Skip to main content

U-Th/He Dating

  • Living reference work entry
  • First Online:
Encyclopedia of Scientific Dating Methods

Synonyms

(U-Th)/He dating; Helium dating; U-He dating; U-Th-Sm/He dating

Definition

U-Th/He dating is a method for determining the age of geological materials. The method is based on the accumulation of helium atoms produced by the alpha decay of U, Th, and in some cases Sm isotopes. Most recently, the method’s chief use has been in measuring the temperature history of rocks at relatively low temperatures of between ~40 °C and ~250 °C.

Introduction

U-Th/He dating is the most venerable of all geochronological methods: the very first radiometric dates of any kind were helium dates reported at the very start of the twentieth century, starting with a 1905 lecture by Ernest Rutherford (1906; Strutt 1905, 1908). These early helium dates had perhaps the greatest intellectual impact of any ages ever measured. They provided independent and quantitative evidence for the great antiquity of rocks, thus establishing a modern framework for understanding Earth history and, of particular importance,...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Bibliography

  • Bender, M., 1973. Helium-uranium dating of corals. Geochimica et Cosmochimica Acta, 37, 1229–1247.

    Article  Google Scholar 

  • Blackburn, T. J., Stockli, D., and Walker, D., 2007. Magnetite (U–Th)/He dating and its application to the geochronology of intermediate to mafic volcanic rocks. Earth and Planetary Science Letters, 259, 360–371.

    Article  Google Scholar 

  • Blondes, M. B., Reiners, P. W., Edwards, B. R., and Biscontini, A. E., 2007. Dating young basalts by (U-Th)/He on xenolithic zircons. Geology, 5, 17–20.

    Article  Google Scholar 

  • Boyce, J. W., Hodges, K. V., Olszewski, W. J., and Jercinovic, M. J., 2005. He diffusion in monazite: implications for (U-Th)/He thermochronometry. Geochemistry, Geophysics, Geosystems, 6, Q12004, doi:10.1029/2005GC001058.

    Article  Google Scholar 

  • Boyce, J. W., Hodges, K. V., Olszewski, W. J., Jercinovic, M. J., Carpenter, B., and Reiners, P. W., 2006. Laser microprobe (U-Th)/He geochronology. Geochimica et Cosmochimica Acta, 70, doi:10.1016/j.gca.2006.03.019.

    Google Scholar 

  • Brown, R. D., Beucher, R., Roper, S., Persano, C., Stuart, F., and Fitzgerald, P., 2013. Natural age dispersion arising from the analysis of broken crystals, part I. Theoretical basis and implications for the apatite (U-Th)/He thermochronometer. Geochimica et Cosmochimica Acta, 122, 478–497.

    Article  Google Scholar 

  • Burchfield, J. D., 1975. Lord Kelvin and the Age of the Earth. Chicago: University of Chicago Press, 275 pp.

    Google Scholar 

  • Cabral, R. C., Eugster, O., Brauns, M., Lehmann, B., Rösel, D., Zack, T., de Abreu, F. R., Pernicka, E., and Barth, M., 2013. Direct dating of gold by radiogenic helium: testing the method on gold from Diamantina, Minas Gerais, Brazil. Geology, 41, 163–166.

    Article  Google Scholar 

  • Dalrymple, G. B., 1994. The Age of the Earth. Stanford: Stanford University Press, 492 pp.

    Google Scholar 

  • Damon, P. E., and Green, W. D., 1963. Investigations of he age dating method by stable isotope dilution technique, IAEA Symposium on Dating. Int. At. Energy Agency, Vienna, 55–63.

    Google Scholar 

  • Damon, P. E., and Kulp, J. L., 1957. Determination of radiogenic helium in zircon by stable isotope dilution technique. Transaction, American Geophysical Union, 38, 945–953.

    Article  Google Scholar 

  • Dodson, M. A., 1973. Closure temperature in cooling geochronological and petrological systems. Contributions to Mineralogy and Petrology, 40, 259–274.

