Skip to main content

Luminescence Dating, Instrumentation

  • Living reference work entry
  • Latest version View entry history
  • First Online:
Encyclopedia of Scientific Dating Methods

Definition

The basic instrumentation required to obtain a dose based on optically stimulated luminescence (OSL) signals consists of four main components: (i) a luminescence detection system, (ii) a stimulation light source, (iii) a heating system, and (iv) an irradiation facility. To obtain a thermoluminescence (TL) dose, a stimulation light source is not required.

Introduction

Luminescence dating is an absolute chronological technique widely used in archaeological and geological dating but also with applications in other areas of retrospective dosimetry such as environmental, accidental, medical, and forensic dosimetry. In dating applications an age is determined by measuring the dose absorbed by the target mineral, primarily quartz and feldspars, and dividing it by an independently determined dose rate in the media. This dose rate is mainly derived from the flux of ionizing radiation emitted from naturally occurring isotopes (from the thorium and uranium series as well as...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Bibliography

  • Ankjærgaard, C., Murray, A. S., and Denby, P. M., 2006. Thermal pre-treatment in the OSL dating of quartz: is it necessary? Radiation Protection Dosimetry, 119, 470–473.

    Article  Google Scholar 

  • Bøtter-Jensen, L., and Duller, G. A. T., 1992. A new system for measuring OSL from quartz samples. Nuclear Tracks Radiation Measurements, 20, 549–553.

    Article  Google Scholar 

  • Bøtter-Jensen, L., Duller, G. A. T., Murray, A. S., and Banerjee, D., 1999. Blue light emitting diodes for optical stimulation of quartz in retrospective dosimetry and dating. Radiation Protection Dosimetry, 84, 335–340.

    Article  Google Scholar 

  • Bøtter-Jensen, L., Bulur, E., Duler, G. A. T., and Murray, A. S., 2000. Advances in luminescence instrument systems. Radiation Measurements, 32, 523–528.

    Article  Google Scholar 

  • Bøtter-Jensen, L., McKeever, S. W. S., and Wintle, A. G., 2003. Optically Stimulated Luminescence Dosimetry. Amsterdam: Elsevier.

    Google Scholar 

  • Bøtter-Jensen, L., Thomsen, K. J., and Jain, M., 2010. Review of optically stimulated luminescence (OSL) instrumental developments for retrospective dosimetry. Radiation Measurements, 45, 253–257.

    Article  Google Scholar 

  • Bulur, E., 1996. An alternative technique for optically stimulated luminescence (OSL) experiment. Radiation Measurements, 26, 701–709.

    Article  Google Scholar 

  • Buylaert, J. P., Jain, M., Murray, A. S., Thomsen, K. J., and Lapp, T., 2012. IR-RF dating of sand-sized K-feldspar extracts: a test of accuracy. Radiation Measurements, 47, 759–765.

    Article  Google Scholar 

  • Clark-Balzan, L., and Schwenninger, J., 2012. First steps toward spatially resolved OSL dating with electron multiplying charge-coupled devices (EMCCDs): system design and image analysis. Radiation Measurements, 47, 797–802.

    Article  Google Scholar 

  • Denby, P. M., Bøtter-Jensen, L., Murray, A. S., Thomsen, K. J., and Moska, P., 2006. Application of pulsed OSL to the separation of the luminescence components from a mixed quartz/feldspar sample. Radiation Measurements, 41, 774–779.

    Article  Google Scholar 

  • Duller, G. A. T., Bøtter-Jensen, L., Murray, A. S., and Truscott, A. J., 1999. Single grain laser luminescence (SGLL) measurement using a novel automated reader. Nuclear Instruments and Methods B, 155, 506–514.

    Article  Google Scholar 

  • Duller, G. A. T., Bøtter-Jensen, L., and Murray, A. S., 2003. Combining infrared- and green-laser stimulation sources in single-grain luminescence measurements of feldspar and quartz. Radiation Measurements, 37, 543–550.

    Article  Google Scholar 

  • Fattahi, M., and Stokes, S., 2000. Extending the time range of luminescence dating using red TL (RTL) from volcanic quartz. Radiation Measurements, 32, 479–485.

    Article  Google Scholar 

  • Huntley, D. J., Godfrey-Smith, D. I., and Thewalt, M. L. W., 1985. Optically dating of sediments. Nature, 313, 105–107.

    Article  Google Scholar 

  • Huntley, D. J., Godfrey-Smith, D. I., and Haskell, E. H., 1991. Light-induced emission spectra from some quartz and feldspars. Nuclear Tracks and Radiation Measurements, 18, 127–131.

    Article  Google Scholar 

  • Jain, M., 2009. Extending the dose range: probing deep traps in quartz with 3.06 eV photons. Radiation Measurements, 44, 445–452.

    Article  Google Scholar 

  • Jain, M., and Ankjærgaard, C., 2011. Towards a non-fading signal in feldspar: insight into charge transport and tunnelling from time-resolved optically stimulated luminescence. Radiation Measurements, 46, 292–309.

    Article  Google Scholar 

  • Jain, M., Bøtter-Jensen, L., Murray, A. S., Denby, P. M., Tsukamoto, S., and Gibling, M. R., 2005. Revisiting TL: dose measurement beyond the OSL using SAR. Ancient TL, 23, 9–24.

    Google Scholar 

  • Jain, M., Bøtter-Jensen, L., and Thomsen, K. J., 2007. High local ionization density effects in X-ray excitations deduced from optical stimulation of trapped charge in Al2O3:C. Journal of Physics: Condensed Matter, 19, 116201–116215.

    Google Scholar 

  • Krbetschek, M. R., Trautmann, T., Dietrich, A., and Stolz, W., 2000. Radioluminescence dating of sediments: methodological aspects. Radiation Measurements, 32, 493–498.

    Article  Google Scholar 

  • McKeever, S. W. S., Markey, B. G., and Axelrod, M. S., 1996. Pulsed optically stimulated luminescence dosimetry using a-Al2O3:C. Radiation Protection Dosimetry, 65, 267–272.

    Article  Google Scholar 

  • Richter, D., Richter, A., and Dornich, K., 2013 (Accepted). Lexsyg – a new instrument for luminescence research. Geochronometria, 40, 220–228.

    Google Scholar 

  • Spooner, N. A., and Allsop, A., 2000. The spatial variation of dose-rate from 90Sr/90Y beta sources for use in luminescence dating. Radiation Measurements, 32, 49–55.

    Article  Google Scholar 

  • Thomsen, K. J., Bøtter-Jensen, L., Denby, P. M., and Murray, A. S., 2006. Luminescence response to irradiation using mini X-ray generators. Nuclear Instruments and Methods in Physics Research Section B, 252, 267–275.

    Article  Google Scholar 

  • Thomsen, K. J., Jain, M., Murray, A. S., Denby, P. M., Roy, N., and Bøtter-Jensen, L., 2008. Minimizing feldspar OSL contamination in quartz UV-OSL using pulsed blue stimulation. Radiation Measurements, 43, 752–757.

    Article  Google Scholar 

  • Vandenberghe, D. A. G., Jain, M., and Murray, A. S., 2009. Equivalent dose determination using a quartz isothermal TL signal. Radiation Measurements, 44, 439–444.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kristina Jørkov Thomsen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this entry

Cite this entry

Thomsen, K.J. (2014). Luminescence Dating, Instrumentation. In: Rink, W., Thompson, J. (eds) Encyclopedia of Scientific Dating Methods. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6326-5_121-3

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-6326-5_121-3

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Online ISBN: 978-94-007-6326-5

  • eBook Packages: Springer Reference Earth and Environm. ScienceReference Module Physical and Materials ScienceReference Module Earth and Environmental Sciences

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Luminescence Dating, Instrumentation
    Published:
    11 February 2014

    DOI: https://doi.org/10.1007/978-94-007-6326-5_121-3

  2. Original

    Luminescence Dating, Instrumentation
    Published:
    05 October 2013

    DOI: https://doi.org/10.1007/978-94-007-6326-5_121-2