Skip to main content

Biogeochemistry of Trace Elements: Reactions in Soils

  • Chapter
  • First Online:
Salinity and Drainage in San Joaquin Valley, California

Part of the book series: Global Issues in Water Policy ((GLOB,volume 5))

  • 1312 Accesses

Abstract

The trace element of greatest concern in the San Joaquin Valley is Se, although As, B, Mo, V, and U have been found at elevated concentrations in the soils, groundwater, and parent materials. Biogeochemical reactions involving dissolution, precipitation, adsorption, organic complexation, oxidation, and reduction affect the relative mobility and toxicity of these elements. Generally, Se, B, Mo, and V are solubilized under aerobic conditions during irrigation of upland soils. Reduction reactions and organic matter production in flooded soils results in the accumulation of Se, Mo, V, and U in these soils. Boron and As remain soluble under reducing conditions. Changing management to increase aerobic conditions in formerly flooded soils and pond sediments increases Se availability to biota.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abrams, M. M., & Burau, R. G. (1989). Fractionation of selenium and detection of selenomethionine in a soil extract. Communications in Soil Science and Plant Analysis, 20, 221–237.

    Article  CAS  Google Scholar 

  • Amrhein, C., Brown, P. A., & Brown, A. D. (1993). The effects of redox on Mo, U, B, V, and As solubility in evaporation pond soils. Soil Science, 155, 249–255.

    Article  CAS  Google Scholar 

  • Bañuelos, G. S., Lin, Z. Q., Arroyo, I., & Terry, N. (2005). Selenium volatilization in vegetated agricultural drainage sediment from the San Luis Drain, Central California. Chemosphere, 60(9), 1203–1213.

    Article  Google Scholar 

  • Bradford, G. R., Bakhtar, D., & Westcot, D. (1990). Uranium, vanadium, and molybdenum in saline waters. Journal of Environmental Quality, 19, 105–108.

    Article  CAS  Google Scholar 

  • Cary, E. E., & Allaway, W. H. (1969). The stability of different forms of selenium applied to low-selenium soils. Soil Science Society of America Proceedings, 33, 571–574.

    Article  CAS  Google Scholar 

  • Chasteen, T. G. (1998). Volatile chemical species of selenium. In W. T. Frankenberger Jr. & R. A. Engelberg (Eds.), Environmental chemistry of selenium (pp. 589–612). New York: Marcel Dekker.

    Google Scholar 

  • Chilcott, J. E., Westcot, D., Toto, A. L., & Enos, C. A. (1990, December). Water quality in evaporation basins used for the disposal of agricultural subsurface drainage water in the San Joaquin Valley, California (Report). Sacramento: Central Valley Regional Water Quality Control Board.

    Google Scholar 

  • Doner, H. E., & Zavarin, M. (1997). The role of soil carbonates in trace and minor element chemistry. In K. Auerswald, H. Stanjek, & J. M. Bigham (Eds.), Soils and environment (Vol. 30, pp. 407–422). Reiskirchen: Catena Verlag GMBH.

    Google Scholar 

  • Duff, M. C., & Amrhein, C. (1996). Uranium(VI) adsorption on goethite and soil in carbonate solutions. Soil Science Society of America Journal, 60, 1393–1400.

    Article  CAS  Google Scholar 

  • Duff, M. C., Amrhein, C., Bertsch, P. M., & Hunter, D. B. (1997a). The chemistry of uranium in evaporation pond sediment in the San Joaquin Valley, California, USA, using X-ray fluorescence and XANES techniques. Geochimica et Cosmochimica Acta, 61(1), 73–81.

    Article  CAS  Google Scholar 

  • Duff, M. C., Amrhein, C., & Bradford, G. (1997b). Nature of uranium contamination in the agricultural drainage water evaporation ponds of the San Joaquin Valley, California, USA. Canadian Journal of Soil Science, 77, 459–467.

    Article  CAS  Google Scholar 

  • Duff, M. C., Hunter, D. B., Bertsch, P. M., & Amrhein, C. (1999). Factors influencing uranium reduction and solubility in evaporation pond sediments. Biogeochemistry, 45, 95–114.

    CAS  Google Scholar 

  • Engberg, R. A., Westcot, D. W., Delamore, M., & Holz, D. D. (1998). Federal and state perspectives on regulation and remediation of irrigation-induced selenium problems. In W. T. Frankenberger Jr. & R. A. Engelberg (Eds.), Environmental chemistry of selenium (pp. 1–25). New York: Marcel Dekker.

    Google Scholar 

  • Fox, P. M. (2000). Molybdenum in a constructed wetland: Distribution, solubility and accumulation in soil (151pp.). Ph.D. dissertation, University of California, Berkeley.

    Google Scholar 

  • Fox, P. M., & Doner, H. E. (2002a). Arsenic and molybdenum distributions in saline wetland soil: A comparative study. In 17th world congress of soil science (Paper 988, pp. 1–10), Bangkok.

    Google Scholar 

  • Fox, P. M., & Doner, H. E. (2002b). Retention and release of trace elements on soil, goethite-coated sand, and calcite in a constructed wetland. Journal of Environmental Quality, 31, 331–338.

    Article  CAS  Google Scholar 

  • Fox, P. M., & Doner, H. E. (2003). Accumulation, release, and solubility of arsenic, molybdenum, and vanadium in wetland sediments. Journal of Environmental Quality, 32(6), 2428–2435.

    Article  CAS  Google Scholar 

  • Frankenberger, W. T., Jr., & Arshad, M. (2002). Volatilization of arsenic. In W. T. Frankenberger Jr. & R. A. Engelberg (Eds.), Environmental chemistry of selenium (pp. 363–380). New York: Marcel Dekker.

    Google Scholar 

  • Gao, S., Fujii, R., Chalmers, A. T., & Tanji, K. K. (2004). Evaluation of adsorbed arsenic and potential contribution to shallow groundwater in Tulare Lake bed area, Tulare Basin, California. Soil Science Society of America Journal, 68(1), 89–95.

    CAS  Google Scholar 

  • Gao, S., Goldberg, S., Herbel, M. J., Chalmers, A. T., & Tanji, K. K. (2006). Sorption processes affecting arsenic solubility in oxidized surface sediments from Tulare Lake bed, California. Chemical Geology, 228(1–3), 33–43.

    Article  CAS  Google Scholar 

  • Geering, H. R., Cary, E. E., Jones, L. H. P., & Allaway, W. H. (1968). Solubility and redox criteria for the possible forms of selenium in soils. Soil Science Society of America Proceedings, 32, 35–40.

    Article  CAS  Google Scholar 

  • Glasauer, S., Doner, H. E., & Gehring, A. U. (1995). Adsorption of selenite to goethite in a flow-through reaction chamber. European Journal of Soil Science, 46, 47–52.

    Article  CAS  Google Scholar 

  • Goldberg, S., & Glaubig, R. A. (1988). Anion sorption on a calcareous, montmorillonitic soil – selenium. Soil Science Society of America Journal, 52, 954–958.

    Article  CAS  Google Scholar 

  • Goldberg, S., Lesch, S. M., & Suarez, D. L. (2000). Predicting boron adsorption by soils using soil chemical parameters in the constant capacitance model. Soil Science Society of America Journal, 64(4), 1356–1363.

    Article  CAS  Google Scholar 

  • Goldberg, S., Lesch, S. M., & Saurez, D. L. (2002). Predicting molybdenum adsorption by soils using soil chemical parameters in the constant capacitance model. Soil Science Society of America Journal, 66(6), 1836–1842.

    Article  CAS  Google Scholar 

  • Goldberg, S., Corwin, D. L., Shouse, P. J., & Suarez, D. L. (2005a). Prediction of boron adsorption by field samples of diverse textures. Soil Science Society of America Journal, 69(5), 1379–1388.

    Article  CAS  Google Scholar 

  • Goldberg, S., Lesch, S. M., Suarez, D. L., & Basta, N. T. (2005b). Predicting arsenate adsorption by soils using soil chemical parameters in the constant capacitance model. Soil Science Society of America Journal, 69(5), 1389–1398.

    Article  CAS  Google Scholar 

  • Hingston, F. J., Posner, A. M., & Quirk, J. P. (1971). Competitive adsorption of negatively charged ligands on oxide surfaces. In Discussions of the faraday society. London: The Faraday Society.

    Google Scholar 

  • Hingston, H. J., Posner, A. M., & Quick, J. P. (1972). Anion adsorption by goethite and gibbsite. I. The role of protons in determining adsorption envelopes. Journal of Soil Science, 23, 177–191.

    Article  CAS  Google Scholar 

  • Hingston, F. J., Posner, A. M., & Quick, J. P. (1974). Anion adsorption by goethite and gibbsite: II. Desorption of anions from hydrous oxide surfaces. Journal of Soil Science, 25, 16–26.

