Skip to main content

Regulation of Stem Cell Populations by microRNAs

  • Chapter
  • First Online:
Transcriptional and Translational Regulation of Stem Cells

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 786))

Abstract

miRNAs are small non-coding RNAs that have emerged as crucial post-transcriptional regulators of gene expression. They are key players in various critical cellular processes such as proliferation, cell cycle progression, apoptosis and differentiation. Self-renewal capacity and differentiation potential are hallmarks of stem cells. The switch between self-renewal and differentiation requires rapid widespread changes in gene expression. Since miRNAs can repress the translation of many mRNA targets, they are good candidates to regulate cell fates. In the past few years, miRNAs have appeared as important new actors in stem cell development by regulating differentiation and maintenance of stem cells. In this chapter we will focus on the role of miRNAs in various stem cell populations. After an introduction on microRNA biogenesis, we will review the recent knowledge on miRNA expression and function in pluripotent cells and during the acquisition of stem cell fate. We will then briefly examine the role of miRNAs in adult and cancer stem cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Baek D, Villen J, Shin C, Camargo FD et al (2008) The impact of microRNAs on protein output. Nature 455(7209):64–71

    PubMed  CAS  Google Scholar 

  2. Ghildiyal M, Zamore PD (2009) Small silencing RNAs: an expanding universe. Nat Rev Genet 10(2):94–108

    PubMed  CAS  Google Scholar 

  3. Pauli A, Rinn JL, Schier AF (2011) Non-coding RNAs as regulators of embryogenesis. Nat Rev Genet 12(2):136–149

    PubMed  CAS  Google Scholar 

  4. Lee RC, Feinbaum RL, Ambros V (1993) The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75(5):843–854

    PubMed  CAS  Google Scholar 

  5. Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136(2):215–233

    PubMed  CAS  Google Scholar 

  6. Chang TC, Mendell JT (2007) microRNAs in vertebrate physiology and human disease. Annu Rev Genom Hum Genet 8:215–239

    CAS  Google Scholar 

  7. Garzon R, Calin GA, Croce CM (2009) MicroRNAs in cancer. Annu Rev Med 60:167–179

    PubMed  CAS  Google Scholar 

  8. Yi R, Fuchs E (2011) MicroRNAs and their roles in mammalian stem cells. J Cell Sci 124(Pt 11):1775–1783

    PubMed  CAS  Google Scholar 

  9. Selbach M, Schwanhausser B, Thierfelder N, Fang Z et al (2008) Widespread changes in protein synthesis induced by microRNAs. Nature 455(7209):58–63

    PubMed  CAS  Google Scholar 

  10. Berezikov E, Guryev V, van de Belt J, Wienholds E et al (2005) Phylogenetic shadowing and computational identification of human microRNA genes. Cell 120(1):21–24

    PubMed  CAS  Google Scholar 

  11. Rodriguez A, Griffiths-Jones S, Ashurst JL, Bradley A (2004) Identification of mammalian microRNA host genes and transcription units. Genome Res 14(10A):1902–1910

    PubMed  CAS  Google Scholar 

  12. Borchert GM, Lanier W, Davidson BL (2006) RNA polymerase III transcribes human microRNAs. Nat Struct Mol Biol 13(12):1097–1101

    PubMed  CAS  Google Scholar 

  13. Lee Y, Kim M, Han J, Yeom KH et al (2004) MicroRNA genes are transcribed by RNA polymerase II. EMBO J 23(20):4051–4060

    PubMed  CAS  Google Scholar 

  14. Lee Y, Ahn C, Han J, Choi H et al (2003) The nuclear RNase III Drosha initiates microRNA processing. Nature 425(6956):415–419

    PubMed  CAS  Google Scholar 

  15. Denli AM, Tops BB, Plasterk RH, Ketting RF et al (2004) Processing of primary microRNAs by the microprocessor complex. Nature 432(7014):231–235

    PubMed  CAS  Google Scholar 

  16. Gregory RI, Yan KP, Amuthan G, Chendrimada T et al (2004) The microprocessor complex mediates the genesis of microRNAs. Nature 432(7014):235–240

    PubMed  CAS  Google Scholar 

  17. Ruby JG, Jan CH, Bartel DP (2007) Intronic microRNA precursors that bypass Drosha processing. Nature 448(7149):83–86

    PubMed  CAS  Google Scholar 

  18. Bohnsack MT, Czaplinski K, Gorlich D (2004) Exportin 5 is a RanGTP-dependent dsRNA-binding protein that mediates nuclear export of pre-miRNAs. RNA 10(2):185–191

    PubMed  CAS  Google Scholar 

  19. Siomi H, Siomi MC (2010) Posttranscriptional regulation of microRNA biogenesis in animals. Mol Cell 38(3):323–332

    PubMed  CAS  Google Scholar 

  20. Schwarz DS, Hutvagner G, Du T, Xu Z et al (2003) Asymmetry in the assembly of the RNAi enzyme complex. Cell 115(2):199–208

    PubMed  CAS  Google Scholar 

  21. Krol J, Loedige I, Filipowicz W (2010) The widespread regulation of microRNA biogenesis, function and decay. Nat Rev Genet 11(9):597–610

    PubMed  CAS  Google Scholar 

  22. Cheloufi S, Dos Santos CO, Chong MM, Hannon GJ (2010) A dicer-independent miRNA biogenesis pathway that requires Ago catalysis. Nature 465(7298):584–589

