Skip to main content

Ecotoxicity of Zinc Oxide Nanoparticles in the Marine Environment

  • Living reference work entry
  • First Online:
Encyclopedia of Nanotechnology

Synonyms

Marine organisms; Nano-ecotoxicology; Toxic mechanisms; Zinc oxide nanoparticles (ZnO-NPs)

Definition

Ecotoxicity is generally defined as the subject in the field of ecotoxicology which studies the potential for biological, chemical, or physical stressors to affect ecosystems. The study of ecotoxicity of nanoparticles focuses on the toxic effects of nanoparticles on wildlife and their ecosystems and uncovers the natural uptake and toxic mechanisms of nanoparticles in organisms. It also investigates the influences of environmental factors on bioavailability and toxicity of the nanoparticles to the organisms. Nanoparticles are defined as particles having one or more dimensions between 1 and 100 nm that show distinct properties from their bulk counterparts of the same materials [1]. The use of nanoparticles in manufactured products has grown dramatically in the last decade. The continuously growing market for zinc oxide nanoparticles (ZnO-NPs), driven mainly by increasing demand...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Auffan, M., Rose, J., Bottero, J.Y., Lowry, G.V., Jolivet, J.P., Wiesner, M.R.: Towards a definition of inorganic nanoparticles from an environmental, health and safety perspective. Nat. Nanotechnol. 4, 634–641 (2009)

    Article  Google Scholar 

  2. Future Markets: The Global Market for Zinc Oxide Nanoparticles. Future Markets, London (2014)

    Google Scholar 

  3. Nowack, B.: The occurrence, behavior, and effects of engineered nanomaterials in the environment. In: Kim, J. (ed.) Advances in Nanotechnology and the Environment, pp. 197–207. Pan Stanford, Singapore (2012)

    Google Scholar 

  4. Boxall, A.B..A., Chaudhry, Q., Sinclair, C., Jones, A.D., Aitken, R., Jefferson, B., Watts, C.: Current and Future Predicted Environmental Exposure to Engineered Nanoparticles. Central Science Laboratory, Sand Hutton (2007)

    Google Scholar 

  5. Gottschalk, F., Sun, T.Y., Nowack, B.: Environmental concentrations of engineered nanomaterials: review of modeling and analytical studies. Environ. Pollut. 181, 287–300 (2013)

    Article  Google Scholar 

  6. Gottschalk, F., Sonderer, T., Scholz, R.W., Nowack, B.: Modeled environmental concentrations of engineered nanomaterials (TiO2, ZnO, Ag, CNT, fullerenes) for different regions. Environ. Sci. Technol. 43, 9216–9222 (2009)

    Article  Google Scholar 

  7. Gottschalk, F., Sonderer, T., Scholz, R.W., Nowack, B.: Possibility and limitations of modeling environmental exposure to engineered nanomaterials by probabilistic material flow analysis. Environ. Toxicol. Chem. 29, 1036–1048 (2010)

    Google Scholar 

  8. Domingos, R.F., Baalousha, M.A., Yon, J.N., Reid, M.M., Tufenkji, N., Lead, J.R., Leppard, G.G., Wilkinson, K.J.: Characterizing manufactured nanoparticles in the environment: multimethod determination of particle sizes. Environ. Sci. Technol. 43, 7277–7284 (2009)

    Article  Google Scholar 

  9. Tiede, K., Hassellöv, M., Breitbarth, E., Chaudhry, Q., Boxall, A.B..A.: Considerations for environmental fate and ecotoxicity testing to support environmental risk assessments for engineered nanoparticles. J. Chromatogr. A 1216, 503–509 (2009)

    Google Scholar 

  10. Fairbairn, E.A., Keller, A.A., Mädler, L., Zhou, D., Pokhrel, S.: Metal oxide nanoparticles in seawater: linking physiochemical characteristics with biological response in sea urchin development. J. Hazard. Mater. 192, 1565–1571 (2011)

    Article  Google Scholar 

  11. Bian, S.W., Mudunkotuwa, I.A., Rupasinghe, T., Grassian, V.H.: Aggregation and dissolution of 4 nm ZnO nanoparticles in aqueous environments: influence of pH, ionic strength, size, and adsorption of humic acid. Langmuir 27, 6059–6068 (2011)

    Article  Google Scholar 

  12. Tang, E., Cheng, G., Ma, X., Pang, X., Zhao, Q.: Surface modification of zinc oxide nanoparticle by PMAA and its dispersion in aqueous system. Appl. Surf. Sci. 252, 5227–5232 (2006)

    Article  Google Scholar 

  13. Lowry, G.V., Wiesner, M.R.: Environmental considerations: occurrences, fate, and characterization of nanoparticles in the environment. In: Monteiro-Riviere, N.A., Lang Tran, C. (eds.) Nanotoxicology: Characterization, Dosing and Health Effects, pp. 369–389. Informa Healthcare, New York (2007)

    Chapter  Google Scholar 

  14. Yang, K., Lin, D., Xing, B.: Interactions of humic acid with nanosized inorganic oxides. Langmuir 25, 3571–3576 (2009)

    Article  Google Scholar 

  15. Wang, X., Lu, J., Xu, M., Xing, B.: Sorption of pyrene by regular and nanoscaled metal oxide particles: influence of adsorbed organic matter. Environ. Sci. Technol. 42, 7267–7272 (2008)

    Article  Google Scholar 

  16. Lipovsky, A., Tzitrinovich, Z., Friedmann, H., Applerot, G., Gedanken, A., Lubart, R.: EPR study of visible light-induced ROS generation by nanoparticles of ZnO. J. Phys. Chem. C 113, 15997 (2009)

    Article  Google Scholar 

  17. Scown, T.M., van Aerle, R., Tyler, C.R.: Review: do engineered nanoparticles pose a significant threat to the aquatic environment? Crit. Rev. Toxicol. 40(7), 653–670 (2010)

    Article  Google Scholar 

  18. Peng, X., Palma, S., Fisher, N.S., Wong, S.S.: Effect of morphology of ZnO nanostructures on their toxicity to marine algae. Aquat. Toxicol. 102, 186–196 (2011)

    Article  Google Scholar 

  19. Miao, A.J., Zhang, X.Y., Luo, Z., Chen, C.S., Chin, W.C., Santschi, P.H., Quigg, A.: Zinc oxide-engineered nanoparticles: dissolution and toxicity to marine phytoplankton. Environ. Toxicol. Chem. 29(12), 2814–2822 (2010)

    Article  Google Scholar 

  20. Wong, S.W.Y., Leung, P.T.Y., Djurišić, A.B.., Leung, K.M.Y.: Toxicities of nano zinc oxide to five marine organisms: influences of aggregate size and ion solubility. Anal. Bioanal. Chem. 396, 609–618 (2010)

    Article  Google Scholar 

  21. Manzo, S., Miglietta, M.L., Rametta, G., Buono, S., Di Francia, G.: Toxic effects of ZnO nanoparticles towards marine algae Dunaliella tertiolecta. Sci. Total Environ. 445–446, 371–376 (2013)

    Article  Google Scholar 

  22. Miller, R.J., Lenihan, H.S., Muller, E.B., Tseng, N., Hanna, S.K., Keller, A.A.: Impact of metal oxide nanoparticles on marine phytoplankton. Environ. Sci. Technol. 44(19), 7329–7334 (2010)

    Article  Google Scholar 

  23. Keller, A.A., Wang, H., Zhou, D., Lenihan, H.S., Cherr, G., Cardinale, B.J., Miller, R., Ji, Z.: Stability and aggregation of metal oxide nanoparticles in natural aqueous matrices. Environ. Sci. Technol. 44, 1962–1967 (2010)

    Article  Google Scholar 

  24. Trevisan, R., Delapedra, G., Mello, D.F., Arl, M., Schmidt, E.C., Meder, F., Monopoli, M., Cargnin-Ferreira, E., Bouzon, Z.L., Fisher, A.S., Sheehan, D., Dafre, A.: Gills are an initial target of zinc oxide nanoparticles in oysters Crassostrea gigas, leading to mitochondrial disruption and oxidative stress. Aquat. Toxicol. 153, 27–38 (2014)

    Article  Google Scholar 

  25. Buffet, P.E., Amiard-Triquet, C., Dybowska, A., Faverney, C.R., Guibbolini, M., Valsami-Jones, E., Mouneyrac, C.: Fate of isotopically labeled zinc oxide nanoparticles in sediment and effects on two endobenthic species, the clam Scrobicularia plana and the ragworm Hediste diversicolor. Ecotoxicol. Environ. Saf. 84, 191–198 (2012)

    Article  Google Scholar 

  26. Montes, M.O., Hanna, S.K., Lenihan, H.S., Keller, A.A.: Uptake, accumulation, and biotransformation of metal oxide nanoparticles by a marine suspension-feeder. J. Hazard. Mater. 225–226, 139–145 (2012)

    Article  Google Scholar 

  27. Hanna, S.K., Miller, R.J., Muller, E.B., Nisbet, R.M., Lenihan, H.S.: Impact of engineered zinc oxide nanoparticles on the individual performance of Mytilus galloprovincialis. PLoS One 8(4), e61800 (2013)

    Article  Google Scholar 

  28. Ates, M., Daniels, J., Arslan, Z., Farah, I.O., Rivera, H.F.: Comparative evaluation of impact of Zn and ZnO nanoparticles on brine shrimp (Artemia salina) larvae: effects of particle size and solubility on toxicity. Environ. Sci. Process. Impacts. 15, 225–233 (2013)

    Article  Google Scholar 

  29. Jarvis, T.A., Miller, R.J., Lenihan, H.S., Bielmyer, G.K.: Toxicity of ZnO nanoparticles to the copepod Acartia tonsa, exposed through a phytoplankton diet. Environ. Toxicol. Chem. 32(6), 1264–1269 (2013)

    Article  Google Scholar 

  30. Fabrega, J., Tantra, R., Amer, A., Stolpe, B., Tomkins, J., Fry, T., Lead, J.R., Tyler, C., Galloway, T.S.: Sequestration of zinc from zinc oxide nanoparticles and life cycle effects in the sediment dweller amphipod Corophium volutator. Environ. Sci. Technol. 46, 1128–1135 (2012)

    Article  Google Scholar 

  31. Larner, F., Dogra, Y., Dybowska, A., Fabrega, J., Stolpe, B., Bridgestock, L.J., Goodhead, R., Weiss, D.J., Moger, J., Lead, J.R., Valsami-Jones, E., Tyler, C.R., Galloway, T.S., Rehkämper, M.: Tracing bioavailability of ZnO nanoparticles using stable isotope labeling. Environ. Sci. Technol. 46, 12137–12145 (2012)

    Article  Google Scholar 

  32. Handy, R.D., von der Kammer, F., Lead, J.R., Hassellöv, M., Owen, R., Crane, M.: The ecotoxicology and chemistry of manufactured nanoparticles. Ecotoxicology 17, 287–314 (2008)

    Article  Google Scholar 

  33. Zhu, X., Wang, J., Zhang, X., Chang, Y., Chen, Y.: The impact of ZnO nanoparticle aggregates on the embryonic development of zebrafish (Danio rerio). Nanotechnology 20, 195103 (2009)

    Article  Google Scholar 

  34. Xiong, D., Fang, T., Yu, L., Sima, X., Zhu, W.: Effects of nano-scale TiO2, ZnO and their bulk counterparts on zebrafish: acute toxicity, oxidative stress and oxidative damage. Sci. Total Environ. 409, 1444–1452 (2011)

    Article  Google Scholar 

  35. Wong, S.W.Y., Leung, K.M.Y., Djurišić, A.B..: A comprehensive review on the aquatic toxicity of engineered nanomaterials. Rev. Nanosci. Nanotechnol. 2(2), 79–105 (2013)

    Article  Google Scholar 

  36. Ma, H., Williams, P.L., Diamond, S.A.: Ecotoxicity of manufactured ZnO nanoparticles – a review. Environ. Pollut. 172, 76–85 (2013)

    Article  Google Scholar 

  37. Bodansky, M.: Biochemical studies on marine organisms: II. The occurrence of zinc. J. Biol. Chem. 44, 399–407 (1920)

    Google Scholar 

  38. Poynton, H.C., Lazorchak, J.M., Impellitteri, C.A., Smith, M.E., Rogers, K., Patra, M., Hammer, K.A., Allen, H.J., Vulpe, C.D.: Differential gene expression in Daphnia magna suggests distinct modes of action and bioavailability for ZnO nanoparticles and Zn ions. Environ. Sci. Technol. 45, 762–768 (2011)

    Article  Google Scholar 

  39. Hoffmann, M., Hotze, E.M., Wiesner, M.R.: Reactive oxygen species generation on nanoparticulate material. In: Wiesner, M.R., Bottero, J.Y. (eds.) Environmental Nanotechnology: Applications and Impacts of Nanomaterials, pp. 155–171. McGraw-Hill, New York (2007)

    Google Scholar 

  40. Ma, H., Kabengi, N.J., Bertsch, P.M., Unrine, J.M., Glenn, T.C., Williams, P.L.: Comparative phototoxicity of nanoparticulate and bulk ZnO to a free-living nematode Caenorhabditis elegans: the importance of illumination mode and primary particle size. Environ. Pollut. 159(6), 1473–1480 (2011)

    Article  Google Scholar 

  41. Lee, W.M., An, Y.J.: Effects of zinc oxide and titanium dioxide nanoparticles on green algae under visible, UVA, and UVB irradiations: no evidence of enhanced algal toxicity under UV pre-irradiation. Chemosphere 91, 536–544 (2013)

    Article  Google Scholar 

  42. Cairns, J., Health, A.G., Parker, B.C.: The effects of temperature upon the toxicity of chemicals to aquatic organisms. Hydrobiologia 47, 135–171 (1975)

    Article  Google Scholar 

  43. Wong, S.W.Y., Leung, K.M.Y.: Temperature-dependent toxicities of nano zinc oxide to marine diatom, amphipod and fish in relation to its aggregation size and ion dissolution. Nanotoxicology 8(51), 24–35 (2014)

    Article  Google Scholar 

  44. Nugegoda, D., Rainbow, P.S.: Salinity, osmolality, and zinc uptake in Palaemon elegans (Crustacea: Decapoda). Mar. Ecol. Prog. Ser. 55, 149–157 (1989)

    Article  Google Scholar 

  45. Park, J., Kim, S., Yoo, J., Lee, J.S., Park, J.W., Jung, J.: Effect of salinity on acute copper and zinc toxicity to Tigriopus japonicus: the difference between metal ions and nanoparticles. Mar. Pollut. Bull. (2014). doi:10.1016/j.marpolbul.2014.04.038

    Google Scholar 

  46. Leung, K.M.Y., Merrington, G., Warne, M.St.J., Wenning, R.J.: Scientific derivation of environmental quality benchmarks for the protection of aquatic ecosystems: challenges and opportunities. Environ. Sci. Pollut. Res. 21, 1–5 (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mana Man Na Yung .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this entry

Cite this entry

Yung, M.M.N., Mouneyrac, C., Leung, K.M.Y. (2014). Ecotoxicity of Zinc Oxide Nanoparticles in the Marine Environment. In: Bhushan, B. (eds) Encyclopedia of Nanotechnology. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6178-0_100970-1

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-6178-0_100970-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Online ISBN: 978-94-007-6178-0

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics