Skip to main content

Microbial Metabolic Engineering for L-Threonine Production

  • Chapter
  • First Online:
Reprogramming Microbial Metabolic Pathways

Part of the book series: Subcellular Biochemistry ((SCBI,volume 64))

Abstract

L-threonine, one of the three major amino acids produced throughout the world, has a wide application in industry, as an additive or as a precursor for the biosynthesis of other chemicals. It is predominantly produced through microbial fermentation the efficiency of which largely depends on the quality of strains. Metabolic engineering based on a cogent understanding of the metabolic pathways of L-threonine biosynthesis and regulation provides an effective alternative to the traditional breeding for strain development. Continuing efforts have been made in revealing the mechanisms and regulation of L-threonine producing strains, as well as in metabolic engineering of suitable organisms whereby genetically-defined, industrially competitive L-threonine producing strains have been successfully constructed. This review focuses on the global metabolic and regulatory networks responsible for L-threonine biosynthesis, the molecular mechanisms of regulation, and the strategies employed in strain engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

SD sequence:

Shine-Dalgarno sequence

ACT:

Aspartate kinase, Chorismate mutase and TyrA

References

  • Ajinomoto (2009) http://www.ajinomoto.com/ir/pdf/Feed-useAA-Oct2009.pdf. Feed-use amino acids business, Accessed on Oct 2009

  • Almaas E, Kovács B, Vicsek T, Oltvai ZN, Barabási AL (2004) Global organization of metabolic fluxes in the bacterium Escherichia coli. Nature 427:839–843

    Article  PubMed  CAS  Google Scholar 

  • Archer J, Solow-Cordero E, Sinskey AJ (1991) A C-terminal deletion in Corynebacterium glutamicum homoserine dehydrogenase abolishes allosteric inhibition by L-threonine. Gene 107:53–59

    Article  PubMed  CAS  Google Scholar 

  • Becker J, Wittmann C (2011) Systems and synthetic metabolic engineering for amino acid production – the heartbeat of industrial strain development. Curr Opin Biotech 23:1–9

    Google Scholar 

  • Bell SC, Turner JM (1976) Bacterial catabolism of threonine. Threonine degradation initiated by L-threonine-NAD  +  oxidoreductase. Biochem J 156(2):449–458

    PubMed  CAS  Google Scholar 

  • Bologna FP, Andreo CS, Drincovich MF (2007) Escherichia coli malic enzymes: two isoforms with substantial differences in kinetic properties, metabolic regulation, and structure. J Bacteriol 189:5937–5946

    Article  PubMed  CAS  Google Scholar 

  • Boy E, Patte JC (1972) Multivalent repression of aspartic semialdehyde dehydrogenase in Escherichia coli K-12. J Bacteriol 112:84–92

    PubMed  CAS  Google Scholar 

  • Chassagnole C, Raïs B, Quentin E, Fell DA, Mazat JP (2001) An integrated study of threonine-pathway enzyme kinetics in Escherichia coli. Biochem J 356:415–423

    Article  PubMed  CAS  Google Scholar 

  • Chipman DM, Shaanan B (2001) The ACT domain family. Curr Opin Struc Biol 11:694–700

    Article  CAS  Google Scholar 

  • Colon GE, Jetten MS, Nguyen TT, Gubler ME, Follettie MT, Sinskey AJ, Stephanopoulos G (1995) Effect of inducible thrB expression on amino acid production in Corynebacterium lactofermentum ATCC 21799. Appl Environ Microbiol 61:74–78

    PubMed  CAS  Google Scholar 

  • Cremer J, Treptow C, Eggeling L, Sahm H (1988) Regulation of enzymes of lysine biosynthesis in Corynebacterium glutamicum. J Gen Microbiol 134:3221–9

    PubMed  CAS  Google Scholar 

  • Curien G, Bastien O, Robert-Genthon M, Cornish-Bowden A, Cárdenas ML, Dumas R (2009) Understanding the regulation of aspartate metabolism using a model based on measured kinetic parameters. Mol Syst Biol 5:271–284

    Article  PubMed  Google Scholar 

  • Debabov VG (2003) The threonine story. Adv Biochem Eng Biot 79:113–136

    CAS  Google Scholar 

  • Diesveld R, Tietze N, Fürst O, Reth A, Bathe B, Sahm H, Eggeling L (2009) Activity of exporters of Escherichia coli in Corynebacterium glutamicum, and their use to increase L-threonine production. J Mol Microbiol Biotechnol 16:198–207

    Article  PubMed  CAS  Google Scholar 

  • Eggeling L, Sahm H (2001) Review: the cell wall barrier of Corynebacterium glutamicum and amino acid efflux. J Biosci Bioeng 92:201–213

    CAS  Google Scholar 

  • Eggeling L, Sahm H (2003) New ubiquitous translocators: amino acid export by Corynebacterium glutamicum and Escherichia coli. Arch Microbiol 180:155–160

    Article  PubMed  CAS  Google Scholar 

  • Eikmanns BJ, Metzger M, Reinscheid D, Kircher M, Sahm H (1991) Amplification of three biosynthesis genes in Corynebacterium glutamicum and its influence on carbon flux in different strains. Appl Microbiol Biotechnol 34:617–622

    Article  PubMed  CAS  Google Scholar 

  • Fazel A, Mueller K, Le Bras G, Garel JR, Veron M, Cohen GN (1983) A triglobular model for the polypeptide chain of aspartokinase I-homoserine dehydrogenase I of Escherichia coli. Biochemistry 22:158–165

    Article  PubMed  CAS  Google Scholar 

  • Feist AM, Palsson B (2008) The growing scope of applications of genome-scale metabolic reconstructions using Escherichia coli. Nat Biotechnol 26:659–667

    Article  PubMed  CAS  Google Scholar 

  • Feist AM, Henry CS, Reed JL, Krummenacker M, Joyce AR, Karp PD, Broadbelt LJ, Hatzimanikatis V, Palsson B (2007) A genome-scale metabolic reconstruction for Escherichia coli K-12 MG1655 that accounts for 1260 ORFs and thermodynamic information. Mol Syst Biol 3:121–138

    Article  PubMed  Google Scholar 

  • Follettie MT, Shin HK, Sinskey AJ (1988) Organization and regulation of the Corynebacterium glutamicum hom-thrB and thrC loci. Mol Microbiol 2:53–62

    Article  PubMed  CAS  Google Scholar 

  • Fotheringham IG, Dacey SA, Taylor PP, Smith TJ, Hunter MG, Finlay ME, Primrose SB, Parker DM, Edwards RM (1986) The cloning and sequence analysis of the aspC and tyrB genes from Escherichia coli K12. Comparison of the primary structures of the aspartate aminotransferase and aromatic aminotransferase of E. coli with those of the pig aspartate aminotransferase isoenzymes. Biochem J 234:593–604

    PubMed  CAS  Google Scholar 

  • Furukawa S, Ozaki A, Nakanishi T (1988) L-threonine production by L-aspartate- and L-homoserine-resistant mutant of Escherichia coli. Appl Microbiol Biotechnol 29:550–553

    CAS  Google Scholar 

  • Gardner JF (1979) Regulation of the threonine operon: tandem threonine and isoleucine codons in the control region and translational control of transcription termination. Proc Natl Acad Sci USA 76(4):1706–1710

    Article  PubMed  CAS  Google Scholar 

  • Gardner JF, Reznikoff WS (1978) Identification and restriction endonuclease mapping of the threonine operon regulatory region. J Mol Biol 126:241–258

    Article  PubMed  CAS  Google Scholar 

  • Gourdon P, Baucher M-F, Lindley ND, Guyonvarch A (2000) Cloning of the malic enzyme gene from Corynebacterium glutamicum and role of the enzyme in lactate metabolism. Appl Environ Microbiol 66(7):2981–2987