    PubMed  CAS  Google Scholar 

  23. Cifuentes D, Xue H, Taylor DW, Patnode H et al (2010) A novel miRNA processing pathway independent of Dicer requires Argonaute2 catalytic activity. Science 328(5986):1694–1698

    PubMed  CAS  Google Scholar 

  24. Filipowicz W, Bhattacharyya SN, Sonenberg N (2008) Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight? Nat Rev Genet 9(2):102–114

    PubMed  CAS  Google Scholar 

  25. Rigoutsos I (2009) New tricks for animal microRNAS: targeting of amino acid coding regions at conserved and nonconserved sites. Cancer Res 69(8):3245–3248

    PubMed  CAS  Google Scholar 

  26. Lai EC (2002) Micro RNAs are complementary to 3′ UTR sequence motifs that mediate negative post-transcriptional regulation. Nat Genet 30(4):363–364

    PubMed  CAS  Google Scholar 

  27. Yekta S, Shih IH, Bartel DP (2004) MicroRNA-directed cleavage of HOXB8 mRNA. Science 304(5670):594–596

    PubMed  CAS  Google Scholar 

  28. Guo H, Ingolia NT, Weissman JS, Bartel DP (2010) Mammalian microRNAs predominantly act to decrease target mRNA levels. Nature 466(7308):835–840

    PubMed  CAS  Google Scholar 

  29. Vasudevan S, Tong Y, Steitz JA (2007) Switching from repression to activation: microRNAs can up-regulate translation. Science 318(5858):1931–1934

    PubMed  CAS  Google Scholar 

  30. Davis-Dusenbery BN, Hata A (2010) Mechanisms of control of microRNA biogenesis. J Biochem 148(4):381–392

    PubMed  CAS  Google Scholar 

  31. Heo I, Joo C, Cho J, Ha M et al (2008) Lin28 mediates the terminal uridylation of let-7 precursor MicroRNA. Mol Cell 32(2):276–284

    PubMed  CAS  Google Scholar 

  32. Visvanathan J, Lee S, Lee B, Lee JW et al (2007) The microRNA miR-124 antagonizes the anti-neural REST/SCP1 pathway during embryonic CNS development. Genes Dev 21(7):744–749

    PubMed  CAS  Google Scholar 

  33. Thomson JM, Newman M, Parker JS, Morin-Kensicki EM et al (2006) Extensive post-transcriptional regulation of microRNAs and its implications for cancer. Genes Dev 20(16):2202–2207

    PubMed  CAS  Google Scholar 

  34. Tsuchida A, Ohno S, Wu W, Borjigin N et al (2011) miR-92 is a key oncogenic component of the miR-17-92 cluster in colon cancer. Cancer Sci 102(12):2264–2271

    PubMed  CAS  Google Scholar 

  35. Evans MJ, Kaufman MH (1981) Establishment in culture of pluripotential cells from mouse embryos. Nature 292(5819):154–156

    PubMed  CAS  Google Scholar 

  36. Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA et al (1998) Embryonic stem cell lines derived from human blastocysts. Science 282(5391):1145–1147

    PubMed  CAS  Google Scholar 

  37. Becker KA, Ghule PN, Therrien JA, Lian JB et al (2006) Self-renewal of human embryonic stem cells is supported by a shortened G1 cell cycle phase. J Cell Physiol 209(3):883–893

    PubMed  CAS  Google Scholar 

  38. Ng HH, Surani MA (2011) The transcriptional and signalling networks of pluripotency. Nat Cell Biol 13(5):490–496

    PubMed  CAS  Google Scholar 

  39. Boyer LA, Lee TI, Cole MF, Johnstone SE et al (2005) Core transcriptional regulatory circuitry in human embryonic stem cells. Cell 122(6):947–956

    PubMed  CAS  Google Scholar 

  40. Loh YH, Wu Q, Chew JL, Vega VB et al (2006) The Oct4 and Nanog transcription network regulates pluripotency in mouse embryonic stem cells. Nat Genet 38(4):431–440

    PubMed  CAS  Google Scholar 

  41. Yu J, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourget J et al (2007) Induced pluripotent stem cell lines derived from human somatic cells. Science 318(5858):1917–1920

    PubMed  CAS  Google Scholar 

  42. Takahashi K, Tanabe K, Ohnuki M, Narita M et al (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131(5):861–872

    PubMed  CAS  Google Scholar 

  43. Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126(4):663–676

    PubMed  CAS  Google Scholar 

  44. Marson A, Levine SS, Cole MF, Frampton GM et al (2008) Connecting microRNA genes to the core transcriptional regulatory circuitry of embryonic stem cells. Cell 134(3):521–533

    PubMed  CAS  Google Scholar 

  45. Houbaviy HB, Murray MF, Sharp PA (2003) Embryonic stem cell-specific MicroRNAs. Dev Cell 5(2):351–358

    PubMed  CAS  Google Scholar 

  46. Bar M, Wyman SK, Fritz BR, Qi J et al (2008) MicroRNA discovery and profiling in human embryonic stem cells by deep sequencing of small RNA libraries. Stem Cells 26(10):2496–2505

    PubMed  CAS  Google Scholar 

  47. Morin RD, O’Connor MD, Griffith M, Kuchenbauer F et al (2008) Application of massively parallel sequencing to microRNA profiling and discovery in human embryonic stem cells. Genome Res 18(4):610–621

