Skip to main content

Crustal Sulfide Minerals (Re-Os)

  • Living reference work entry
  • First Online:
Encyclopedia of Scientific Dating Methods
  • 399 Accesses

Definition

The rhenium-osmium (187Re-187Os) radioactive isotope system can be used to determine absolute age dates for some sulfide minerals formed in a variety of crustal geologic environments, including those associated with igneous, sedimentary, and metamorphic processes. Sulfide minerals that have yielded reliable Re-Os age dates include molybdenite (MoS2), pyrite (FeS2), and arsenopyrite (FeAsS), although many other sulfide minerals have potential for yielding Re-Os age dates. This entry deals with Re-Os geochronology of crustal sulfide minerals typically formed from aqueous fluids, either hydrothermal or diagenetic, and does not consider orthomagmatic sulfide minerals.

Introduction

Following the discovery of the natural radioactivity of 187Re by negatron decay (Naldrett and Libby 1948), some of the earliest applications of 187Re-187Os geochronology involved the crustal sulfide mineral molybdenite (MoS2 – Hirt et al. 1963; Luck and Allègre 1982). During these early years, the...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Bibliography

  • Aleinikoff, J. N., Creaser, R. A., Lowers, H. A., Magee, C., and Grauch, R. I., 2012. Multiple age components in individual molybdenite grains. Chemical Geology, 300–301, 55–60.

    Article  Google Scholar 

  • Arne, D. C., Bierlein, F. P., Morgan, J. W., and Stein, H. J., 2001. Re-Os dating of sulfides associated with gold mineralization in central Victoria, Australia. Economic Geology, 96, 1455–1459.

    Article  Google Scholar 

  • Bingen, B., and Stein, H. J., 2003. Molybdenite Re-Os dating of biotite dehydration melting in the Rogaland high-temperature granulites, S. Norway. Earth and Planetary Science Letters, 208, 181–195.

    Article  Google Scholar 

  • Birck J.-L., Roy Barman M., and Capmas F., 1997. Re-Os isotopic measurements at the femtomole level in natural samples. Geostandards Newsletter, 20, 19–27.

    Article  Google Scholar 

  • Box, S. E., Syusyura, B., Seltmann, R., Creaser, R. A., Dolgopolova, A., and Zientek, M. L., 2013. Dzhezkazgan and associated sandstone copper deposits of the Chu-Sarysu basin, central Kazakhstan. Society of Economic Geologists Special Publication, 16, 303–328.

    Google Scholar 

  • Brenan, J. M., Cherniak, D. J., and Rose, L. A., 2000. Diffusion of osmium in pyrrhotite and pyrite: implications for closure of the Re-Os isotopic system. Earth and Planetary Science Letters, 180, 399–413.

    Article  Google Scholar 

  • Chiaradia, M., Vallance, J., Fontboté, L., Stein, H., Schaltegger, U., Coder, J., Richards, J., Villeneuve, M., and Gendall, I., 2009. U-Pb, Re-Os, and 40Ar/39Ar geochronology of the Nambija Au-skarn and Pangui porphyry Cu deposits, Ecuador: implications for the Jurassic metallogenic belt of the northern Andes. Mineralium Deposita, 44, 371–387.

    Article  Google Scholar 

  • Cohen, A. S., and Waters, F. G., 1996. Separation of osmium from geological materials by solvent extraction for analysis by thermal ionization mass spectrometry. Analytica Chimica Acta, 332, 269–275.

    Article  Google Scholar 

  • Creaser, R. A., Papanastassiou, D. A., and Wasserburg, G. J., 1991. Negative thermal ion mass spectrometry of osmium, rhenium and iridium. Geochimica et Cosmochimica Acta, 55, 397–401.

    Article  Google Scholar 

  • Davies, T., Richards, J. P., Creaser, R. A., Heaman, L. M., Chacko, T., Simonetti, A., Williamson, J., and McDonald, D. W., 2010. Paleoproterozoic age relationships in the Three Bluffs archean iron formation-hosted gold deposit, Committee Bay greenstone belt, Nunavut, Canada. Exploration and Mining Geology, 19, 55–80.

    Article  Google Scholar 

  • Deckart, K., Clark, A. H., Cuadra, P., and Fanning, M., 2013. Refinement of the time-space evolution of the giant Mio-Pliocene Río Blanco-Los Bronces porphyry Cu–Mo cluster, Central Chile: new U–Pb (SHRIMP II) and Re–Os geochronology and 40Ar/39Ar thermochronology data. Mineralium Deposita, 48, 57–79.

    Article  Google Scholar 

  • Hannah, J. L., Bekker, A., Stein, H. J., Markey, R. J., and Holland, H. D., 2004. Primitive Os and 2316 Ma age for shale: implications for Paleoproterozoic glacial events and the rise of atmospheric oxygen. Earth and Planetary Science Letters, 225, 43–52.

    Article  Google Scholar 

  • Hirt, B., Herr, W., and Hoffmeister, W., 1963. Age determination by the rhenium-osmium method. International Atomic Energy Agency, Radioactive Dating, 35–44.

    Google Scholar 

  • Kosler, J., Simonetti, A., Sylvester, P., Cox, R., Tubrett, M. N., and Wilton, D., 2003. Laser ablation ICP-MS measurements of Re/Os in molybdenites and implications for Re-Os geochronology. Canadian Mineralogist, 41, 307–320.

    Article  Google Scholar 

  • Luck, J. M., and Allègre, C. J., 1982. The study of molybdenites through the 187Re-187Os chronometer. Earth and Planetary Science Letters, 61, 291–296.

    Article  Google Scholar 

  • Mao, J., Du, A., Seltmann, R., and Yu, J., 2003. Re–Os ages for the Shameika porphyry Mo deposit and the Lipovy Log rare metal pegmatite, central Urals, Russia. Mineralium Deposita, 38, 251–257.

    Google Scholar 

  • Markey, R., Hannah, J. L., Morgan, J. W., and Stein, H. J., 2003. A double spike for osmium analysis of highly radiogenic samples. Chemical Geology, 200, 395–406.

    Article  Google Scholar 

  • Markey, R., Stein, H. J., Hannah, J. L., Selby, D., and Creaser, R. A., 2007. Standardizing Re-Os geochronology: a new molybdenite Reference Material (Henderson, USA) and the stoichiometry of Os salts. Chemical Geology, 244, 74–87.

    Article  Google Scholar 

  • Mathur, R., Ruiz, J., and Tornos, F., 1999. Age and sources of the ore at Tharsis and Rio Tinto, Iberian pyrite belt, from Re-Os isotopes. Mineralium Deposita, 34, 790–793.

    Article  Google Scholar 

  • McCandless, T. E., Ruiz, J., and Campbell, A. R., 1993. Rhenium behavior in molybdenite in hypogene and near-surface environments: implications for Re-Os geochronometry. Geochimica et Cosmochimica Acta, 57, 889–905.

    Article  Google Scholar 

  • Morelli, R. M., and Creaser, R. A., 2007. Testing the robustness of low-level Re-Os sulfide geochronometers: an example from metamorphosed VMS ores from the Trans Hudson Orogen, Canada. Geological Society of America Abstracts with Programs, 39, 276.

    Google Scholar 

  • Morelli, R. M., Creaser, R. A., Selby, D., Kelley, K. D., Leach, D. L., and King, A. R., 2004. Re-Os sulfide geochronology from the Red Dog sediment-hosted Zn-Pb Ag deposit, Alaska. Economic Geology, 99, 1569–1576.

    Article  Google Scholar 

  • Morelli, R. M., Creaser, R. A., Selby, D., Kontak, D. J., and Horne, R. J., 2005. Rhenium-Osmium arsenopyrite geochronology of Meguma Group gold deposits, Meguma Terrane, Nova Scotia, Canada: evidence for multiple gold mineralizing events. Economic Geology, 100, 1229–1242.

    Article  Google Scholar 

  • Morelli, R. M., Creaser, R. A., Seltmann, R., Stuart, F. M., Selby, D., and Graupner, T., 2007. Age and source constraints for the giant Muruntau gold deposit, Uzbekistan, from coupled Re-Os-He isotopes in arsenopyrite. Geology, 35, 795–798.

    Article  Google Scholar 

  • Morelli, R. M., Bell, C. C., Creaser, R. A., and Simonetti, A., 2010. Constraints on the genesis of gold mineralization at the Homestake Gold Deposit, Black Hills, South Dakota, from rhenium-osmium sulfide geochronology. Mineralium Deposita, 45, 461–480.

    Article  Google Scholar 

  • Naldrett, S. N., and Libby, W. F., 1948. Natural radioactivity of rhenium. Physical Review, 73, 487–493.

    Article  Google Scholar 

  • Nude, P., Asigri, J., Yidana, S., Arhin, E., Foli, G., and Kutu, J., 2012. Identifying pathfinder elements for gold in multi-element soil geochemical data from the Wa-Lawra belt, northwest Ghana: a multivariate statistical approach. International Journal of Geosciences, 3, 62–70.

    Article  Google Scholar 

  • Ootes, L., Morelli, R. M., Lentz, D. R., Falck, H., Creaser, R. A., and Davis, W. J., 2011. The timing of Yellowknife gold mineralization: a relationship with crustal anatexis? Economic Geology, 106, 713–720.

    Article  Google Scholar 

  • Piercey, S. J., Chaloux, E. C., Peloquin, A. S., Hamilton, M. A., and Creaser, R. A., 2008. Synvolcanic and younger rocks from the Blake River Group: implications for regional metallogenesis. Economic Geology, 103, 1243–1268.

    Article  Google Scholar 

  • Reid, A., Smith, R. N., Baker, T., Jagodzinski, E. A., Selby, D., Gregory, C. J., and Skirrow, R. G., 2013. Re-Os dating of molybdenite within hematite breccias from the Vulcan Cu-Au prospect, Olympic Cu-Au province, South Australia. Economic Geology, 108, 883–894.

    Article  Google Scholar 

  • Richards, J.P., and Noble, S.R., 1998. HYPERLINK “http://easweb.eas.ualberta.ca/page/publications/?id=1910” Application of radiogenic isotope systems to the timing and origin of hydrothermal processes. In: Richards, J. P., and Larson, P.B., (eds.), Reviews in Economic Geology, 10, 195–233.

  • Rosera, J. M., Coleman, D. S., and Stein, H. J., 2013. Re-evaluating genetic models for porphyry Mo mineralization at Questa, New Mexico: implications for ore deposition following silicic ignimbrite eruption. Geochemistry, Geophysics, Geosystems, 14, 787–805.

    Google Scholar 

  • Scherstén, A., Creaser, R. A., van Gool, J. A. M., Næraa, T., Szilas, K., and Østergaard, C., 2012. Re-Os and U-Pb constraints on gold mineralisation events in the Meso- to Neoarchaean Storø greenstone belt, Storø, southern West Greenland. Precambrian Research, 203, 149–162.

    Article  Google Scholar 

  • Selby, D., and Creaser, R. A., 2004. Macroscale NTIMS and microscale LA-MC-ICP-MS Re-Os isotopic analysis of molybdenite: testing spatial restrictions for reliable Re-Os age determinations, and implications for the decoupling of Re and Os within molybdenite. Geochimica et Cosmochimica Acta, 68, 3897–3908.

    Article  Google Scholar 

  • Selby, D., Creaser, R. A., Hart, C. J. R., Rombach, C. S., Thompson, J. F. H., Smith, M. T., Bakke, A. A., and Goldfarb, R. J., 2002. Absolute timing of sulfide and gold mineralization: a comparison of Re-Os molybdenite and Ar-Ar mica methods from the Tintina Gold Belt, Alaska. Geology, 30, 791–794.

    Article  Google Scholar 

  • Selby, D., Creaser, R. A., Stein, H. J., Markey, R. J., and Hannah, J. L., 2007. Assessment of the 187Re decay constant by cross calibration of the 187Re-187Os molybdenite and U-Pb zircon chronometers. Geochimica et Cosmochimica Acta, 71, 1999–2013.

    Article  Google Scholar 

  • Selby, D., Kelley, K. D., Hitzman, M. W., and Zieg, J., 2009. Re-Os sulfide (bornite, chalcopyrite, and pyrite) systematics of the carbonate-hosted copper deposits at Ruby Creek, southern Brooks Range, Alaska. Economic Geology, 104, 437–444.

    Article  Google Scholar 

  • Shirey, S. B., and Walker, R. J., 1995. Carius tube digestion for low blank rhenium-osmium analysis. Analytical Chemistry, 67, 2136–2141.

    Article  Google Scholar 

  • Smoliar, M. I., Walker, R. J., and Morgan, J. W., 1996. Re-Os ages of Group IIA, IIIA, IVA and IVB iron meteorites. Science, 271, 1099–1102.

    Article  Google Scholar 

  • Stein, H. J., 2006. Low-rhenium molybdenite by metamorphism in northern Sweden: recognition, genesis, and global implications. Lithos, 87, 300–327.

    Article  Google Scholar 

  • Stein H. J., Scherstén A., Hannah J. L., and Markey R. J., 2003. Sub-grain scale decoupling of Re and 187Os and assessment of laser ablation ICPMS spot dating in molybdenite. Geochimica et Cosmochimica Acta, 67, 3673–3686.

    Article  Google Scholar 

  • Stein, H. J., Sundblad, K., Markey, R. J., Morgan, J. W., and Motuza, G., 1998. Re-Os ages for Archean molybdenite and pyrite, Kuittila-Kivisuo, Finland and Proterozoic molybdenite, Kabeliai, Lithuania: testing the chronometer in a metamorphic and metasomatic setting. Mineralium Deposita, 33, 329–345.

    Article  Google Scholar 

  • Stein, H. J., Morgan, J. W., and Scherstén, A., 2000. Re-Os dating of low-level highly radiogenic (LLHR) sulfides: the Harnäs gold deposit, southwest Sweden, records continental-scale tectonic events. Economic Geology, 95, 1657–1671.

    Google Scholar 

  • Stein, H. J., Markey, R. J., Morgan, J. W., Hannah, J. L., and Scherstén, A., 2001. The remarkable Re-Os chronometer in molybdenite: how and why it works. Terra Nova, 13, 479–486.

    Article  Google Scholar 

  • Suzuki, K., Feely, M., and O’Reilly, C., 2001. Disturbance of the Re-Os chronometer of molybdenites from the late-Caledonian Galway Granite, Ireland, by hydrothermal fluid circulation. Geochemical Journal, 35, 29–35.

    Article  Google Scholar 

  • Tessalina, S., Yudovskaya, M. A., Chaplygin, I. V., Birck, J. L., and Capmas, F., 2008. Sources of unique rhenium enrichment in fumaroles and sulphides at Kudryavy volcano. Geochimica et Cosmochimica Acta, 72, 889–909.

    Article  Google Scholar 

  • Völkening, J., Walczyk, T., and Heumann, K. G., 1991. Osmium isotope ratio determinations by negative thermal ion mass spectrometry. International Journal of Mass Spectrometry and Ion Processes, 105, 147–159.

    Article  Google Scholar 

  • Yu, G., Yang, G., Chen, J., Qu, W., Du, A., and He, W., 2005. Re-Os dating of gold-bearing arsenopyrite of the Maoling gold deposit, Liaoning Province, Northeast China and its geological significance. Chinese Science Bulletin, 50, 1509–1514.

    Article  Google Scholar 

  • Zhu, Z., and Sun, Y., 2013. Direct Re-Os dating of chalcopyrite from the Lala IOCG deposit in the Kangdian copper belt, China. Economic Geology, 108, 871–882.

    Article  Google Scholar 

  • Zhu, M.-T., Zhang, L.-C., Wu, G., Jin, X.-D., Xiang, P., and Li, W.-J., 2013. Zircon U–Pb and pyrite Re–Os age constraints on pyrite mineralization in the Yinjiagou deposit, China. International Geology Review, 55(13), 1616–1625.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert A. Creaser .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this entry

Cite this entry

Creaser, R. (2014). Crustal Sulfide Minerals (Re-Os). In: Rink, W., Thompson, J. (eds) Encyclopedia of Scientific Dating Methods. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6326-5_87-1

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-6326-5_87-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Online ISBN: 978-94-007-6326-5

  • eBook Packages: Springer Reference Earth and Environm. ScienceReference Module Physical and Materials ScienceReference Module Earth and Environmental Sciences

Publish with us

Policies and ethics