Skip to main content

Spirolides and Cyclic Imines: Toxicological Profile

  • Reference work entry
  • First Online:

Part of the book series: Toxinology ((TOXI))

Abstract

In this chapter, available evidence on the toxicological profile of spirolides and other lipophilic cyclic imine toxins is reviewed, highlighting their chemical structure, the phytoplankton species involved in their production, their pharmacokinetics/toxicokinetics and experimental toxicity, and their molecular targets and mechanisms of action. These phycotoxins belong to an emerging class of chemical agents associated with marine algal blooms and shellfish toxicity. Their chemical structure is represented by a macrocycle, with the ring size between 14 and 27, and two conserved features that include the cyclic imine group and spiroketal ring system. The producers of spirolides, gymnodimines, and pinnatoxins have been identified as being the dinoflagellates Alexandrium ostenfeldii/peruvianum, Karenia selliformis, and Vulcanodinium rugosum. Their acute toxicity, appraised by the mouse bioassays, classifies them as “fast-acting” toxins because they induce rapid onset of neurological symptoms followed by death within a few minutes. The spirolide congeners are the most toxic after intraperitoneal injection, while there are indications that pinnatoxins are the most toxic group after oral administration. The neurotoxic effects reported for these phycotoxins are mostly due to their specific interaction with the muscle and neuronal types of nicotinic acetylcholine receptors which are the principal molecular targets of spirolides, gymnodimines, and pinnatoxins, so far studied. Hence, these phycotoxins exhibit both high affinity and broad specificity on nicotinic receptors, indicating that their sites of interaction in the receptors include amino acid residues highly conserved among animal species.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   299.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Albuquerque EX, Pereira EF, Alkondon M, Rogers SW. Mammalian nicotinic acetylcholine receptors: from structure to function. Physiol Rev. 2009;89:73–120.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alonso E, Otero P, Vale C, Alfonso A, Antelo A, Giménez-Llort L, Chabaud L, Guillou C, Botana LM. Benefit of 13-desmethyl spirolide C treatment in triple transgenic mouse model of Alzheimer disease: beta-amyloid and neuronal markers improvement. Curr Alzheimer Res. 2013;10:279–89.

    Article  CAS  PubMed  Google Scholar 

  • Aráoz R, Servent D, Ouanounou G, Benoit E, Molgó J. The emergent marine dinoflagellate toxins spirolides and gymnodimines target nicotinic acetylcholine receptors. Biol Res. 2009;42(Suppl A):R-118.

    Google Scholar 

  • Aráoz R, Servent D, Molgó J, Iorga BI, Fruchart-Gaillard C, Benoit E, Gu Z, Stivala C, Zakarian A. Total synthesis of pinnatoxins A and G and revision of the mode of action of pinnatoxin A. J Am Chem Soc. 2011;133:10499–511.

    Article  PubMed  PubMed Central  Google Scholar 

  • Aráoz R, Ramos S, Pelissier F, Guérineau V, Benoit E, Vilariño N, Botana LM, Zakarian A, Molgó J. Coupling the Torpedo microplate-receptor binding assay with mass spectrometry to detect cyclic imine neurotoxins. Anal Chem. 2012;84:10445–53.

    Article  PubMed  PubMed Central  Google Scholar 

  • Beaumont S, Ilardi EA, Tappin ND, Zakarian A. Marine toxins with spiroimine rings: total synthesis of pinnatoxin A. Eur J Org Chem. 2010;2010(30):5743–65.

    Article  Google Scholar 

  • Bourne Y, Radic Z, Aráoz R, Talle TT, Benoit E, Servent D, Taylor P, Molgó J, Marchot P. Structural determinants in phycotoxins and AChBP conferring high affinity binding and nicotinic AChR antagonism. Proc Natl Acad Sci U S A. 2010;107:6076–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bourne Y, Sulzenbacher G, Radić Z, Aráoz R, Reynaud M, Benoit E, Zakarian A, Servent D, Molgó J, Taylor P, Marchot P. Marine macrocyclic imines, pinnatoxins A and G: structural determinants and functional properties to distinguish neuronal α7 from muscle α12βγδ nAChR. Structure. 2015;23:1106–15.

    Article  CAS  PubMed  Google Scholar 

  • Cembella AD, Lewis NI, Quilliam MA. Spirolide composition of micro-extracted pooled cells isolated from natural plankton assemblages and from cultures of the dinoflagellate Alexandrium ostenfeldii. Nat Toxins. 1999;7:197–206.