    PubMed  CAS  Google Scholar 

  48. Stadler B, Ivanovska I, Mehta K, Song S et al (2010) Characterization of microRNAs involved in embryonic stem cell states. Stem Cells Dev 19(7):935–950

    PubMed  CAS  Google Scholar 

  49. Bernstein E, Kim SY, Carmell MA, Murchison EP et al (2003) Dicer is essential for mouse development. Nat Genet 35(3):215–217

    PubMed  CAS  Google Scholar 

  50. Kanellopoulou C, Muljo SA, Kung AL, Ganesan S et al (2005) Dicer-deficient mouse embryonic stem cells are defective in differentiation and centromeric silencing. Genes Dev 19(4):489–501

    PubMed  CAS  Google Scholar 

  51. Murchison EP, Partridge JF, Tam OH, Cheloufi S et al (2005) Characterization of Dicer-deficient murine embryonic stem cells. Proc Natl Acad Sci U S A 102(34):12135–12140

    PubMed  CAS  Google Scholar 

  52. Babiarz JE, Ruby JG, Wang Y, Bartel DP et al (2008) Mouse ES cells express endogenous shRNAs, siRNAs, and other microprocessor-independent, dicer-dependent small RNAs. Genes Dev 22(20):2773–2785

    PubMed  CAS  Google Scholar 

  53. Wang Y, Baskerville S, Shenoy A, Babiarz JE et al (2008) Embryonic stem cell-specific microRNAs regulate the G1-S transition and promote rapid proliferation. Nat Genet 40(12):1478–1483

    PubMed  CAS  Google Scholar 

  54. Qi J, Yu JY, Shcherbata HR, Mathieu J et al (2009) microRNAs regulate human embryonic stem cell division. Cell Cycle 8(22):3729–3741

    PubMed  CAS  Google Scholar 

  55. Fluckiger AC, Marcy G, Marchand M, Negre D et al (2006) Cell cycle features of primate embryonic stem cells. Stem Cells 24(3):547–556

    PubMed  CAS  Google Scholar 

  56. Becker KA, Ghule PN, Lian JB, Stein JL et al (2010) Cyclin D2 and the CDK substrate p220(NPAT) are required for self-renewal of human embryonic stem cells. J Cell Physiol 222(2):456–464

    PubMed  CAS  Google Scholar 

  57. Faast R, White J, Cartwright P, Crocker L et al (2004) Cdk6-cyclin D3 activity in murine ES cells is resistant to inhibition by p16(INK4a). Oncogene 23(2):491–502

    PubMed  CAS  Google Scholar 

  58. Sinkkonen L, Hugenschmidt T, Berninger P, Gaidatzis D et al (2008) MicroRNAs control de novo DNA methylation through regulation of transcriptional repressors in mouse embryonic stem cells. Nat Struct Mol Biol 15(3):259–267

    PubMed  CAS  Google Scholar 

  59. Sengupta S, Nie J, Wagner RJ, Yang C et al (2009) MicroRNA 92b controls the G1/S checkpoint gene p57 in human embryonic stem cells. Stem Cells 27(7):1524–1528

    PubMed  CAS  Google Scholar 

  60. Benetti R, Gonzalo S, Jaco I, Munoz P et al (2008) A mammalian microRNA cluster controls DNA methylation and telomere recombination via Rbl2-dependent regulation of DNA methyltransferases. Nat Struct Mol Biol 15(3):268–279

    PubMed  CAS  Google Scholar 

  61. Wang Y, Medvid R, Melton C, Jaenisch R et al (2007) DGCR8 is essential for microRNA biogenesis and silencing of embryonic stem cell self-renewal. Nat Genet 39(3):380–385

    PubMed  CAS  Google Scholar 

  62. Tiscornia G, Izpisua Belmonte JC (2010) MicroRNAs in embryonic stem cell function and fate. Genes Dev 24(24):2732–2741

    PubMed  CAS  Google Scholar 

  63. Xu N, Papagiannakopoulos T, Pan G, Thomson JA et al (2009) MicroRNA-145 regulates OCT4, SOX2, and KLF4 and represses pluripotency in human embryonic stem cells. Cell 137(4):647–658

    PubMed  CAS  Google Scholar 

  64. Wellner U, Schubert J, Burk UC, Schmalhofer O et al (2009) The EMT-activator ZEB1 promotes tumorigenicity by repressing stemness-inhibiting microRNAs. Nat Cell Biol 11(12):1487–1495

    PubMed  CAS  Google Scholar 

  65. Tay Y, Zhang J, Thomson AM, Lim B et al (2008) MicroRNAs to Nanog, Oct4 and Sox2 coding regions modulate embryonic stem cell differentiation. Nature 455(7216):1124–1128

    PubMed  CAS  Google Scholar 

  66. Melton C, Judson RL, Blelloch R (2010) Opposing microRNA families regulate self-renewal in mouse embryonic stem cells. Nature 463(7281):621–626

    PubMed  CAS  Google Scholar 

  67. Reinhart BJ, Slack FJ, Basson M, Pasquinelli AE et al (2000) The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature 403(6772):901–906

    PubMed  CAS  Google Scholar 

  68. Takaya T, Ono K, Kawamura T, Takanabe R et al (2009) MicroRNA-1 and MicroRNA-133 in spontaneous myocardial differentiation of mouse embryonic stem cells. Circ J Off J Jpn Circ Soc 73(8):1492–1497

    CAS  Google Scholar 

  69. Zhao C, Sun G, Li S, Shi Y (2009) A feedback regulatory loop involving microRNA-9 and nuclear receptor TLX in neural stem cell fate determination. Nat Struct Mol Biol 16(4):365–371

    PubMed  CAS  Google Scholar 

  70. Park IH, Lerou PH, Zhao R, Huo H et al (2008) Generation of human-induced pluripotent stem cells. Nat Protoc 3(7):1180–1186

    PubMed  CAS  Google Scholar 

  71. Wu SM, Hochedlinger K (2011) Harnessing the potential of induced pluripotent stem cells for regenerative medicine. Nat Cell Biol 13(5):497–505

    PubMed  CAS  Google Scholar 

  72. Kamata M, Liang M, Liu S, Nagaoka Y et al (2010) Live cell monitoring of hiPSC generation and differentiation using differential expression of endogenous microRNAs. PLoS One 5(7):e11834

    PubMed  Google Scholar 

  73. Li Z, Yang CS, Nakashima K, Rana TM (2011) Small RNA-mediated regulation of iPS cell generation. EMBO J 30(5):823–834

    PubMed  Google Scholar 

  74. Stadtfeld M, Apostolou E, Akutsu H, Fukuda A et al (2010) Aberrant silencing of imprinted genes on chromosome 12qF1 in mouse induced pluripotent stem cells. Nature 465(7295):175–181

    PubMed  CAS  Google Scholar 

  75. Kim K, Doi A, Wen B, Ng K et al (2010) Epigenetic memory in induced pluripotent stem cells. Nature 467(7313):285–290

    PubMed  CAS  Google Scholar 

  76. Judson RL, Babiarz JE, Venere M, Blelloch R (2009) Embryonic stem cell-specific microRNAs promote induced pluripotency. Nat Biotechnol 27(5):459–461

    PubMed  CAS  Google Scholar 

  77. Hanina SA, Mifsud W, Down TA, Hayashi K et al (2010) Genome-wide identification of targets and function of individual MicroRNAs in mouse embryonic stem cells. PLoS Genet 6(10):e1001163

    PubMed  Google Scholar 

  78. Seoane J, Le HV, Massague J (2002) Myc suppression of the p21(Cip1) Cdk inhibitor influences the outcome of the p53 response to DNA damage. Nature 419(6908):729–734

    PubMed  CAS  Google Scholar 

  79. Wang Z, Liu M, Zhu H, Zhang W et al (2010) Suppression of p21 by c-Myc through members of miR-17 family at the post-transcriptional level. Int J Oncol 37(5):1315–1321

    PubMed  CAS  Google Scholar 

  80. Utikal J, Polo JM, Stadtfeld M, Maherali N et al (2009) Immortalization eliminates a roadblock during cellular reprogramming into iPS cells. Nature 460(7259):1145–1148

    PubMed  CAS  Google Scholar 

  81. Marion RM, Strati K, Li H, Murga M et al (2009) A p53-mediated DNA damage response limits reprogramming to ensure iPS cell genomic integrity. Nature 460(7259):1149–1153

    PubMed  CAS  Google Scholar 

  82. Hong H, Takahashi K, Ichisaka T, Aoi T et al (2009) Suppression of induced pluripotent stem cell generation by the p53-p21 pathway. Nature 460(7259):1132–1135

    PubMed  CAS  Google Scholar 

  83. Liao B, Bao X, Liu L, Feng S et al (2011) MicroRNA cluster 302-367 enhances somatic cell reprogramming by accelerating a mesenchymal-to-epithelial transition. J Biol Chem 286(19):17359–17364

    PubMed  CAS  Google Scholar 

  84. Subramanyam D, Lamouille S, Judson RL, Liu JY et al (2011) Multiple targets of miR-302 and miR-372 promote reprogramming of human fibroblasts to induced pluripotent stem cells. Nat Biotechnol 29(5):443–448

    PubMed  CAS  Google Scholar 

  85. Pfaff N, Fiedler J, Holzmann A, Schambach A et al (2011) miRNA screening reveals a new miRNA family stimulating iPS cell generation via regulation of Meox2. EMBO Rep 12(11):1153–1159

    PubMed  CAS  Google Scholar 

  86. Samavarchi-Tehrani P, Golipour A, David L, Sung HK et al (2010) Functional genomics reveals a BMP-driven mesenchymal-to-epithelial transition in the initiation of somatic cell reprogramming. Cell Stem Cell 7(1):64–77

    PubMed  CAS  Google Scholar 

  87. Li R, Liang J, Ni S, Zhou T et al (2010) A mesenchymal-to-epithelial transition initiates and is required for the nuclear reprogramming of mouse fibroblasts. Cell Stem Cell 7(1):51–63

    PubMed  CAS  Google Scholar 

  88. Gregory PA, Bert AG, Paterson EL, Barry SC et al (2008) The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1. Nat Cell Biol 10(5):593–601

    PubMed  CAS  Google Scholar 

  89. Yang CS, Li Z, Rana TM (2011) MicroRNAs modulate iPS cell generation. RNA 17(8):1451–1460

    PubMed  CAS  Google Scholar 

  90. Choi YJ, Lin CP, Ho JJ, He X et al (2011) miR-34 miRNAs provide a barrier for somatic cell reprogramming. Nat Cell Biol 13(11):1353–1360

