholar 

  • Rosenzweig C, Karoly D, Vicarelli M, Neofotis P, Wu Q, Casassa G, Menzel A, Root TL, Estrella N, Seguin B, Tryjanowski P, Liu C, Rawlins S, Imeson A (2008) Attributing physical and biological impacts to anthropogenic climate change. Nature 453:353–357

    Article  PubMed  CAS  Google Scholar 

  • Rötzer T, Wittenzeller M, Haeckel H, Nekovar J (2000) Phenology in central Europe – differences and trends of spring phenophases in urban and rural areas. Int J Biometeorol 44:60–66

    Article  Google Scholar 

  • Roy DB, Sparks TH (2000) Phenology of British butterflies and climate change. Glob Change Biol 6:407–416

    Article  Google Scholar 

  • Sagarin R, Micheli F (2001) Climate change in nontraditional data sets. Science 294:811

    Article  PubMed  CAS  Google Scholar 

  • Scheifinger H, Menzel A, Koch E, Peter C, Ahas R (2002) Atmospheric mechanisms governing the spatial and temporal variability of phenological observations in central Europe. Int J Climatol 22:1739–1755

    Article  Google Scholar 

  • Scheifinger H, Menzel A, Koch E, Peter C (2003) Trends of springtime frost events and phenological dates in central Europe. Theor Appl Climatol 74:41–51

    Article  Google Scholar 

  • Schleip C et al (2008) Time series modeling and central European temperature impact assessment of phenological records over the last 250 years. J Geophys Res 113:G04026

    Article  Google Scholar 

  • Schwartz MD, Chen X (2002) Examining the onset of spring in China. Clim Res 21:157–164

    Article  Google Scholar 

  • Schwartz MD, Reiter BE (2000) Changes in North American spring. Int J Climatol 20(8):929–932

    Article  Google Scholar 

  • Schwartz MD, Ahas R, Aasa A (2006) Onset of spring starting earlier across the northern hemisphere. Glob Change Biol 12:343–351

    Article  Google Scholar 

  • Sherry RA et al (2007) Divergence of reproductive phenology under climate warming. Proc Natl Acad Sci U S A 104:198–202

    Article  PubMed  CAS  Google Scholar 

  • Sparks TH, Carey PD (1995) The responses of species to climate over two centuries: an analysis of the Marsham phenological record. J Ecol 83:321–329

    Article  Google Scholar 

  • Sparks TH, Menzel A (2002) Observed changes in seasons: an overview. Int J Climatol 22:1715–1725

    Article  Google Scholar 

  • Sparks TH, Smithers RJ (2002) Is spring getting earlier? Weather 57:157–166

    Article  Google Scholar 

  • Sparks TH, Jeffree EP, Jeffree CE (2000) An examination of the relationship between flowering times and temperature at the national scale using long-term phenological records from the UK. Int J Biometeorol 44:82–87

    Article  PubMed  CAS  Google Scholar 

  • Studer S, Appenzeller C, Defila C (2005) Inter-annual variability and decadal trends in alpine spring phenology: a multivariate analysis approach. Clim Change 73:395–414

    Article  Google Scholar 

  • Thackeray SJ et al (2010) Trophic level asynchrony in rates of phenological change for marine, freshwater and terrestrial environments. Glob Change Biol 16:3304–3313

    Article  Google Scholar 

  • Tryjanowski P, Rybacki M, Sparks TH (2003) Changes in the first spawning dates of common frogs and common toads in western Poland in 1978–2002. Ann Zool Fenn 40:459–464

    Google Scholar 

  • Tucker CJ, Slayback DA, Pinzon JE, Los SO, Myneni RB, Taylor MG (2001) Higher northern latitude normalized difference vegetation index and growing season trends from 1982–1999. Int J Biometeorol 45:184–190

    Article  PubMed  CAS  Google Scholar 

  • Walther GR, Post E, Convey P, Menzel A, Parmesan C, Beebee TJC, Frometin JM, Hoegh-Guldberg O, Bairlein F (2002) Ecological responses to recent climate change. Nature 416:389–395

    Article  PubMed  CAS  Google Scholar 

  • White MA, de Beurs KM, Didan K et al (2009) Intercomparison, interpretation, and assessment of spring phenology in North America estimated from remote sensing for 1982–2006. Glob Change Biol 15(10):2335–2359

    Article  Google Scholar 

  • Wolkovich EM, Cook BI, Allen JM et al (2012) Warming experiments underpredict plant phenological responses to climate change. Nature 485:494–497

    PubMed  CAS  Google Scholar 

  • Zhou L, Tucker CJ, Kaufmann RK, Slayback D, Shabanov NV, Myneni RB (2001) Variations in northern vegetations activity inferred from satellite data of vegetation index during 1981 to 1999. J Geophys Res 106(D17):20,069–20,083

    Google Scholar 

  • Ziello C et al (2009) Influence of altitude on phenology of selected plant species in the Alpine region (1971–2000). Clim Res 39:227–234

    Article  Google Scholar 

  • Ziello C, Böck A, Estrella N, Ankerst D, Menzel A (2012) First flowering of wind- pollinated species with greatest phenological advances in Europe. Ecography 35(11):1017–1023. doi:10.1111/j.1600-0587.2012.07607.x

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Annette Menzel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Menzel, A. (2013). Plant Phenological “Fingerprints”. In: Schwartz, M. (eds) Phenology: An Integrative Environmental Science. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6925-0_18

Download citation

Publish with us

Policies and ethics