    Article  CAS  Google Scholar 

  • Jones, K. C., Lepp, N. W., & Obbard, J. P. (1990). Other metals and metalloids. In B. J. Alloway (Ed.), Heavy metals in soils (pp. 280–321). New York: Wiley.

    Google Scholar 

  • Karlson, U., & Frankenberger, W. T., Jr. (1989). Accelerated rates of selenium volatilization from California soils. Soil Science Society of America Journal, 53(3), 749–753.

    Article  CAS  Google Scholar 

  • Lakin, H. W., & Byers, G. G. (1941). Selenium occurrence in certain soils in the United States, with a discussion of related topics: Sixth report (pp. 1–25). Washington, DC: United States Department of Agriculture,

    Google Scholar 

  • Lemly, A. D. (1993). Guidelines for evaluating selenium data from aquatic monitoring and assessment studies. Environmental Monitoring and Assessment, 28(1), 83–100.

    Article  CAS  Google Scholar 

  • Levy, D. B., Amrhein, C., & Anderson, M. A. (1994). Wetlands and aquatic processes: Mineral precipitation and trace oxyanion behavior during evaporation of saline waters. Journal of Environmental Quality, 23, 944–954.

    Article  CAS  Google Scholar 

  • Lipton, D. S. (1991). Associations of selenium in inorganic and organic constituents of soils from a semi-arid region. Ph.D. dissertation, University of California, Berkeley.

    Google Scholar 

  • Losi, M. E., & Frankenberger, W. T., Jr. (1998). Reduction of selenium oxyanions by Enterobacter cloacae Strain 1a1. In W. T. Frankenberger Jr. & R. A. Engelberg (Eds.), Environmental chemistry of selenium (pp. 515–544). New York: Marcel Dekker.

    Google Scholar 

  • Maas, E. V. (1990). Crop salt tolerance. In K. K. Tanji (Ed.), Agricultural salinity assessment and management (American Society of Civil Engineers Manuals and Reports of Engineering Practice, No. 71, pp. 262–304). Ralston: ASCE.

    Google Scholar 

  • Macara, I. G. (1980). Vanadium – An element in search of a role. Trends in Biochemical Sciences, 5(4), 92–94.

    Article  CAS  Google Scholar 

  • Manning, B. A., & Goldberg, S. (1996a). Modeling arsenate competitive adsorption on kaolinite, montmorillonite and illite. Clays and Clay Minerals, 44(5), 609–623.

    Article  CAS  Google Scholar 

  • Manning, B. A., & Goldberg, S. (1996b). Modeling competitive adsorption of arsenate with phosphate and molybdate on oxide minerals. Soil Science Society of America Journal, 60(1), 121–131.

    Article  CAS  Google Scholar 

  • Martens, D. A., & Suarez, D. L. (1997). Selenium speciation of soil/sediment determined with sequential extractions and hydride generation atomic absorption spectrophotometry. Environmental Science and Technology, 31(1), 133–139.

    Article  CAS  Google Scholar 

  • Neal, R. H., & Sposito, G. (1989). Selenate adsorption on alluvial soils. Soil Science Society of America Journal, 53(1), 70–74.

    Article  CAS  Google Scholar 

  • Neal, R. H., Sposito, G., Holtzclaw, K. M., & Traina, S. J. (1987). Selenite adsorption on alluvial soils: I. Soil composition and pH effects. Soil Science Society of America Journal, 51, 1161–1165.

    Article  CAS  Google Scholar 

  • Ohlendorf, H. M., Hothem, R. L., Bunck, C. M., Aldrich, T. W., & Moore, J. F. (1986). Relationships between selenium concentrations and avian reproduction. In Transactions of 51st North American wildlife and natural resource conference, Reno.

    Google Scholar 

  • Ohlendorf, H. M., Skorupa, J. P., Saiki, M. K., & Barnum, D. A. (1993, July 21–23). Food-chain transfer of trace elements to wildlife. In R. G. Allen, & C. M. U. Neale (Eds.), Management of irrigation and drainage systems: Integrated perspectives, Proceedings of the 1993 National Conference on Irrigation and Drainage Engineering. Park City, UT (pp. 596–603). New York: American Society of Civil Engineers.

    Google Scholar 

  • Ong, C. G., & Tanji, K. K. (1993). Evaporative concentration of trace-elements in a multicell agricultural evaporation pond. Journal of Agricultural and Food Chemistry, 41(9), 1507–1510.

    Article  CAS  Google Scholar 

  • Ong, G., Herbel, M. J., Mitchell, J., Dahlgren, R. A., & Tanji, K. K. (1997). Trace element (Se, As, Mo, B) contamination of evaporites in hypersaline agricultural evaporation ponds. Environmental Science and Technology, 31(3), 831–836.

    Article  CAS  Google Scholar 

  • Peryea, F. J., Bingham, F. T., & Rhoades, J. D. (1985). Mechanisms for boron regeneration. Soil Science Society of America Journal, 49, 840–843.

    Article  CAS  Google Scholar 

  • Pittiglio, S. L. (2003). The role of magnesium minerals in boron adsorption (104pp.). M.S. thesis, University of California, Berkeley.

    Google Scholar 

  • Pizzini, E. J. (2007). An examination of selenium interactions between soil and water at environmentally relevant concentrations (184pp.). Ph.D. dissertation, University of California, Berkeley.

    Google Scholar 

  • Reeder, R. J., Lamble, G. M., Lee, J. F., & Staudt, W. J. (1994). Mechanism of SeO4 2− substitution in calcite: An XAFS study. Geochimica et Cosmochimica Acta, 58, 5639–5646.

    Article  CAS  Google Scholar 

  • Rhoades, J. D., Ingvalson, R. D., & Hatcher, J. T. (1970). Adsorption of boron by ferromagnesian minerals and magnesium hydroxide. Soil Science Society of America Proceedings, 34, 938–941.

    Article  CAS  Google Scholar 

  • Singh, M., Singh, N., & Relan, P. S. (1981). Adsorption and desorption of selenite and selenate selenium on different soils. Soil Science, 132, 134–141.

    Article  CAS  Google Scholar 

  • Strawn, D., Doner, H. E., Zavarin, M., & McHugo, S. (2002). Microscale investigation into the geochemistry of arsenic, selenium, and iron in soil developed in pyritic shale materials. Geoderma, 108(3–4), 237–257.

    Article  CAS  Google Scholar 

  • Sun, X. H., & Doner, H. E. (1996). An investigation of arsenate and arsenite bonding structures on goethite by FTIR. Soil Science, 161(12), 865–872.

    Article  CAS  Google Scholar 

  • Sun, X. H., & Doner, H. E. (1998). Adsorption and oxidation of arsenite on goethite. Soil Science, 163, 278–287.

    Article  CAS  Google Scholar 

  • Sun, X. H., Doner, H. E., & Zavarin, M. (1999). Spectroscopy study of arsenite [As(III)] oxidation on Mn-substituted goethite. Clays and Clay Minerals, 47(4), 474–480.

    Article  CAS  Google Scholar 

  • Thompson, A., Parker, D. R., & Amrhein, C. (2003). Selenate partitioning in field-situated constructed wetland mesocosms. Ecological Engineering, 20(1), 17–30.

    Article  Google Scholar 

  • Tokunaga, T. K., Lipton, D. S., Benson, S. M., Yee, A. W., Oldfather, J. M., Duckart, E. C., Johannis, P. W., & Halvorsen, K. E. (1991). Soil selenium fractionation, depth profiles and time trends in a vegetated site at Kesterson Reservoir. Water, Air, and Soil Pollution, 57–58, 31–41.

    Article  Google Scholar 

  • Willsky, G. R. (1990). Vanadium in the biosphere. In N. D. Chasteen (Ed.), Vanadium in biological systems, physiology, and biochemistry. Boston: Kluwer Academic Publisher.

    Google Scholar 

  • WPHA. (2002). Western fertilizer handbook, 9th Ed. Western Plant Health Association. Long Grove, Illinois: Waverland Press, Inc.

    Google Scholar 

  • Wright, M. T., Parker, D. R., & Amrhein, C. (2003). Critical evaluation of the ability of sequential extraction procedures to quantify discrete forms of selenium in sediments and soils. Environmental Science and Technology, 37(20), 4709–4716.

    Article  CAS  Google Scholar 

  • Zavarin, M. (1999). Sorptive properties of synthetic and soil carbonates for selenium, nickel, and manganese (279pp.). Ph.D. dissertation, University of California, Berkeley.

    Google Scholar 

  • Zawislanski, P. T., & Zavarin, M. (1996). Nature and rates of selenium transformations: A laboratory study of Kesterson Reservoir soils. Soil Science Society of America Journal, 60, 791–800.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher Amrhein .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Amrhein, C., Doner, H.E. (2014). Biogeochemistry of Trace Elements: Reactions in Soils. In: Chang, A., Brawer Silva, D. (eds) Salinity and Drainage in San Joaquin Valley, California. Global Issues in Water Policy, vol 5. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6851-2_5

Download citation

Publish with us

Policies and ethics