    PubMed  CAS  Google Scholar 

  91. Lin SL, Chang DC, Chang-Lin S, Lin CH et al (2008) Mir-302 reprograms human skin cancer cells into a pluripotent ES-cell-like state. RNA 14(10):2115–2124

    PubMed  CAS  Google Scholar 

  92. Lin SL, Chang DC, Lin CH, Ying SY et al (2011) Regulation of somatic cell reprogramming through inducible mir-302 expression. Nucleic Acids Res 39(3):1054–1065

    PubMed  CAS  Google Scholar 

  93. Anokye-Danso F, Trivedi CM, Juhr D, Gupta M et al (2011) Highly efficient miRNA-mediated reprogramming of mouse and human somatic cells to pluripotency. Cell Stem Cell 8(4):376–388

    PubMed  CAS  Google Scholar 

  94. Miyoshi N, Ishii H, Nagano H, Haraguchi N et al (2011) Reprogramming of mouse and human cells to pluripotency using mature microRNAs. Cell Stem Cell 8(6):633–638

    PubMed  CAS  Google Scholar 

  95. Cannito S, Novo E, di Bonzo LV, Busletta C et al (2010) Epithelial-mesenchymal transition: from molecular mechanisms, redox regulation to implications in human health and disease. Antioxid Redox Signal 12(12):1383–1430

    PubMed  CAS  Google Scholar 

  96. Polo JM, Hochedlinger K (2010) When fibroblasts MET iPSCs. Cell Stem Cell 7(1):5–6

    PubMed  CAS  Google Scholar 

  97. Bracken CP, Gregory PA, Kolesnikoff N, Bert AG et al (2008) A double-negative feedback loop between ZEB1-SIP1 and the microRNA-200 family regulates epithelial-mesenchymal transition. Cancer Res 68(19):7846–7854

    PubMed  CAS  Google Scholar 

  98. Korpal M, Lee ES, Hu G, Kang Y (2008) The miR-200 family inhibits epithelial-mesenchymal transition and cancer cell migration by direct targeting of E-cadherin transcriptional repressors ZEB1 and ZEB2. J Biol Chem 283(22):14910–14914

    PubMed  CAS  Google Scholar 

  99. Tesar PJ, Chenoweth JG, Brook FA, Davies TJ et al (2007) New cell lines from mouse epiblast share defining features with human embryonic stem cells. Nature 448(7150):196–199

    PubMed  CAS  Google Scholar 

  100. Ware CB, Wang L, Mecham BH, Shen L et al (2009) Histone deacetylase inhibition elicits an evolutionarily conserved self-renewal program in embryonic stem cells. Cell Stem Cell 4(4):359–369

    PubMed  CAS  Google Scholar 

  101. Reynolds S, Ruohola-Baker H (2008) The role of microRNAs in germline differentiation. In: StemBook (ed) The stem cell research community. Harvard Stem Cell Institute, Cambridge, MA. StemBook, doi:10.3824/stembook.1.17.1, http://www.stembook.org. 15 Sep 2008, PMID: 20614619

  102. Hatfield SD, Shcherbata HR, Fischer KA, Nakahara K et al (2005) Stem cell division is regulated by the microRNA pathway. Nature 435(7044):974–978

    PubMed  CAS  Google Scholar 

  103. Yu JY, Reynolds SH, Hatfield SD, Shcherbata HR et al (2009) Dicer-1-dependent Dacapo suppression acts downstream of Insulin receptor in regulating cell division of Drosophila germline stem cells. Development 136(9):1497–1507

    PubMed  CAS  Google Scholar 

  104. Yang Y, Xu S, Xia L, Wang J et al (2009) The bantam microRNA is associated with drosophila fragile X mental retardation protein and regulates the fate of germline stem cells. PLoS Genet 5(4):e1000444

    PubMed  Google Scholar 

  105. Park JK, Liu X, Strauss TJ, McKearin DM et al (2007) The miRNA pathway intrinsically controls self-renewal of Drosophila germline stem cells. Curr Biol CB 17(6):533–538

    CAS  Google Scholar 

  106. Jin Z, Xie T (2007) Dcr-1 maintains Drosophila ovarian stem cells. Curr Biol CB 17(6):539–544

    CAS  Google Scholar 

  107. Shcherbata HR, Ward EJ, Fischer KA, Yu JY et al (2007) Stage-specific differences in the requirements for germline stem cell maintenance in the Drosophila ovary. Cell Stem Cell 1(6):698–709

    PubMed  CAS  Google Scholar 

  108. Pek JW, Lim AK, Kai T (2009) Drosophila maelstrom ensures proper germline stem cell lineage differentiation by repressing microRNA-7. Dev Cell 17(3):417–424

    PubMed  CAS  Google Scholar 

  109. Iovino N, Pane A, Gaul U (2009) miR-184 has multiple roles in Drosophila female germline development. Dev Cell 17(1):123–133

    PubMed  CAS  Google Scholar 

  110. Murchison EP, Stein P, Xuan Z, Pan H et al (2007) Critical roles for Dicer in the female germline. Genes Dev 21(6):682–693

    PubMed  CAS  Google Scholar 

  111. Hayashi K, de Sousa C, Lopes SM, Kaneda M, Tang F et al (2008) MicroRNA biogenesis is required for mouse primordial germ cell development and spermatogenesis. PLoS One 3(3):e1738

