Skip to main content

Computational Modeling of Gastrointestinal Fluid Dynamics

  • Chapter
  • First Online:
New Advances in Gastrointestinal Motility Research

Part of the book series: Lecture Notes in Computational Vision and Biomechanics ((LNCVB,volume 10))

Abstract

Knowledge of the fluid dynamic behavior of gastrointestinal (GI) contents during digestion is essential to further understand and model the bioavailability of nutrients and pharmaceuticals in health and disease. The dynamics that develop within the GI tract are the result of a complex and self-regulated interplay between the physical properties of the intraluminal contents and the motor responses of the GI wall. Recent advances in the characterization of GI motility patterns have facilitated the use of engineering simulation tools to investigate the mechanisms driving different GI functions. In this chapter, current research aimed at using computational fluid dynamic (CFD) techniques to predict the flow and mixing behavior of gastric and small intestinal contents during digestion will be reviewed. The unique capability and potential applications of this new approach to advance research in the food and health sectors will be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ali N, Sajid M, Abbasa Z, Javed T (2010) Non-Newtonian fluid flow induced by peristaltic waves in a curved channel. Eur J of Mech B/Fluids 29:387–394

    Article  Google Scholar 

  2. Barret KE, Raybould HE (2010) The gastric phase of the integrated response to a meal. In: Koeppen BM, Stanton BA (eds) Berne and Levy physiology, 6th edn. MOSBY Elsevier, Philadelphia

    Google Scholar 

  3. Barret KE, Raybould HE (2010) The small intestinal phase of the integrated response to a meal. In: Koeppen BM, Stanton BA (eds) Berne and Levy physiology, 6th edn. MOSBY Elsevier, Philadelphia

    Google Scholar 

  4. Blackburn NA, Holgate AM, Read NW (1984) Does guar gum improve post-prandial hyperglycaemia in humans by reducing small intestinal contact area? Brit J Nutr 52:197–204

    Article  PubMed  CAS  Google Scholar 

  5. Boulby P, Moore R, Gowland P, Spiller RC (1999) Fat delays emptying but increases forward and backward antral flow as assessed by flow-sensitive magnetic resonance imaging. Neurogastroenterol Motil 11:27–36

    Article  PubMed  CAS  Google Scholar 

  6. Brennen CE (2005) Fundamentals of multiphase flow. Cambridge University Press, New York

    Google Scholar 

  7. Brown NJ, Worlding J, Rumsey RDE, Read NW (1988) The effect of guar gum on the distribution of a radiolabelled meal in the gastrointestinal tract of the rat. Brit J Nutr 88:223–231

    Google Scholar 

  8. Brown BP, Schulze-Delrieu K, Schrier JE, Abu-Yousef MM (1993) The configuration of the human gastroduodenal junction in the separate of emptying of liquid and solids. Gastroenterology 105:433–440

    PubMed  CAS  Google Scholar 

  9. Camilleri M, Malagelada JR, Brown ML, Becker G, Zinsmeister AR (1985) Relation between antral motility and gastric emptying of solids and liquids in humans. Am J Physiol 249:G580–G585

    PubMed  CAS  Google Scholar 

  10. Cannon W, Lieb C (1911) The receptive relaxation of the stomach. Am J Physiol 29:267–273

    Google Scholar 

  11. Christensen J, Glover JR, Macagno E0, Singerman RB, Weisbrodt NW (1971). Statistics of contractions at a point in the human duodenum. Am J Physiol 221:1818–1823

    Google Scholar 

  12. Coupe AJ, Davis SS, Wilding IR (1991) Variation in gastrointestinal transit of pharmaceutical dosage forms in healthy subjects. Pharm Res 8:360–364

    Article  PubMed  CAS  Google Scholar 

  13. Dikeman CL, Fahey GC Jr (2006) Viscosity as related to dietary fiber: a review. Crit Rev Food Sci Nutr 46(8):649–663

    Article  PubMed  CAS  Google Scholar 

  14. Dikeman CL, Murphy MR, Fahey GC Jr (2006) Dietary fibers affect viscosity of solutions and simulated human gastric and small intestinal digesta. J Nutr 136:913–919