    Article  CAS  PubMed  Google Scholar 

  • Christian B, Below A, Dressler N, Scheibner O, Luckas B, Gerdts G. Are spirolides converted in biological systems?-A study. Toxicon. 2008;51:934–40.

    Article  CAS  PubMed  Google Scholar 

  • Corringer PJ, Le Novère N, Changeux JP. Nicotinic receptors at the amino acid level. Annu Rev Pharmacol Toxicol. 2000;40:431–58.

    Article  CAS  PubMed  Google Scholar 

  • Daneshian M, Botana LM, Dechraoui Bottein MY, Buckland G, Campàs M, Dennison N, Dickey RW, Diogène J, Fessard V, Hartung T, Humpage A, Leist M, Molgó J, Quilliam MA, Rovida C, Suarez-Isla BA, Tubaro A, Wagner K, Zoller O, Dietrich D. A roadmap for hazard monitoring and risk assessment of marine biotoxins on the basis of chemical and biological test systems. ALTEX. 2013;30:487–545.

    Article  PubMed  Google Scholar 

  • Duroure L, Jousseaume T, Aráoz R, Barre E, Retailleau P, Chabaud L, Molgó J, Guillou C. 6,6-Spiroimine analogs of (–)-gymnodimine A: synthesis and biological evaluation on nicotinic acetylcholine receptors. Org Biomol Chem. 2011;9:8112–8.

    Article  CAS  PubMed  Google Scholar 

  • Espiña B, Otero P, Louzao MC, Alfonso A, Botana LM. 13-desmethyl spirolide-C and 13,19-didesmethyl spirolide-C trans-epithelial permeabilities: human intestinal permeability modelling. Toxicology. 2011;287:69–75.

    Article  PubMed  Google Scholar 

  • Fonfría ES, Vilariño N, Molgó J, Aráoz R, Otero P, Espiña B, Louzao MC, Alvarez M, Botana LM. Detection of 13,19-didesmethyl C spirolide by fluorescence polarization using Torpedo electrocyte membranes. Anal Biochem. 2010;403:102–7.

    Article  PubMed  Google Scholar 

  • Gill S, Murphy M, Clausen J, Richard D, Quilliam M, MacKinnon S, LaBlanc P, Mueller R, Pulido O. Neural injury biomarkers of novel shellfish toxins, spirolides: a pilot study using immunochemical and transcriptional analysis. Neurotoxicology. 2003;24:593–604.

    Article  CAS  PubMed  Google Scholar 

  • Guéret SM, Brimble MA. Spiroimine shellfish poisoning (SSP) and the spirolide family of shellfish toxins: Isolation, structure, biological activity and synthesis. Nat Prod Rep. 2010;27:1350–66.

    Article  PubMed  Google Scholar 

  • Hauser TA, Hepler CD, Kombo DC, Grinevich VP, Kiser MN, Hooker DN, Zhang J, Mountfort D, Selwood A, Akireddy SR, Letchworth SR, Yohannes D. Comparison of acetylcholine receptor interactions of the marine toxins, 13-desmethylspirolide C and gymnodimine. Neuropharmacology. 2012;62:2239–50.

    Article  CAS  PubMed  Google Scholar 

  • Haywood AJ, Steidinger KA, Truby EW, Bergquist PR, Bergquist PL, Adamson J, Mackenzie L. Comparative morphology and molecular phylogenetic analysis of three new species of the genus Karenia (dinophyceae) from New Zealand. J Phycol. 2004;40:165–79.

    Article  Google Scholar 

  • Hellyer SD, Selwood AI, Rhodes L, Kerr DS. Neuromuscular blocking activity of pinnatoxins E, F and G. Toxicon. 2013;76:214–20.

    Article  CAS  PubMed  Google Scholar 

  • Hess P, Abadie E, Hervé F, Berteaux T, Séchet V, Aráoz R, Molgó J, Zakarian A, Sibat M, Rundberget T, Miles CO, Amzil Z. Pinnatoxin G is responsible for atypical toxicity in mussels (Mytilus galloprovincialis) and clams (Venerupis decussata) from Ingril, a French Mediterranean lagoon. Toxicon. 2013; 75:16–26.

    Google Scholar 

  • Hu T, Curtis JM, Walter JA, Wright JLC. Characterization of biologically inactive spirolides E and F: identification of the spirolide pharmacophore. Tetrahedron Lett. 1996;37:7671–4.