    PubMed  Google Scholar 

  112. Niu Z, Goodyear SM, Rao S, Wu X et al (2011) MicroRNA-21 regulates the self-renewal of mouse spermatogonial stem cells. Proc Natl Acad Sci U S A 108(31):12740–12745

    PubMed  CAS  Google Scholar 

  113. Hayashi K, Ohta H, Kurimoto K, Aramaki S et al (2011) Reconstitution of the mouse germ cell specification pathway in culture by pluripotent stem cells. Cell 146(4):519–532

    PubMed  CAS  Google Scholar 

  114. Medeiros LA, Dennis LM, Gill ME, Houbaviy H et al (2011) Mir-290-295 deficiency in mice results in partially penetrant embryonic lethality and germ cell defects. Proc Natl Acad Sci U S A 108(34):14163–14168

    PubMed  CAS  Google Scholar 

  115. Vasilatou D, Papageorgiou S, Pappa V, Papageorgiou E et al (2010) The role of microRNAs in normal and malignant hematopoiesis. Eur J Haematol 84(1):1–16

    PubMed  CAS  Google Scholar 

  116. Chen CZ, Li L, Lodish HF, Bartel DP (2004) MicroRNAs modulate hematopoietic lineage differentiation. Science 303(5654):83–86

    PubMed  CAS  Google Scholar 

  117. Xiao C, Calado DP, Galler G, Thai TH et al (2007) MiR-150 controls B cell differentiation by targeting the transcription factor c-Myb. Cell 131(1):146–159

    PubMed  CAS  Google Scholar 

  118. Felli N, Pedini F, Romania P, Biffoni M et al (2009) MicroRNA 223-dependent expression of LMO2 regulates normal erythropoiesis. Haematologica 94(4):479–486

    PubMed  CAS  Google Scholar 

  119. Fazi F, Rosa A, Fatica A, Gelmetti V et al (2005) A minicircuitry comprised of microRNA-223 and transcription factors NFI-A and C/EBPalpha regulates human granulopoiesis. Cell 123(5):819–831

    PubMed  CAS  Google Scholar 

  120. Johnnidis JB, Harris MH, Wheeler RT, Stehling-Sun S et al (2008) Regulation of progenitor cell proliferation and granulocyte function by microRNA-223. Nature 451(7182):1125–1129

    PubMed  CAS  Google Scholar 

  121. Ooi AG, Sahoo D, Adorno M, Wang Y et al (2010) MicroRNA-125b expands hematopoietic stem cells and enriches for the lymphoid-balanced and lymphoid-biased subsets. Proc Natl Acad Sci U S A 107(50):21505–21510

    PubMed  CAS  Google Scholar 

  122. Surdziel E, Cabanski M, Dallmann I, Lyszkiewicz M et al (2011) Enforced expression of miR-125b affects myelopoiesis by targeting multiple signaling pathways. Blood 117(16):4338–4348

    PubMed  CAS  Google Scholar 

  123. Cheng LC, Pastrana E, Tavazoie M, Doetsch F (2009) miR-124 regulates adult neurogenesis in the subventricular zone stem cell niche. Nat Neurosci 12(4):399–408

    PubMed  CAS  Google Scholar 

  124. Chen JF, Tao Y, Li J, Deng Z et al (2010) microRNA-1 and microRNA-206 regulate skeletal muscle satellite cell proliferation and differentiation by repressing Pax7. J Cell Biol 190(5):867–879

    PubMed  CAS  Google Scholar 

  125. Dey BK, Gagan J, Dutta A (2011) miR-206 and -486 induce myoblast differentiation by downregulating Pax7. Mol Cell Biol 31(1):203–214

    PubMed  CAS  Google Scholar 

  126. Cardinali B, Castellani L, Fasanaro P, Basso A et al (2009) Microrna-221 and microrna-222 modulate differentiation and maturation of skeletal muscle cells. PLoS One 4(10):e7607

    PubMed  Google Scholar 

  127. Ge Y, Sun Y, Chen J (2011) IGF-II is regulated by microRNA-125b in skeletal myogenesis. J Cell Biol 192(1):69–81

    PubMed  CAS  Google Scholar 

  128. Yi R, Poy MN, Stoffel M, Fuchs E (2008) A skin microRNA promotes differentiation by repressing ‘stemness’. Nature 452(7184):225–229

    PubMed  CAS  Google Scholar 

  129. Lena AM, Shalom-Feuerstein R, di Val R, Cervo P, Aberdam D et al (2008) miR-203 represses ‘stemness’ by repressing DeltaNp63. Cell Death Differ 15(7):1187–1195

    PubMed  CAS  Google Scholar 

  130. Zhang L, Stokes N, Polak L, Fuchs E (2011) Specific microRNAs are preferentially expressed by skin stem cells to balance self-renewal and early lineage commitment. Cell Stem Cell 8(3):294–308

    PubMed  CAS  Google Scholar 

  131. Shackleton M, Quintana E, Fearon ER, Morrison SJ (2009) Heterogeneity in cancer: cancer stem cells versus clonal evolution. Cell 138(5):822–829

    PubMed  CAS  Google Scholar 

  132. Clarke MF, Fuller M (2006) Stem cells and cancer: two faces of eve. Cell 124(6):1111–1115

    PubMed  CAS  Google Scholar 

  133. Lapidot T, Sirard C, Vormoor J, Murdoch B et al (1994) A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature 367(6464):645–648

    PubMed  CAS  Google Scholar 

  134. Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ et al (2003) Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci U S A 100(7):3983–3988

    PubMed  CAS  Google Scholar 

  135. Singh SK, Hawkins C, Clarke ID, Squire JA et al (2004) Identification of human brain tumour initiating cells. Nature 432(7015):396–401

    PubMed  CAS  Google Scholar 

  136. O’Brien CA, Pollett A, Gallinger S, Dick JE (2007) A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature 445(7123):106–110

    PubMed  Google Scholar 

  137. Ricci-Vitiani L, Lombardi DG, Pilozzi E, Biffoni M et al (2007) Identification and expansion of human colon-cancer-initiating cells. Nature 445(7123):111–115

    PubMed  CAS  Google Scholar 

  138. Hermann PC, Huber SL, Herrler T, Aicher A et al (2007) Distinct populations of cancer stem cells ­determine tumor growth and metastatic activity in human pancreatic cancer. Cell Stem Cell 1(3):313–323

    PubMed  CAS  Google Scholar 

  139. Clevers H (2011) The cancer stem cell: premises, promises and challenges. Nat Med 17(3):313–319

    PubMed  CAS  Google Scholar 

  140. Ben-Porath I, Thomson MW, Carey VJ, Ge R et al (2008) An embryonic stem cell-like gene expression signature in poorly differentiated aggressive human tumors. Nat Genet 40(5):499–507

    PubMed  CAS  Google Scholar 

  141. Somervaille TC, Matheny CJ, Spencer GJ, Iwasaki M et al (2009) Hierarchical maintenance of MLL myeloid leukemia stem cells employs a transcriptional program shared with embryonic rather than adult stem cells. Cell Stem Cell 4(2):129–140

    PubMed  CAS  Google Scholar 

  142. Wong DJ, Liu H, Ridky TW, Cassarino D et al (2008) Module map of stem cell genes guides creation of epithelial cancer stem cells. Cell Stem Cell 2(4):333–344

    PubMed  CAS  Google Scholar 

  143. Chiou SH, Wang ML, Chou YT, Chen CJ et al (2010) Coexpression of Oct4 and Nanog enhances malignancy in lung adenocarcinoma by inducing cancer stem cell-like properties and epithelial-mesenchymal transdifferentiation. Cancer Res 70(24):10433–10444

    PubMed  CAS  Google Scholar 

  144. Mathieu J, Zhang Z, Zhou W, Wang AJ et al (2011) HIF induces human embryonic stem cell markers in cancer cells. Cancer Res 71(13):4640–4652

    PubMed  CAS  Google Scholar 

  145. Wu XZ (2008) Origin of cancer stem cells: the role of self-renewal and differentiation. Ann Surg Oncol 15(2):407–414

    PubMed  Google Scholar 

  146. Quintana E, Shackleton M, Sabel MS, Fullen DR et al (2008) Efficient tumour formation by single human melanoma cells. Nature 456(7222):593–598

    PubMed  CAS  Google Scholar 

  147. Borovski T, De Sousa EMF, Vermeulen L, Medema JP (2011) Cancer stem cell niche: the place to be. Cancer Res 71(3):634–639

    PubMed  CAS  Google Scholar 

  148. Lu J, Getz G, Miska EA, Alvarez-Saavedra E et al (2005) MicroRNA expression profiles classify human cancers. Nature 435(7043):834–838

    PubMed  CAS  Google Scholar 

  149. Zhang B, Pan X, Cobb GP, Anderson TA (2007) microRNAs as oncogenes and tumor suppressors. Dev Biol 302(1):1–12

    PubMed  CAS  Google Scholar 

  150. Ma S, Tang KH, Chan YP, Lee TK et al (2010) miR-130b Promotes CD133(+) liver tumor-initiating cell growth and self-renewal via tumor protein 53-induced nuclear protein 1. Cell Stem Cell 7(6):694–707

    PubMed  CAS  Google Scholar 

  151. Shi L, Zhang J, Pan T, Zhou J et al (2010) MiR-125b is critical for the suppression of human U251 glioma stem cell proliferation. Brain Res 1312:120–126

    PubMed  CAS  Google Scholar 

  152. Wong P, Iwasaki M, Somervaille TC, Ficara F et al (2010) The miR-17-92 microRNA polycistron regulates MLL leukemia stem cell potential by modulating p21 expression. Cancer Res 70(9):3833–3842

    PubMed  CAS  Google Scholar 

  153. Lo WL, Yu CC, Chiou GY, Chen YW et al (2011) MicroRNA-200c attenuates tumour growth and metastasis of presumptive head and neck squamous cell carcinoma stem cells. J Pathol 223(4):482–495

    PubMed  CAS  Google Scholar 

  154. Wu Q, Guo R, Lin M, Zhou B et al (2011) MicroRNA-200a inhibits CD133/1+ ovarian cancer stem cells migration and invasion by targeting E-cadherin repressor ZEB2. Gynecol Oncol 122(1):149–154

    PubMed  CAS  Google Scholar 

  155. Bao B, Wang Z, Ali S, Kong D et al (2011) Notch-1 induces epithelial-mesenchymal transition consistent with cancer stem cell phenotype in pancreatic cancer cells. Cancer Lett 307(1):26–36

    PubMed  CAS  Google Scholar 

  156. Chang CJ, Chao CH, Xia W, Yang JY et al (2011) p53 regulates epithelial-mesenchymal transition and stem cell properties through modulating miRNAs. Nat Cell Biol 13(3):317–323