    Article  PubMed  CAS  Google Scholar 

  • Gruber AR, Lorenz R, Bernhart SH, Neuböck R, Hofacker IL (2008) The Vienna RNA Websuite. Nucleic Acids Res 36:70–74

    Article  Google Scholar 

  • Grundy FJ, Lehman SC, Henkin TM (2003) The L box regulon: lysine sensing by leader RNAs of bacterial lysine biosynthesis genes. Proc Natl Acad Sci USA 100:12057–12062

    Article  PubMed  CAS  Google Scholar 

  • Hartman JLIV (2007) Buffering of deoxyribonucleotide pool homeostasis by threonine metabolism. Proc Natl Acad Sci USA 104(10):11700–11705

    Article  PubMed  CAS  Google Scholar 

  • Henkin TM, Yanofsky C (2002) Regulation by transcription attenuation in bacteria: how RNA provides instructions for transcription termination/antitermination decisions. Bioessays 24:700–707

    Article  PubMed  CAS  Google Scholar 

  • James CL, Viola RE (2002) Production and characterization of bifunctional enzymes. Domain swapping to produce new bifunctional enzymes in the aspartate pathway. Biochemistry 41(11):3720–3725

    Article  PubMed  CAS  Google Scholar 

  • Jetten MSM, Follettie MT, Sinskey AJ (1995) Effect of different levels of aspartokinase on the lysine production by Corynebacterium lactofermentum. Appl Microbiol Biotechnol 43:76–82

    Article  PubMed  CAS  Google Scholar 

  • Kalinowski J, Bachmann B, Thierbach G, Pühler A (1990) Aspartokinase genes lysCα and lysCβ overlap and are adjacent to the aspartate β-semialdehyde dehydrogenase gene asd in Corynebacterium glutamicum. Mol Gen Genet 224:317–324

    Article  PubMed  CAS  Google Scholar 

  • Kalinowski J, Cremer J, Bachmann B, Eggeling L, Sahm H, Pühler A (1991) Genetic and biochemical analysis of the aspartokinase from Corynebacterium glutamicum. Mol Microbiol 5:1197–1204

    Article  PubMed  CAS  Google Scholar 

  • Kalinowski J, Bathe B, Bartels D, Bischoff N, Bott M, Burkovski A, Dusch N, Eggeling L, Eikmanns BJ, Gaigalat L, Goesmann A, Hartmann M, Huthmacher K, Krämer R, Linke B, McHardy AC, Meyer F, Möckel B, Pfefferle W, Pühler A, Rey DA, Rückert C, Rupp O, Sahm H, Wendisch VF, Wiegräbe I, Tauch A (2003) The complete Corynebacterium glutamicum ATCC 13032 genome sequence and its impact on the production of L-aspartate-derived amino acids and vitamins. J Biotechnol 104:5–25

    Article  PubMed  CAS  Google Scholar 

  • Katinka M, Cossart P, Sibilli L, Saint-Girons I, Chalvignac MA, Le Bras G, Cohen GN, Yaniv M (1980) Nucleotide sequence of the thrA gene of Escherichia coli. Proc Natl Acad Sci USA 77:5730–5733

    Article  PubMed  CAS  Google Scholar 

  • Kato C, Kurihara T, Kobashi N, Yamane H, Nishiyama M (2004) Conversion of feedback regulation in aspartate kinase by domain exchange. Biochem Bioph Res Co 316:802–808

    Article  CAS  Google Scholar 

  • Kim YH, Park JS, Cho JY, Cho KM, Park YH, Lee J (2004) Proteomic response analysis of a threonine-overproducing mutant of Escherichia coli. Biochem J 381:823–829

    Article  PubMed  CAS  Google Scholar 

  • Klaffl S, Eikmanns BJ (2010) Genetic and functional analysis of the soluble oxaloacetate decarboxylase from Corynebacterium glutamicum. J Bacteriol 192:2604–2612