    Article  Google Scholar 

  • Fanale, F. P., and Kulp, J. L., 1962. The helium method and the age of the Cornwall, Pennsylvania magnetite ore. Economic Geology, 57, 735–746.

    Article  Google Scholar 

  • Fanale, F. P., and Schaeffer, O. A., 1965. Helium-uranium ratios for Pleistocene and Tertiary fossil aragonites. Science, 149, 312–317.

    Article  Google Scholar 

  • Farley, K. A., 2000. Helium diffusion from apatite: general behaviour as illustrated by Durango fluorapatite. Journal of Geophysical Research, 105, 2903–2914.

    Article  Google Scholar 

  • Farley, K. A., 2002. (U-Th)/He dating: techniques, calibrations, and applications. Reviews in Mineralogy and Geochemistry, 47, 819–844.

    Article  Google Scholar 

  • Farley, K. A., Wolf, R. A., and Silver, L. T., 1996. The effects of long alpha-stopping distances on (U-Th)/He ages. Geochimica et Cosmochimica Acta, 60, 4223–4229.

    Article  Google Scholar 

  • Farley, K. A., Kohn, B. P., and Pillans, B., 2002. The effects of secular disequilibrium on (U-Th)/He systematics and dating of Quaternary volcanic zircon and apatite. Earth and Planetary Science Letters, 201, 117–125.

    Article  Google Scholar 

  • Ferreira, M., Macedo, R., Reynolds, J., Riley, J., and Rowe, M., 1975. Rare gas dating, II. Attempted U-He dating of young volcanic rocks from the Madeira Archipelago. Earth and Planetary Science Letters, 25, 142–150.

    Article  Google Scholar 

  • Finnegan, N. J., Hallet, B., Montgomery, D. R., Zeitler, P. K., Stone, J. O., Anders, A. M., and Liu, Y., 2008. Coupling of rock uplift and river incision in the Namche Barwa-Gyala Peri massif, Tibet. Geological Society of America Bulletin, 120, 142–155, doi:10.1130/B26224.1.

    Article  Google Scholar 

  • Fitzgerald, P., Baldwin, S., Webb, L., and O’Sullivan, P., 2006. Interpretation of (U-Th)/He single grain ages from slowly cooled crustal terranes: a case study from the Transantarctic Mountains of southern Victoria Land. Chemical Geology, 225, 91–120, doi:10.1016/j.chemgeo.2005.09.001.

    Article  Google Scholar 

  • Flowers, R. M., 2009. Exploiting radiation damage control on apatite (U-Th)/He dates in cratonic regions. Earth and Planetary Science Letters, 277, 148–155.

    Article  Google Scholar 

  • Flowers, R. M., and Farley, K. A., 2012. Apatite 4He/3He and (U-Th)/He evidence for an ancient Grand Canyon. Science, 338, 1616–1619.

    Article  Google Scholar 

  • Flowers, R. M., Bowring, S. A., and Reiners, P. W., 2006. Low long-term erosion rates and extreme continental stability documented by ancient (U-Th)/He dates. Geology, 34, 925–928.

    Article  Google Scholar 

  • Flowers, R. M., Ketcham, R. A., Shuster, D. L., and Farley, K. A., 2009. Apatite (U-Th)/He thermochronometry using radiation damage accumulation and annealing model. Geochimica et Cosmochimica Acta, 73, 2347–2365, doi:10.1016/j.gca.2009.01.015.

    Article  Google Scholar 

  • Hallam, A., 1989. Great Geological Controversies, 2nd edn. New York, USA: Oxford University Press, 244 pp.

    Google Scholar 

  • Harrison, T. M., and Zeitler, P. K., 2005. Fundamentals of noble gas thermochronometry. In Reiners, P. W., and Ehlers, T. A. (eds.), Low-Temperature Thermochronology: Techniques, Interpretations, and Applications. Chantilly, VA: Mineralogical Society of America. Reviews in Mineralogy & Geochemistry, Vol. 58, pp. 123–149.

    Google Scholar 

  • House, M. A., Wernicke, B. P., Farley, K. A., and Dumitru, T. A., 1997. Cenozoic thermal evolution of the central Sierra Nevada, California, from (U-Th)/He thermochronometry. Earth and Planetary Science Letters, 151, 167–179.

    Article  Google Scholar 

  • House, M. A., Wernicke, B. P., and Farley, K. A., 1998. Dating topography of the Sierra Nevada, California, using apatite (U-Th)/He ages. Nature, 369, 66–69.

    Article  Google Scholar 

  • Hurley, P. M., 1954. The helium age method and the distribution and migration of helium in rocks. In Faul, H. (ed.), Nuclear Geology. New York: Wiley, pp. 301–329.

    Google Scholar 

  • Ketcham, R. A., Gautheron, C., and Tassan-Got, L., 2011. Accounting for long alpha-particle stopping distances in (U-Th-Sm)/He geochronology: refinement of the baseline case. Geochimica et Cosmochimica Acta, 75, 7779–7791, doi:10.1016/j.gca.2011.10.011.

    Article  Google Scholar 

  • Leventhal, J. S., 1975. An evaluation of the uranium-thorium-helium method for dating young basalts. Journal of Geophysical Research, 80, 1911–1914.

    Article  Google Scholar 

  • Lewis, C., 2000. The Dating Game: One Man’s Search for the Age of the Earth. Cambridge: Cambridge University Press, 216 pp.

    Google Scholar 

  • Lippolt, H. J., and Weigel, E., 1988. 4He diffusion in 40Ar-retentive minerals. Geochimica et Cosmochimica Acta, 52, 1449–1458.

    Article  Google Scholar 

  • Lippolt, J. J., Wernicke, R. S., and Boschmann, W., 1993. 4He diffusion in specular hematite. Physics and Chemistry of Minerals, 20, 415–418.

    Article  Google Scholar 

  • Lippolt, H. J., Brander, T., and Mankopf, N. R., 1998. An attempt to determine formation ages of goethites and limonites by (U + Th)-4He dating. Neues Jahrbuch für Mineralogie – Monatshefte, 11, 505–528.

    Google Scholar 

  • McDowell, F., McIntosh, W., and Farley, K. A., 2005. A precise 40Ar-39Ar reference age for the Durango apatite (U-Th)/He and fission-track dating standard. Chemical Geology, 214, 249–263.

    Article  Google Scholar 

  • McKeon, R. E., Zeitler, P. K., Pazzaglia, F. J., Idleman, B. D., and Enklemann, E., (2014). Decay of an old orogen: inferences about Appalachian landscape evolution from low-temperature thermochronology. Geological Society of America Bulletin, http://gsabulletin.gsapubs.org/content/early/2013/11/06/B30808.1.abstract; http://gsabulletin.gsapubs.org/content/126/1-2.toc.pdf

  • Meesters, A. G. C. A., and Dunai, T. J., 2005. A noniterative solution of the (U-Th)/He age equation. Geochemistry, Geophysics, Geosystems, 6, Q04002, doi:10.1029/2004GC000834.

    Article  Google Scholar 

  • Nicolescu, S., and Reiners, P. W., 2005. (U-Th)/He dating of epidote and andradite garnet. Geochimica et Cosmochimica Acta, 69, A26.

    Google Scholar 

  • Ozima, M., and Podosek, F. A., 2002. Noble-Gas Geochemistry, 2nd edn. Cambridge: Cambridge University Press, 286 pp.

    Google Scholar 

  • Porcelli, D., Ballentine, C. J., and Wieler, R. (eds.), 2002. Noble Gases in Geochemistry and Cosmochemistry. Washington, DC: Mineralogical Society of America/Geochemical Society. Reviews in Mineralogy and Geochemistry, Vol. 47, 844 pp.

    Google Scholar 

  • Rahl, J. M., Reiners, P. W., Campbell, I. H., Nicolescu, S., and Allen, C. M., 2003. Combined single-grain (U-Th)/He and U/Pb dating of detrital zircons from the Navajo Sandstone, Utah. Geology, 31, 761–764.

    Article  Google Scholar 

  • Reiners, P. W., 2005. Zircon (U-Th)/He thermochronometry. In Reiners, P. W., and Ehlers, T. A. (eds.), Low-Temperature thermochronology: Techniques, Interpretations, and Applications. Chantilly, VA: Mineralogical Society of America. Reviews in Mineralogy and Geochemistry, Vol. 58, pp. 151–179.

    Google Scholar 

  • Reiners, P. W., and Ehlers, T. A. (eds.), 2005. Low-Temperature Thermochronology: Techniques, Interpretations, and Applications. Chantilly, VA: Mineralogical Society of America. Reviews in Mineralogy and Geochemistry, Vol. 58, 622 pp.

    Google Scholar 

  • Reiners, P. W., and Farley, K. A., 1999. He diffusion and (U-Th)/He thermochronometry of titanite. Geochimica et Cosmochimica Acta, 63, 3845–3859.

    Article  Google Scholar 

  • Reiners, P. W., and Farley, K. A., 2001. Influence of crystal size on apatite (U–Th)/He thermochronology: an example from the Bighorn Mountains, Wyoming. Earth and Planetary Science Letters, 188, 413–420.

    Article  Google Scholar 

  • Reiners, P. W., Farley, K. A., and Hickes, H. J., 2002. He diffusion and (U-Th)/He thermochronometry of zircon: initial results from Fish Canyon Tuff and Gold Butte, Nevada. Tectonophysics, 349, 297–308.

    Article  Google Scholar 

  • Reiners, P. W., Thomson, S. N., McPhillips, D., Donelick, R. A., and Roering, J. J., 2007. Wildfire thermochronology and the fate and transport of apatite in hillslope and fluvial environments. Journal of Geophysical Research-Earth Surface, 112, F04001, doi:10.1029/2007JF000759.

    Article  Google Scholar 

  • Riihimaki, C. A., Reiners, P. W., and Heffern, E. L., 2009. Climate control on Quaternary coal fires and landscape evolution, Powder River basin, Wyoming and Montana. Geology, 37, 255–258.

    Article  Google Scholar 

  • Rutherford, E., 1906. Radioactive Transformations. New York: Charles Scribner’s Sons, 287 pp.

    Google Scholar 

  • Schmitz, M. D., and Bowring, S. A., 2001. U-Pb zircon and titanite systematics of the Fish Canyon Tuff: an assessment of high-precision U-Pb geochronology and its application to young volcanic rocks. Geochimica et Cosmochimica Acta, 65, 2571–2587.

    Article  Google Scholar 

  • Shuster, D. L., and Farley, K. A., 2004. 4He/3He thermochronometry. Earth and Planetary Science Letters, 217, 1–17, doi:10.1016/S0012-821X(03)00595-8.

    Article  Google Scholar 

  • Shuster, D. L., Farley, K. A., Sisterson, J. M., and Burnett, D. S., 2004. Quantifying the diffusion kinetics and spatial distributions of radiogenic 4He in minerals containing proton-induced 3He. Earth and Planetary Science Letters, 217, 19–32.

    Article  Google Scholar 

  • Shuster, D. L., Vasconcelos, P. M., Heim, J. A., and Farley, K. A., 2005. Weathering geochronology by (U-Th)/He dating of goethite. Geochimica et Cosmochimica Acta, 69, 659–673.

    Article  Google Scholar 

  • Shuster, D. L., Flowers, R. M., and Farley, K. A., 2006. The influence of natural radiation damage on helium diffusion kinetics in apatite. Earth and Planetary Science Letters, 249, 148–161, doi:10.1016/j.epsl.2006.07.028.

    Article  Google Scholar 

  • Shuster, D. L., Cuffey, K. M., Sanders, J. W., and Balco, G., 2011. Thermochronometry reveals headward propagation of erosion in an Alpine landscape. Science, 332, 84–88.

    Article  Google Scholar 

  • Spiegel, C., Kohn, B., Belton, D., Berner, Z., and Gleadow, A., 2009. Apatite (U-Th-Sm)/He thermochronology of rapidly cooled samples: the effect of He implantation. Earth and Planetary Science Letters, 285, 105–114, doi:10.1016/j.epsl.2009.05.045.

    Article  Google Scholar 

  • Stockli, D. F., and Farley, K. A., 2002. Empirical constraints on the titanite (U-Th)/He partial retention zone from the KTB drill hole. Chemical Geology, 207, 223–236.

    Article  Google Scholar 

  • Strutt, R. J., 1905. On the radioactive minerals. Proceedings. Royal Society of London, A76, 88–101.

    Article  Google Scholar 

  • Strutt, R. J., 1908. The accumulation of helium in geologic time. Proceedings. Royal Society of London, A81, 272–277.

    Article  Google Scholar 

  • Strutt, R. J., 1909. The leakage of helium from radioactive minerals. Proceedings. Royal Society of London, A82, 166–169.

    Article  Google Scholar 

  • Turekian, K., Kharkar, D., Funkhouser, J., and Schaeffer, O. A., 1970. An evaluation of the U-He method of dating bone. Earth and Planetary Science Letters, 103, 420–424.

    Article  Google Scholar 

  • van der Beek, P. A., Valla, P. G., Herman, F., Braun, J., Persano, C., Dobson, K. J., and Labrin, E., 2010. Inversion of thermochronological age–elevation profiles to extract independent estimates of denudation and relief history – II: application to the French Western Alps. Earth and Planetary Science Letters, 296, 9–22.

    Article  Google Scholar 

  • Vermeesch, P., 2008. Three new ways to calculate average (U-Th)/He ages. Chemical Geology, 249, 339–347, doi:10.1016/j.chemgeo.2008.01.027.

    Article  Google Scholar 

  • Vermeesch, P., Seward, D., Latkoczy, C., Wipf, M., Guenther, D., and Baur, H., 2007. Alpha-emitting mineral inclusions in apatite, their effect on (U-Th)/He ages, and how to reduce it. Geochimica et Cosmochimica Acta, 71, 1737–1746.

    Article  Google Scholar 

  • Wagner, G. A., and Storzer, D., 1972. Fission track length reductions in minerals and the thermal histories of rocks. American Nuclear Society Transactions, 15, 127–128.

    Google Scholar 

  • Wolf, R. A., Farley, K. A., and Silver, L. T., 1996. Helium diffusion and low temperature thermochronometry of apatite. Geochimica et Cosmochimica Acta, 60, 4231–4240.

    Article  Google Scholar 

  • Zeitler, P. K., Herczeg, A. L., McDougall, I., and Honda, M., 1987. U-Th-He dating of apatite: a potential thermochronometer. Geochimica et Cosmochimica Acta, 51, 2865–2868.

    Article  Google Scholar 

Download references

Acknowledgment

Thanks to Ken Farley for the useful comments that helped me clarify several technical points.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter K. Zeitler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this entry

Cite this entry

Zeitler, P.K. (2014). U-Th/He Dating. In: Rink, W., Thompson, J. (eds) Encyclopedia of Scientific Dating Methods. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6326-5_131-1

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-6326-5_131-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Online ISBN: 978-94-007-6326-5

  • eBook Packages: Springer Reference Earth and Environm. ScienceReference Module Physical and Materials ScienceReference Module Earth and Environmental Sciences

Publish with us

Policies and ethics