    PubMed  CAS  Google Scholar 

  15. Dikeman CL, Murphy MR, Fahey GC Jr (2007) Diet type affects viscosity of ileal digesta of dogs and simulated gastric and small intestinal digesta. J Anim Physiol Anim Nutr 91:139–147

    Article  CAS  Google Scholar 

  16. Dillard S, Krishnan S, Udaykumar HS (2007) Mechanics of flow and mixing at antroduodenal junction. World J Gastroenterol 13(9):1365–1371

    PubMed  Google Scholar 

  17. Einhorn M (1898) Diseases of the stomach: a text-book for practitioners and students. W. Wood and Company, New York. http://www.archive.org/details/diseasesstomach01einhgoog

  18. Ellis PR, Roberts FG, Low AG, Morgan LM (1995) The effect of high-molecular-weight guar gum on net apparent glucose absorption and net apparent insulin and gastric inhibitory polypeptide production in the growing pig: relationship to rheological changes in jejunal digesta. Brit J Nutr 74:539–556

    Article  PubMed  CAS  Google Scholar 

  19. Ellis PR, Rayment P, Wang Q (1996) A physico-chemical perspective of plant polysaccharides in relation to glucose absorption, insulin secretion and the entero-insular axis. P Nutr Soc 55:881–898

    Article  CAS  Google Scholar 

  20. Faas H, Schwizer W, Feinle C, Lengsfeld H, de Smidt C, Boesiger P, Fried M, Rades T (2001) Monitoring the intragastric distribution of a colloidal drug carrier model by magnetic resonance imaging. Pharm Res 18(4):460–466

    Article  PubMed  CAS  Google Scholar 

  21. Faas H, Steingoetter A, Feinle C, Rades T, Lengsfeld H, Boesiger P, Fried M, Schwizer W (2002) Effects of meal consistency and ingested fluid volume on the intragastric distribution of a drug model in humans-a magnetic resonance imaging study. Aliment Pharmacol Ther 16:217–224

    Article  PubMed  CAS  Google Scholar 

  22. Feinle C, Grundy D, Read NW (1997) Effects of duodenal nutrients on sensory and motor responses of the human stomach to distension. Am J Physiol 273:G721–G726

    PubMed  CAS  Google Scholar 

  23. Ferrua MJ, Singh RP (2010) Modeling the fluid dynamics in a human stomach to gain insight of food digestion. J Food Sci 75(7):R151–R162

    Article  PubMed  CAS  Google Scholar 

  24. Ferrua MJ, Kong F, Singh RP (2011) Computational modeling of gastric digestion and the role of food material properties. Trends Food Sci Tech 22(9):480–491

    Article  CAS  Google Scholar 

  25. Ferrua MJ, Singh RP (2011) Understanding the fluid dynamics of gastric digestion using computational modeling. Proc Food Sci 1: 1465–1472.

    Google Scholar 

  26. Ganong W (2005) Review of medical physiology, 22nd edn. McGraw-Hill, New York

    Google Scholar 

  27. Geliebter A, Mellon PM, McCray RS, Gallagher DR, Gage D, Hashim SA (1992) Gastric capacity, gastric emptying, and test-meal intake in normal and bulimic women. Am J Clin Nutr 56:656–661

    PubMed  CAS  Google Scholar 

  28. Goetze O, Steingoetter A, Menne D, van der Voort IR, Kwiatek MA, Boesiger P et al (2007) The effect of macronutrients on gastric volume responses and gastric emptying in humans: a magnetic resonance imaging study. Am J Physiol Gastrointest Liver Physiol 292:G11–G17

    Article  PubMed  CAS  Google Scholar 

  29. Guyton AC, Hall JE (2005) Textbook of medical physiology, 11th edn. Elsevier, Edinburgh

    Google Scholar 

  30. Hausken T, Gilja OH, Ødegaard S, Berstad A (1998) Flow across the human pylorus soon after ingestion of food, studied with duplex sonography. Effect of glyceryl trinitrate. Scand J Gastroenterol 33:484–490

    Article  PubMed  CAS  Google Scholar 

  31. Indireshkumar K, Brasseur JG, Faas H, Hebbard GS, Kunz P, Dent J et al (2000) Relative contributions of pressure pump and peristaltic pump to gastric emptying. Am J Physiol Gastrointest Liver Physiol 278:G604–G616

    PubMed  CAS  Google Scholar 

  32. Jahnberg T, Martinson J, Hulten L, Fasth S (1975) Dynamic gastric response to expansion before and after vagotomy. Scand J Gastroenterol 10:593–598

    PubMed  CAS  Google Scholar 

  33. Jalabert-Malbos M-L, Mishellany-Dutour A, Woda A, Peyron M-A (2007) Particle size distribution in the food bolus after mastication of natural foods. Food Qual Prefer 18:803–812

    Article  Google Scholar 

  34. Jiménez-Lozano J, Sen M (2010) Streamline topologies of two-dimensional peristaltic flow and their bifurcations. Chem Eng Process 49:704–715

    Article  Google Scholar 

  35. Keet AD (1993) Infantile hypertrophic pyloric stenosis. In: The pyloric sphincteric cylinder in health and disease. Springer, Berlin, New York. ISBN 3-540-55814-4

    Google Scholar 

  36. Kim D-Y, Camilleri M, Murray JA, Stephens DA, Levine JA, Burton DD (2001) Is there a role for gastric accommodation and satiety in Asymptomatic Obese People? Obes Res 9(11):655–661

    Article  PubMed  CAS  Google Scholar 

  37. Kozu H, Kobayashi I, Nakajima M, Uemura K, Sato S, Ichikawa S (2010) Analysis of flow phenomena in gastric contents induced by human gastric peristalsis using CFD. Food Biophys 5:330–336

    Article  Google Scholar 

  38. Kwiatek MA, Steingoetter A, Pal A, Menne D, Brasseur JG, Hebbard GS et al (2006) Quantification of distal antran contractile motility in healthy human stomach with magnetic resonance imaging. J Magn Reson Imaging 24:1101–1109

    Article  PubMed  Google Scholar 

  39. Lentle RG, Hemar Y, Hall CE, Stafford KJ (2005) Periodic fluid extrusion and models of digesta mixing in the intestine of a herbivore, the common brushtail possum (Trichosurus vulpecula). J Comp Physiol B 175(5):337–347

    Article  PubMed  Google Scholar 

  40. Lentle RG, Hemar Y, Hall CE (2006) Viscoelastic behaviour aids extrusion from and reabsorption of the liquid phase into the digesta plug: creep rheometry of hindgut digesta in the common brushtail possum Trichosurus vulpecula. J Comp Physiol B 176(5):469–475

    Article  PubMed  Google Scholar 

  41. Lentle RG, Janssen PWM (2008) Physical characteristics of digesta and their influence on flow and mixing in the mammalian intestine: a review. J Comp Physiol B 178:673–690

    Article  PubMed  CAS  Google Scholar 

  42. Lentle RG, Janssen PWM (2010) Manipulating digestion with foods designed to change the physical characteristics of digesta. Crit Rev Food Sci Nutr 50:130–145

    Article  PubMed  CAS  Google Scholar 

  43. Lentle RG, Janssen PWM, Goh K, Chambers P, Hulls C (2010) Quantification of the effects of the volume and viscosity of gastric contents on antral and fundic activity in the rat stomach maintained ex vivo. Dig Dis Sci 55:3349–3360

    Article  PubMed  Google Scholar 

  44. Li M, Brasseur JG (1993) Non-steady peristaltic transport in finite-length tubes. J Fluid Mech 248:129–151

    Article  CAS  Google Scholar 

  45. Liao D, Gregersen H, Hausken T, Gilja OH, Mundt M, Kassab G (2004) Analysis of surface geometry of the human stomach using real-time 3-D ultrasonography in vivo. Neurogastroenterol Motil 16(3):315–324

    Article  PubMed  CAS  Google Scholar 

  46. Liker H, Hungin P, Wiklund I (2005) Managing gastroesophageal reflux disease in primary care: the patient perspective. J Am Board Fam Pract 18:393–400

    Article  PubMed  Google Scholar 

  47. Lim J (2010) Modelling fluid flow in the small intestine. Final year project report. Department of Engineering Science, The University of Auckland, Auckland