    Article  PubMed  CAS  Google Scholar 

  • Komatsubara S, Kisumi M, Murata K, Chibata I (1978) Threonine production by regulatory mutants of Serratia marcescens. Appl Environ Microbiol 35:834–840

    PubMed  CAS  Google Scholar 

  • Kotaka M, Ren J, Lockyer M, Hawkins AR, Stammers DK (2006) Structures of R- and T-state Escherichia coli aspartokinase III mechanisms of the allosteric transition and inhibition by lysine. J Biol Chem 281:31544–31552

    Article  PubMed  CAS  Google Scholar 

  • Kruse D, Krämer R, Eggeling L, Rieping M, Pfefferle W, Tchieu JH, Chung YJ, Saier MH Jr, Burkovski A (2002) Influence of threonine exporters on threonine production in Escherichia coli. Appl Microbiol Biotechnol 59(2–3):205–210

    PubMed  CAS  Google Scholar 

  • Lee SH, Hwang BJ (2003) Methionine biosynthesis and its regulation in Corynebacterium glutamicum: parallel pathways of transsulfuration and direct sulfhydrylation. Appl Microbiol Biotechnol 62:459–467

    Article  PubMed  CAS  Google Scholar 

  • Lee JH, Lee DE, Lee BU, Kim HS (2003) Global analyses of transcriptomes and proteomes of a parent strain and an L-threonine-overproducing mutant strain. J Bacteriol 185:5442–5451

    Article  PubMed  CAS  Google Scholar 

  • Lee KH, Park JH, Kim TY, Kim YU, Lee SY (2007) Systems metabolic engineering of Escherichia coli for L-threonine production. Mol Syst Biol 3:149–156

    Article  PubMed  CAS  Google Scholar 

  • Lee JH, Sung BH, Kim MS, Blattner FR, Yoon BH, Kim JH, Kim SC (2009) Metabolic engineering of a reduced-genome strain of Escherichia coli for L-threonine production. Microb Cell Fact 8:2–13

    Article  PubMed  Google Scholar 

  • Leuchtenberger W, Huthmacher K, Drauz K (2005) Biotechnological production of amino acids and derivatives: current status and prospects. Appl Microbiol Biotechnol 69:1–8

    Article  PubMed  CAS  Google Scholar 

  • Liu JQ, Dairi T, Itoh N, Kataoka M, Shimizu S, Yamada H (1998) Gene cloning, biochemical characterization and physiological characterization of a thermostable low-specificity L-threonine aldolase from Escherichia coli. Eur J Biochem 255:220–226

    Article  PubMed  CAS  Google Scholar 

  • Livshits VA, Zakataeva NP, Aleshin VV, Vitushkina MV (2003) Identification and characterization of the new gene rhtA involved in threonine and homoserine efflux in Escherichia coli. Res Microbiol 154:123–135

    Article  PubMed  CAS  Google Scholar 

  • Marienhagen J, Kennerknecht N, Sahm H, Eggeling L (2005) Functional analysis of all aminotransferase proteins inferred from the genome sequence of Corynebacterium glutamicum. J Bacteriol 187:7639–7646

    Article  PubMed  CAS  Google Scholar 

  • Mateos LM, Pisabarro A, Pátek M, Malumbres M, Guerrero C, Eikmanns BJ, Sahm H, Martin JF (1994) Transcriptional analysis and regulatory signals of the hom-thrB cluster of Brevibacterium lactofermentum. J Bacteriol 176:7362–7371

    PubMed  CAS  Google Scholar 

  • Miwa K, Tsuchida T, Kurahashi O, Nakamori S, Sano K, Momose H (1983) Construction of L-threonine overproducing strains of Escherichia coli K-12 using recombinant DNA techniques. Agric Biol Chem 47:2329–2334

    Article  CAS  Google Scholar 

  • Miyajima R, Otsuka SI, Shiio I (1968) Regulation of aspartate family amino acid biosynthesis in Brevibactenium flavum; I. Inhibition by amino acids of the enzymes in threonine biosynthesis. J Biochem 63:139–148