    Article  CAS  Google Scholar 

  • Jackson JJ, Stivala CE, Iorga BI, Molgó J, Zakarian A. Stability of cyclic imine toxins: interconversion of pinnatoxin amino ketone and pinnatoxin A in aqueous media. J Org Chem. 2012;77:10435–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kharrat R, Servent D, Girard E, Ouanounou G, Amar M, Marrouchi R, Benoit E, Molgó J. The marine phycotoxin gymnodimine targets muscular and neuronal nicotinic acetylcholine receptor subtypes with high affinity. J Neurochem. 2008;107:952–63.

    CAS  PubMed  Google Scholar 

  • Lu C-K, Lee G-H, Huang R, Chou HN. Spiro-prorocentrimine, a novel macrocyclic lactone from a benthic Prorocentrum sp. of Taiwan. Tetrahedron Lett. 2001;42:1713–6.

    Article  CAS  Google Scholar 

  • MacKinnon SL, Walter JA, Quilliam MA, Cembella AD, Leblanc P, Burton IW, Hardstaff WR, Lewis NI. Spirolides isolated from Danish strains of the toxigenic dinoflagellate Alexandrium ostenfeldii. J Nat Prod. 2006;69:983–7.

    Article  CAS  PubMed  Google Scholar 

  • McCarron P, Rourke WA, Hardstaff W, Pooley B, Quilliam MA. Identification of pinnatoxins and discovery of their fatty acid ester metabolites in mussels (Mytilus edulis) from Eastern Canada. J Agric Food Chem. 2012;60:1437–46.

    Article  CAS  PubMed  Google Scholar 

  • Molgó J, Aráoz R, Benoit E, Iorga BI. Physical and virtual screening methods for marine toxins and drug discovery targeting nicotinic acetylcholine receptors. Expert Opin Drug Discov. 2013;8:1203–23.

    Article  PubMed  Google Scholar 

  • Molgó J, Aráoz R, Benoit E, Iorga BI. Cyclic imine toxins: chemistry, origin, metabolism, pharmacology, toxicology, and detection. In: Botana LM, editor. Seafood and freshwater toxins. Pharmacology physiology and detection. 3rd ed. Boca Raton: CRC Press; 2014. p. 951–90.

    Google Scholar 

  • Munday R, Towers NR, Mackenzie L, Beuzenberg V, Holland PT, Miles CO. Acute toxicity of gymnodimine to mice. Toxicon. 2004;44:173–8.

    Article  CAS  PubMed  Google Scholar 

  • Munday R, Quilliam MA, LeBlanc P, Lewis N, Gallant P, Sperker SA, Ewart HS, MacKinnon SL. Investigations into the toxicology of spirolides, a group of marine phycotoxins. Toxins. 2012a;4:1–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Munday R, Selwood AI, Rhodes L. Acute toxicity of pinnatoxins E, F and G to mice. Toxicon. 2012b;60:995–9.

    Article  CAS  PubMed  Google Scholar 

  • Nézan E, Chromérat N. Vulcanodinium rugosum gen. et sp. nov. (Dinophyceae), un nouveau dinoflagellé marin de la côte Méditerranéenne Française. Cryptogamie Algol. 2011;32:3–18.

    Article  Google Scholar 

  • O’Connor PD, Brimble MA. Synthesis of macrocyclic shellfish toxins containing spiroimine moieties. Nat Prod Rep. 2007;24:869–85.

    Article  PubMed  Google Scholar 

  • Otero P, Alfonso A, Alfonso C, Aráoz R, Molgó J, Vieytes MR, Botana LM. First direct fluorescence polarization assay for the detection and quantification of spirolides in mussel samples. Anal Chim Acta. 2011;701:200–8.

    Article  CAS  PubMed  Google Scholar 

  • Otero P, Alfonso A, Rodríguez P, Cifuentes JM, Bermúdez R, Vieytes MR, Botana LM. Pharmacokinetic and toxicological data of spirolides after oral and intraperitoneal administration. Food Chem Toxicol. 2012;50:232–7.

    Article  CAS  PubMed  Google Scholar 

  • Rhodes L, Smith K, Selwood A, McNabb P, Munday R, Suda S, Molenaar S, Hallegraeff G. Dinoflagellate Vulcanodinium rugosum identified as the causative organism of pinnatoxins in Australia, New Zealand and Japan. Phycologia. 2011;50:624–8.

    Article  Google Scholar 

  • Richard D, Arsenault E, Cembella A, Quilliam M. Investigations into the toxicology and pharmacology of spirolides, a novel group of shellfish toxins. In: Hallegraeff GM, Blackburn SI, Bolch CJ, Lewis RJ, editors. Harmful algal blooms 2000. Paris: Intergovernmental Oceanographic Commission of UNESCO; 2001.

    Google Scholar 

  • Roach JS, LeBlanc P, Lewis NI, Munday R, Quilliam MA, MacKinnon SL. Characterization of a dispiroketal spirolide subclass from Alexandrium ostenfeldii. J Nat Prod. 2009;72:1237–40.

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez LP, Vilarino N, Molgó J, Aráoz R, Louzao MC, Taylor P, Talley T, Botana LM. Development of a solid-phase receptor-based assay for the detection of cyclic imines using a microsphere-flow cytometry system. Anal Chem. 2013;85:2340–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Selwood AI, Wilkins AL, Munday R, Shi F, Rhodes LL, Holland PT. Portimine: A bioactive metabolite from the benthic dinoflagellate Vulcanodinium rugosum. Tetrahedron Lett. 2013;54:4705–7.

    Article  CAS  Google Scholar 

  • Selwood AI, Wilkins AL, Munday R, Gu H, Smith KF, Rhodes LL, Rise F, Pinnatoxin H. A new pinnatoxin analogue from a South China Sea Vulcanodinium rugosum isolate. Tetrahedron Lett. 2014;55:5508–10.

    Article  CAS  Google Scholar 

  • Shumway SE. A review of the effects of algal blooms on shellfish and aquaculture. J World Aquacult Soc. 1990;21:65–104.

    Article  Google Scholar 

  • Sixma TK, Smit AB. Acetylcholine binding protein (AChBP): a secreted glial protein that provides a high-resolution model for the extracellular domain of pentameric ligand-gated ion channels. Annu Rev Biophys Biomol Struct. 2003;32:311–34.

    Article  CAS  PubMed  Google Scholar 

  • Stivala CE, Benoit E, Aráoz R, Servent D, Novikov A, Molgó J, Zakarian A. Synthesis and biology of cyclic imine toxins, an emerging class of potent, globally distributed marine toxins. Nat Prod Rep. 2015;32:411–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takada N, Umemura N, Suenaga K, Uemura D. Structural determination of pteriatoxins A, B and C, extremely potent toxins from the bivalve Pteria penguin. Tetrahedron Lett. 2001;42:3495–7.

    Article  CAS  Google Scholar 

  • Torigoe K, Murata M, Yasumoto T, Iwashita T. Prorocentrolide, a toxic nitrogenous macrocycle from a marine dinoflagellate, Prorocentrum lima. J Am Chem Soc. 1988;110:7876–7.

    Article  CAS  Google Scholar 

  • Touzet N, Franco JM, Raine R. Morphogenetic diversity and biotoxin composition of Alexandrium (dinophyceae) in Irish coastal waters. Harmful Algae. 2008;7:782–97.

    Article  CAS  Google Scholar 

  • Van der Kloot W, Molgó J. Quantal acetylcholine release at the vertebrate neuromuscular junction. Physiol Rev. 1994;74:899–991.

    PubMed  Google Scholar 

  • Van Wagoner RM, Misner I, Tomas CR, Wright JLC. Occurrence of 12-methylgymnodimine in a spirolide-producing dinoflagellate Alexandrium peruvianum and the biogenetic implications. Tetrahedron Lett. 2011;52:4243–6.

    Article  Google Scholar 

  • Vilariño N, Fonfría ES, Molgó J, Aráoz R, Botana LM. Detection of gymnodimine-A and 13-desmethyl C spirolide phycotoxins by fluorescence polarization. Anal Chem. 2009;81:2708–14.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Work performed in the laboratory of authors was funded by the “Agence Nationale de la Recherche” (France, grant AQUANEUROTOX ANR-12-ASTR-0037-1) and by the National Institutes of Health (USA, grant NIGMS R01 GM077379 to A.Z).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jordi Molgó or Bogdan I. Iorga .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Dordrecht

About this entry

Cite this entry

Molgó, J., Benoit, E., Aráoz, R., Zakarian, A., Iorga, B.I. (2016). Spirolides and Cyclic Imines: Toxicological Profile. In: Gopalakrishnakone, P., Haddad Jr., V., Tubaro, A., Kim, E., Kem, W. (eds) Marine and Freshwater Toxins. Toxinology. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6419-4_23

Download citation

Publish with us

Policies and ethics