    PubMed  CAS  Google Scholar 

  157. Huang Q, Gumireddy K, Schrier M, le Sage C et al (2008) The microRNAs miR-373 and miR-520c promote tumour invasion and metastasis. Nat Cell Biol 10(2):202–210

    PubMed  CAS  Google Scholar 

  158. Rippe V, Dittberner L, Lorenz VN, Drieschner N et al (2010) The two stem cell microRNA gene clusters C19MC and miR-371-3 are activated by specific chromosomal rearrangements in a subgroup of thyroid adenomas. PLoS One 5(3):e9485

    PubMed  Google Scholar 

  159. Yu CC, Chen YW, Chiou GY, Tsai LL et al (2011) MicroRNA let-7a represses chemoresistance and tumourigenicity in head and neck cancer via stem-like properties ablation. Oral Oncol 47(3):202–210

    PubMed  CAS  Google Scholar 

  160. Yu F, Deng H, Yao H, Liu Q et al (2010) Mir-30 reduction maintains self-renewal and inhibits apoptosis in breast tumor-initiating cells. Oncogene 29(29):4194–4204

    PubMed  CAS  Google Scholar 

  161. Kong D, Banerjee S, Ahmad A, Li Y et al (2010) Epithelial to mesenchymal transition is mechanistically linked with stem cell signatures in prostate cancer cells. PLoS One 5(8):e12445

    PubMed  Google Scholar 

  162. Yang X, Lin X, Zhong X, Kaur S et al (2010) Double-negative feedback loop between reprogramming factor LIN28 and microRNA let-7 regulates aldehyde dehydrogenase 1-positive cancer stem cells. Cancer Res 70(22):9463–9472

    PubMed  CAS  Google Scholar 

  163. Yu F, Yao H, Zhu P, Zhang X et al (2007) let-7 regulates self renewal and tumorigenicity of breast cancer cells. Cell 131(6):1109–1123

    PubMed  CAS  Google Scholar 

  164. Cairo S, Wang Y, de Reynies A, Duroure K et al (2010) Stem cell-like micro-RNA signature driven by Myc in aggressive liver cancer. Proc Natl Acad Sci U S A 107(47):20471–20476

    PubMed  CAS  Google Scholar 

  165. Hermeking H (2010) The miR-34 family in cancer and apoptosis. Cell Death Differ 17(2):193–199

    PubMed  CAS  Google Scholar 

  166. Ji Q, Hao X, Meng Y, Zhang M et al (2008) Restoration of tumor suppressor miR-34 inhibits human p53-mutant gastric cancer tumorspheres. BMC Cancer 8:266

    PubMed  Google Scholar 

  167. Ji Q, Hao X, Zhang M, Tang W et al (2009) MicroRNA miR-34 inhibits human pancreatic cancer tumor-initiating cells. PLoS One 4(8):e6816

    PubMed  Google Scholar 

  168. Guessous F, Zhang Y, Kofman A, Catania A et al (2010) microRNA-34a is tumor suppressive in brain tumors and glioma stem cells. Cell Cycle 9(6):1031–1036

    PubMed  CAS  Google Scholar 

  169. Liu C, Kelnar K, Liu B, Chen X et al (2011) The microRNA miR-34a inhibits prostate cancer stem cells and metastasis by directly repressing CD44. Nat Med 17(2):211–215

    PubMed  CAS  Google Scholar 

  170. Riggi N, Suva ML, De Vito C, Provero P et al (2010) EWS-FLI-1 modulates miRNA145 and SOX2 expression to initiate mesenchymal stem cell ­reprogramming toward Ewing sarcoma cancer stem cells. Genes Dev 24(9):916–932

    PubMed  CAS  Google Scholar 

  171. Zimmerman AL, Wu S (2011) MicroRNAs, cancer and cancer stem cells. Cancer Lett 300(1):10–19

    PubMed  CAS  Google Scholar 

  172. Floor S, van Staveren WC, Larsimont D, Dumont JE et al (2011) Cancer cells in epithelial-to-mesenchymal transition and tumor-propagating-cancer stem cells: distinct, overlapping or same populations. Oncogene 30:4609–4621

    PubMed  CAS  Google Scholar 

  173. Kong D, Li Y, Wang Z, Sarkar FH (2011) Cancer stem cells and epithelial-to-mesenchymal transition (EMT)-phenotypic cells: are they cousins or twins? Cancers 3(1):716–729

    PubMed  Google Scholar 

  174. Scheel C, Weinberg RA (2011) Phenotypic plasticity and epithelial-mesenchymal transitions in cancer – and normal stem cells? Int J Cancer J Int du Cancer 129(10):2310–2314

    CAS  Google Scholar 

  175. Yu Y, Kanwar SS, Patel BB, Oh PS et al (2011) MicroRNA-21 induces stemness by downregulating transforming growth factor beta receptor 2 (TGFbetaR2) in colon cancer cells. Carcinogenesis 1(11):e32

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hannele Ruohola-Baker .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Mathieu, J., Ruohola-Baker, H. (2013). Regulation of Stem Cell Populations by microRNAs. In: Hime, G., Abud, H. (eds) Transcriptional and Translational Regulation of Stem Cells. Advances in Experimental Medicine and Biology, vol 786. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6621-1_18

Download citation

Publish with us

Policies and ethics