    PubMed  CAS  Google Scholar 

  • Mockel B, Eggeling L, Sahm H (1992) Functional and structural analyses of threonine dehydratase from Corynebacterium glutamicum. J Bacteriol 174:8065–8072

    PubMed  CAS  Google Scholar 

  • Morinage Y, Takagi H, Ishida M, Miwa K, Sato T, Nakamori S, Sano K (1987) Threonine production by co-existence of cloned genes coding homoserine dehydrogenase and homoserine kinase in Brevibacterium lactofermentum. Agric Biol Chem 51:93–100

    Article  Google Scholar 

  • Oberhardt MA, Palsson B, Papin JA (2009) Applications of genome-scale metabolic reconstructions. Mol Syst Biol 5:320–334

    Article  PubMed  Google Scholar 

  • Palmieri L, Berns D, Krämer R, Eikmanns M (1996) Threonine diffusion and threonine transport in Corynebacterium glutamicum and their role in threonine production. Arch Microbiol 165:48–54

    Article  CAS  Google Scholar 

  • Pátek M, Nešvera J (2011) Sigma factors and promoters in Corynebacterium glutamicum. J Biotechnol 154:101–113

    Article  PubMed  Google Scholar 

  • Reinscheid DJ, Eikmanns BJ, Sahm H (1991) Analysis of a Corynebacterium glutamicum hom gene coding for a feedback-resistant homoserine dehydrogenase. J Bacteriol 173:3228–3230

    PubMed  CAS  Google Scholar 

  • Reinscheid DJ, Kronemeyer W, Eggeling L, Eikmanns BJ, Sahm H (1994) Stable expression of hom-1thrB in Corynebacterium glutamicum and its effects on the carbon flux to threonine and related amino acids. Appl Environ Microbiol 60:126–132

    PubMed  CAS  Google Scholar 

  • Rodríguez-Prados JC, de Atauri P, Maury J, Ortega F, Portais JC, Chassagnole C, Acerenza L, Lindley ND, Cascante M (2009) In silico strategy to rationally engineer metabolite production: a case study for threonine in Escherichia coli. Biotechnol Bioeng 103:609–620

    Article  PubMed  Google Scholar 

  • Rückert C, Pühler A, Kalinowski J (2003) Genome-wide analysis of the L-methionine biosynthetic pathway in Corynebacterium glutamicum by targeted gene deletion and homologous complementation. J Biotech 104:213–228

    Article  Google Scholar 

  • Sauer U, Eikmanns BJ (2005) The PEP–pyruvate–oxaloacetate node as the switch point for carbon flux distribution in bacteria. FEMS Microbiol Rev 29:765–794

    Article  PubMed  CAS  Google Scholar 

  • Schrumpf B, Schwarzer A, Kalinowski J, Puhler A, Eggeling L, Sahm H (1991) A functionally split pathway for lysine synthesis in Corynebacterium glutamicium. J Bacteriol 173:4510–4516

    PubMed  CAS  Google Scholar 

  • Shiio I, Miyajima R (1969) Concerted inhibition and its reversal by end products of aspartate kinase in Brevibacterium flavum. J Biochem 64:849–859

    Google Scholar 

  • Shinfuku Y, Sorpitiporn N, Sono M, Furusawa C, Hirasawa T, Shimizu H (2009) Development and experimental verification of a genome-scale metabolic model for Corynebacterium glutamicum. Microb Cell Fact 8:43–57

    Article  PubMed  Google Scholar 

  • Simic P, Sahm H, Eggeling L (2001) L-threonine export: use of peptides to identify a new translocator from Corynebacterium glutamicum. J Bacteriol 183:5317–5324

    Article  PubMed  CAS  Google Scholar 

  • Simic P, Willuhn J, Sahm H, Eggeling L (2002) Identification of glyA (Encoding serine hydroxymethyl transferase) and its use together with the exporter ThrE To increase L-threonine accumulation by Corynebacterium glutamicum. Appl Environ Microbiol 68:3321–3327

    Article  PubMed  CAS  Google Scholar 

  • Tan YZ, Xu DQ, Li Y, Wang X (2012) Construction of a novel sacB-based system for marker-free gene deletion in Corynebacterium glutamicum. Plasmid 67:44–52

    Article  PubMed  CAS  Google Scholar 

  • Theze J, Saint-Girons I (1974) Threonine locus of Escherichia coli K-12: genetic structure and evidence for an operon. J Bacteriol 118:990–998

    PubMed  CAS  Google Scholar 

  • Truffa-Bachi P, Veron M, Cohen GN (1974) Structure, function, and possible origin of a bifunctional allosteric enzyme, Escherichia coli aspartokinase I-homoserine dehydrogenase I. Crit Rev Biochem Mol Biol 2:379–415

    Article  CAS  Google Scholar 

  • Tyo KEJ, Ajikumar PK, Stephanopoulos G (2009) Stabilized gene duplication enables long-term selection-free heterologous pathway expression. Nat Biotechnol 27:760–767

    Article  PubMed  CAS  Google Scholar 

  • Tyo KEJ, Kocharin K, Nielsen J (2010) Toward design-based engineering of industrial microbes. Curr Opin Microbiol 13:255–262

    Article  PubMed  CAS  Google Scholar 

  • Umbarger HE (1973) Threonine deaminase. Adv Enzymol 37:349–395

    PubMed  CAS  Google Scholar 

  • Umbarger HE, Brown B (1957) Threonine deamination in Escherichia coli. II. Evidence for two L-threonine deaminases. J Bacteriol 73:105–112

    PubMed  CAS  Google Scholar 

  • Velasco AM, Leguina JI, Lazcano A (2002) Molecular evolution of the lysine biosynthetic pathways. J Mol Evol 55:445–459

    Article  PubMed  CAS  Google Scholar 

  • Viola RE (2001) The central enzymes of the aspartate family of amino acid biosynthesis. Accounts of Chemical Research 34:339–349

    Article  PubMed  CAS  Google Scholar 

  • Wittmann C (2010) Analysis and engineering of metabolic pathway fluxes in Corynebacterium glutamicum. Adv Biochem Eng Biotechnol 120:21–49

    PubMed  CAS  Google Scholar 

  • Xu DQ, Tan YZ, Huan XJ, Hu XQ, Wang X (2010) Construction of a novel shuttle vector for use in Brevibacterium flavum., an industrial amino acid producer. J Microbiol Meth 80(1):86–92

    Article  CAS  Google Scholar 

  • Yoshida A, Tomita T, Kurihara T, Fushinobu S, Kuzuyama T, Nishiyama M (2007) Structural insight into concerted inhibition of α2β2-type aspartate kinase from Corynebacterium glutamicum. J Mol Biol 368:521–536

    Article  PubMed  CAS  Google Scholar 

  • Yoshida A, Tomita T, Kuzuyama T, Nishiyama M (2010) Mechanism of concerted inhibition of α2β2-type hetero-oligomeric aspartate kinase from Corynebacterium glutamicum. J Biol Chem 285:27477–27486

    Article  PubMed  CAS  Google Scholar 

  • Zhang X, Yan JA, Yu L, Zhang GQ, Zhang Y, Chen N, Wen T (2009) Construction of recombinant plasmids containing threonine operon and their effects on L-threonine accumulation. Acta Microbiol Sin 49:591–596

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National key Basic Research Program of China (2012CB725202), the Basic Research Programs of Jiangsu Province (BK2009003), and the 111 Project (No. 111-2-06).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoyuan Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Dong, X., Quinn, P.J., Wang, X. (2012). Microbial Metabolic Engineering for L-Threonine Production. In: Wang, X., Chen, J., Quinn, P. (eds) Reprogramming Microbial Metabolic Pathways. Subcellular Biochemistry, vol 64. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5055-5_14

Download citation

Publish with us

Policies and ethics