    Google Scholar 

  48. Macagno EO, Christensen J (1980) Fluid-Mechanics of the Duodenum. Annu Rev Fluid Mech 12:139–158

    Article  Google Scholar 

  49. Macagno EO, Christensen J, Lee CL (1982) Modeling the effect of wall movement on absorption in the intestine. Am J Physiol 243:541–550

    Google Scholar 

  50. Manton MJ (1975) Long-wavelength peristaltic pumping at low Reynolds number. J Fluid Mech 68:681–693

    Article  Google Scholar 

  51. Marciani L, Gowland PA, Spiller RC, Manoj P, Moore RJ, Young P, Al-Sahab S, Bush D, Wright J, Fillery-Travis AJ (2000) Gastric response to increased meal viscosity assessed by echo-planar magnetic resonance imaging in humans. J Nutr 130:122–127

    PubMed  CAS  Google Scholar 

  52. Marciani L, Gowland PA, Fillery-Travis A, Manoj P, Wright J, Smith A, Young P, Moore R, Spiller RC (2001) Assesment of antral grinding of a model solid meal with echo-planar imaging. Am J Physiol Gastrointest Liver Physiol 280:G844–G849

    PubMed  CAS  Google Scholar 

  53. Marciani L, Gowland PA, Spiller RC (2001) Effect of meal viscosity and nutrients on satiety, intragastric dilution and emptying assessed by MRI. Am J Physiol Gastrointest Liver Physiol 280:G1227–G1233

    PubMed  CAS  Google Scholar 

  54. Marciani L, Young P, Wright J, Moore R, Coleman N, Gowland PA et al (2001) Antral motility measurements by magnetic resonance imaging. Neurogastroenterol Motil 13(5):511–518

    Article  PubMed  CAS  Google Scholar 

  55. Marciani L (2011) Assessment of gastrointestinal motor functions by MRI: a comprehensive review. Neurogastroenterol Motil 23:399–407

    Article  PubMed  CAS  Google Scholar 

  56. Martini FH (2006) Fundamentals of anatomy & physiology, 7th edn. Pearson/Benjamin Cummings, San Francisco CA

    Google Scholar 

  57. McMahon BP, Odie KD, Moloney KW, Gregersen H (2007) Computation of flow through the oesophagogastric junction. World J Gastroentero 13(9):1360–1364

    Google Scholar 

  58. O’Grady G, Du P, Cheng LK, Egbuji JU, Lammers WJEP, Windsor JA et al (2010) Origin and propagation of human gastric slow-wave activity defined by high-resolution mapping. Am J Physiol Gastrointest Liver Physiol 299(3):G585–G592

    Article  PubMed  Google Scholar 

  59. Parkman HP, Doma S (2006) Importance of gastrointestinal motility disorders. Pract Gastroenterol 9:23–40

    Google Scholar 

  60. Pal A, Indireshkumar K, Schwizer W, Abrahamsson B, Fried M, Brasseur JG (2004) Gastric flow and mixing studied using computer simulation. Proc R Soc Lond B 271:2587–2594

    Article  Google Scholar 

  61. Pal A, Brasseur JG, Abrahamsson B (2007) A stomach road or “Magenstrasse” for gastric emptying. J Biomech 40:1202–1210

    Article  PubMed  Google Scholar 

  62. Pozrikidis C (1987) A study of peristaltic flow. J Fluid Mech 180:515–527

    Article  CAS  Google Scholar 

  63. Schulze K (2006) Imaging and modeling of digestion in the stomach and the duodenum. Neurogastroenterol Motil 18(3):172–183

    Article  PubMed  CAS  Google Scholar 

  64. Schwartz SE, Levine RA, Weinstock RS, Petokas S, Mills CA, Thomas FD (1988) Sustained pectin ingestion: effect on gastric emptying and glucose tolerance in non-insulin dependent diabetic patients. Am J Clin Nutr 48:1411–1413

    Google Scholar 

  65. Schwizer W, Steingotter A, Fox M, Zur T, Thumshirn M, Boesiger P et al (2002) Non-invasive measurement of gastric accommodation in humans. Gut 51(Suppl 1):i59–i62

    Article  PubMed  Google Scholar 

  66. Schwizer W, Steingoetter A, Fox M (2006) Magnetic resonance imaging for the assessment of gastrointestinal function. Scand J Gastroenterol 41:1245–1260

    Article  PubMed  Google Scholar 

  67. Shapiro AH, Jaffrin MY, Weinberg SL (1969) Peristaltic pumping with long wavelengths at low Reynolds number. J Fluid Mech 37:799–825

    Article  Google Scholar 

  68. Singh SK (2007) Fluid flow and disintegration of Food in human stomach. Doctoral Thesis, University of California, Davis

    Google Scholar 

  69. Singh SK, Singh RP (2011) Gastric digestion of foods: Mathematical modeling of flow field in a human stomach. In: Aguilera JM, Barbosa-Canovas GV, Simpson R, Welti-Chenas J, Bermudez-Aguirre D (eds) Food engineering interfaces. Springer, New York

    Google Scholar 

  70. Smith ME, Morton DE (2001) The digestive system. Churchill Livingstone, Edinburgh

    Google Scholar 

  71. Steingoetter A, Weishaupt D, Kunz P, Mäder K, Lengsfeld H, Thumshirn M, Boesiger P, Fried M, Schwizer W (2003) Magnetic resonance imaging for the in vivo evaluation of gastric-retentive tablets. Pharm Res 20(12):2001–2007

    Article  PubMed  CAS  Google Scholar 

  72. Steingoetter A, Kwiatek MA, Pal A, Hebbard G, Thumshirn M, Fried et al. (2005) MRI to assess the contribution of gastric peristaltic activity and tone to the rate of liquid gastric emptying in health. Proc Int Soc Magn Reson Med 13:426

    Google Scholar 

  73. Steingoetter A, Fox M, Treier R, Weishaupt D, Marincek B, Boesiger P et al (2006) Effects of posture on the physiology of gastric emptying: a magnetic resonance imaging study. Scand J Gastroenterol 41:1155–1164

    Article  PubMed  Google Scholar 

  74. Takahashi T, Sakata T (2002) Large particles increase viscosity and yield stress of pig cecal contents without changing basic viscoelastic properties. J Nutr 132:1026–1030

    PubMed  CAS  Google Scholar 

  75. Takahashi T, Karita S, Ogawa N, Goto M (2005) Crystalline cellulose reduces plasma glucose concentrations and stimulates water absorption by increasing the digesta viscosity in rats. J Nutr 135:2405–2410

    PubMed  CAS  Google Scholar 

  76. Tharakan A, Rayment P, Fryer PJ, Norton IT (2007) Modelling of physical and chemical processes in the small intestine. Proc Eur Congr Chem Eng (ECCE-6), Copenhagen, Denmark, 16–20 Sep

    Google Scholar 

  77. Tharakan A (2008) Modelling of physical and chemical processes in the small intestine. Doctoral thesis, University of Birmingham, England

    Google Scholar 

  78. Treier R, Steingoetter A, Weishaupt D, Goetze O, Boesiger P, Fried M et al (2006) Gastric motor function and emptying in the right decubitus and seated body position as assessed bymagnetic resonance imaging. J Magn Reson Imaging 23:331–338

    Article  PubMed  Google Scholar 

  79. Trendelenburg P (2006) Physiological and pharmacological investigations of small intestinal peristalsis (Translation of the article “Physiologische und pharmakologische Versuche über die Dünndarmperistaltik”. Arch Exp Pathol Pharmakol 81:55–129, 1917). Naunyn Schmiedebergs Arch Pharmacol 373(2):101–133

    Google Scholar 

  80. van den Elzen BDJ, Bennink RJ, Wieringa RE, Tytgat GNJ, Boeckxstaens GEE (2003) Fundic accommodation assessed by SPECT scanning: comparison with the gastric barostat. Gut 52(11):1548–1554

    Article  PubMed  Google Scholar 

  81. Zien TF, Ostrach S (1970) A long wave approximation to peristaltic motion. J Biomech 3:63–75

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria J. Ferrua .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Ferrua, M.J., Singh, R.P. (2013). Computational Modeling of Gastrointestinal Fluid Dynamics. In: Cheng, L., Pullan, A., Farrugia, G. (eds) New Advances in Gastrointestinal Motility Research. Lecture Notes in Computational Vision and Biomechanics, vol 10. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6561-0_13

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-6561-0_13

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-6560-3

  • Online ISBN: 978-94-007-6561-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics