Skip to main content

Dynamic Force Measurements on Modified Surfaces with AFM

  • Living reference work entry
  • First Online:
Encyclopedia of Nanotechnology

Synonyms

Amplitude-phase-distance (APD) curves; Dynamic force spectroscopy

Definition

Dynamic force measurement is a variation of the force spectroscopy mode of an Atomic Force Microscope (AFM), where the amplitude and phase response of an oscillating AFM probe are used to detect the interaction forces between the probe and the sample or substrate of interest. In contrast to quasi-static force measurements where the micro-cantilever’s deflection signal can be directly related to the interaction force between the AFM tip and sample surface using Hooke’s law, the interpretation of amplitude and phase data in dynamic force measurement often requires detailed analysis of a micro-cantilever’s vibration using dynamic models. When applied at solid/water interfaces, dynamic force measurement is sensitive to solvation forces, van der Waals forces, electric double-layer forces, and viscous damping forces. Dynamic force measurements therefore lead to a useful technique for characterizing...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Binnig, G., Quate, C.F., Gerber, C.: Atomic force microscope. Phys. Rev. Lett. 56(9), 930–933 (1986)

    Article  Google Scholar 

  2. Weisenhorn, A.L., et al.: Forces in atomic force microscopy in air and water. Appl. Phys. Lett. 54(26), 2651–2653 (1989)

    Article  Google Scholar 

  3. Martin, Y., Wickramasinghe, H.K.: Magnetic imaging by “force microscopy” with 1000 Å resolution. Appl. Phys. Lett. 50(20), 1455–1457 (1987)

    Article  Google Scholar 

  4. Butt, H.-J., Cappella, B., Kappl, M.: Force measurements with the atomic force microscope: technique, interpretation and applications. Surf. Sci. Rep. 59(1–6), 1–152 (2005)

    Article  Google Scholar 

  5. Garcıa, R., Pérez, R.: Dynamic atomic force microscopy methods. Surf. Sci. Rep. 47(6–8), 197–301 (2002)

    Article  Google Scholar 

  6. Anczykowski, B., Krüger, D., Fuchs, H.: Cantilever dynamics in quasinoncontact force microscopy: spectroscopic aspects. Phys. Rev. B 53(23), 15485–15488 (1996)

    Article  Google Scholar 

  7. Xu, X., Raman, A.: Comparative dynamics of magnetically, acoustically, and Brownian motion driven microcantilevers in liquids. J. Appl. Phys. 102(3), 034303 (2007)

    Article  Google Scholar 

  8. Ratcliff, G.C., Erie, D.A., Superfine, R.: Photothermal modulation for oscillating mode atomic force microscopy in solution. Appl. Phys. Lett. 72(15), 1911–1913 (1998)

    Article  Google Scholar 

  9. Paulo, Á.S., García, R.: Unifying theory of tapping-mode atomic-force microscopy. Phy. Rev. B 66(4), 041406 (2002)

    Article  Google Scholar 

  10. Hölscher, H.: Quantitative measurement of tip-sample interactions in amplitude modulation atomic force microscopy. Appl. Phys. Lett. 89(12), 123109 (2006)

    Article  Google Scholar 

  11. Tamayo, J., Garcıa, R.: Relationship between phase shift and energy dissipation in tapping-mode scanning force microscopy. Appl. Phys. Lett. 73(20), 2926–2928 (1998)

    Article  Google Scholar 

  12. Lantz, M., et al.: Dynamic force microscopy in fluid. Surf. Interface Anal. 27(5–6), 354–360 (1999)

    Article  Google Scholar 

  13. O’Shea, S.J., Lantz, M.A., Tokumoto, H.: Damping near solid − liquid interfaces measured with atomic force microscopy. Langmuir 15(4), 922–925 (1999)

    Article  Google Scholar 

  14. Ducker, W.A., Senden, T.J., Pashley, R.M.: Measurement of forces in liquids using a force microscope. Langmuir 8(7), 1831–1836 (1992)

    Article  Google Scholar 

  15. Butt, H.-J., Jaschke, M., Ducker, W.: Measuring surface forces in aqueous electrolyte solution with the atomic force microscope. Bioelectrochem. Bioenerg. 38(1), 191–201 (1995)

    Article  Google Scholar 

  16. Melcher, J., et al.: Origins of phase contrast in the atomic force microscope in liquids. Proc. Natl. Acad. Sci. 106(33), 13655–13660 (2009)

    Article  Google Scholar 

  17. Wu, Y., Gupta, C., Shannon, M.A.: Effect of solution concentration, surface bias and protonation on the dynamic response of amplitude-modulated atomic force microscopy in water. Langmuir 24(19), 10817–10824 (2008)

    Article  Google Scholar 

  18. Goldstein, H., Poole Jr., C., Safko, J.: Classical Mechanics. Addsion-Wesley, Reading (1981)

    Google Scholar 

  19. O’Shea, S.J., Welland, M.E.: Atomic force microscopy at solid − liquid interfaces. Langmuir 14(15), 4186–4197 (1998)

    Article  Google Scholar 

  20. Hutter, J.L., Bechhoefer, J.: Calibration of atomic-force microscope tips. Rev. Sci. Instrum 64(7), 1868–1873 (1993)

    Article  Google Scholar 

  21. Nnebe, I., Schneider, J.W.: Characterization of distance-dependent damping in tapping-mode atomic force microscopy force measurements in liquid. Langmuir 20(8), 3195–3201 (2004)

    Article  Google Scholar 

  22. Prakash, S., Yeom, J.: Nanofluidics and Microfluidics: Systems and Applications. Elsevier, Waltham (2014)

    Google Scholar 

  23. Conlisk, A.T.: Essentials of Micro- and Nanofluidics: With Applications to the Biological and Chemical Sciences. Cambridge University Press, Cambridge (2012)

    Book  Google Scholar 

  24. Prakash, S., Karacor, M.B., Banerjee, S.: Surface modification in microsystems and nanosystems. Surf. Sci. Rep. 64(7), 233–254 (2009)

    Article  Google Scholar 

  25. Prakash, S., Karacor, M.B.: Characterizing stability of “click” modified glass surfaces to common microfabrication conditions and aqueous electrolyte solutions. Nanoscale 3(8), 3309–3315 (2011)

    Article  Google Scholar 

  26. Bhushan, B., Wang, Y., Maali, A.: Boundary slip study on hydrophilic, hydrophobic, and superhydrophobic surfaces with dynamic atomic force microscopy. Langmuir 25(14), 8117–8121 (2009)

    Article  Google Scholar 

  27. Lauga, E., Brenner, M., Stone, H.: Microfluidics: the no-slip boundary condition. In: Handbook of Experimental Fluid Dynamics. Springer, New York (2005)

    Google Scholar 

  28. Wu, Y., et al.: Dynamic response of AFM cantilevers to dissimilar functionalized silica surfaces in aqueous electrolyte solutions. Langmuir 26(22), 16963–16972 (2010)

    Article  Google Scholar 

  29. Prakash, S., et al.: “Click” modification of silica surfaces and glass microfluidic channels. Anal. Chem. 79(4), 1661–1667 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Wu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this entry

Cite this entry

Wu, Y., Rangharajan, K.K., Prakash, S. (2015). Dynamic Force Measurements on Modified Surfaces with AFM. In: Bhushan, B. (eds) Encyclopedia of Nanotechnology. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6178-0_100966-1

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-6178-0_100966-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Online ISBN: 978-94-007-6178-0

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics