Skip to main content

Quantum Chemical Calculations of the Zero-Field Splitting Tensors for Organic Spin Multiplets

  • Chapter
  • First Online:
EPR of Free Radicals in Solids I

Abstract

In this chapter the state-of-the-art quantum chemical methods for zero-field splitting (ZFS) tensors (D tensors) of organic high spin multiplets are reviewed. Both spin–spin dipolar (D SS) and spin–orbit (D SO) coupling terms appearing in the first and second order, respectively, in the perturbation theory starting from the non-relativistic Schrödinger equation are focused on. Theoretical frameworks for the D SS and D SO tensors in terms of ab initio molecular orbital theory and density functional theory (DFT) are outlined, and several examples of the D SS and D SO tensor calculations including spin–orbit coupling dominant systems (D SOD SS), electronic ground states of organic high-spin systems (spin-quintet and septet species), excited triplet states of closed-shell molecules, and a thermally accessible excited triplet state of quinonoidal dinitrene are given, emphasizing that they all have given testing grounds for the theoretical treatment of D tensors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kaupp M, Bühl M, Malkin VG (2005) Calculation of NMR and EPR parameters: theory and applications. Wiley-VCH, Weinheim

    Google Scholar 

  2. Harriman JE (1978) Theoretical foundations of electron spin resonance. Academic, New York

    Google Scholar 

  3. (a) Morita Y, Suzuki S, Fukui K, Nakazawa S, Kitagawa H, Kishida H, Okamoto H, Naito A, Sekine A, Ohashi Y, Shiro M, Sasaki K, Shiomi D, Sato K, Takui T, Nakasuji K (2008) Thermochromism in an organic crystal based on the co-existence of σ- and π-dimers. Nat Mater 7:48–51; (b) Morita Y, Yakiyama Y, Nakazawa S, Murata T, Ise T, Hashizume D, Shiomi D, Sato K, Kitagawa M, Nakasuji H, Takui T (2010) Triple-stranded metallo-helicates addressable as Lloyd’s electron spin qubits. J Am Chem Soc 132:6944–6946; (c) Morita Y, Suzuki S, Sato K, Takui T (2011) Synthetic organic-spin chemistry for structurally well-defined open-shell graphene fragments. Nat Chem 3:197–204; (d) Morita Y, Nishida S, Murata T, Moriguchi M, Ueda A, Satoh M, Arifuku K, Sato K, Takui T (2011) Organic tailored batteries materials using stable open-shell molecules with degenerate frontier orbitals. Nat Mater 10:947–951

    Google Scholar 

  4. (a) Itoh K (1967) Electron spin resonance of an aromatic hydrocarbon in its quintet ground state. Chem Phys Lett 1:235–238; (b) Wasserman E, Murray RW, Yager WA, Trozzoro AM, Smolinsky G (1967) Quintet ground states of m-dicarbene and m-dinitrene compounds. J Am Chem Soc 89:5076–5078

    Google Scholar 

  5. (a) Murahashi S, Yoshimura Y, Yamamoto Y, Moritani I (1972) Quintet carbenes: m-Phenylenebis(phenylmethylene) and m-phenylenebis(methylene). Tetrahedron 28:1485–1496; (b) Takui T, Itoh K (1973) Detection of an aromatic hydrocarbon in its septet electronic ground state by electron spin resonance. Chem Phys Lett 19:120–124; (c) Itoh K (1978) Electronic structures of aromatic hydrocarbons with high spin multiplicities in the electronic ground state. Pure Appl Chem 50:1251–1259; (d) Teki Y, Takui T, Itoh K, Iwamura H, Kobayashi K (1983) Design, preparation and ESR detection of a ground-state nonet hydrocarbon as a model for one-dimensional organic ferromagnets. J Am Chem Soc 105:3722–3723; (e) Sugawara T, Bandow S, Kimura K, Iwamura H, Itoh K (1984) Magnetic behavior of nonet tetracarbene, m-phenylenebis((diphenylmethylen-3-yl)methylene). J Am Chem Soc 106:6449–6450; (f) Fujita I, Teki Y, Takui T, Kinoshita T, Itoh K, Miko F, Sawaki Y, Iwamura H, Izuoka A, Sugawara T (1990) Design, preparation, and electron spin resonance detection of a ground-state undecet (S = 5) hydrocarbon. J Am Chem Soc 112:4074–4075

    Google Scholar 

  6. (a) Lahti PM (1999) Magnetic properties of organic materials. Marcel Dekker; (b) Itoh K, Kinoshita M (2000) Molecular magnetism: new magnetic materials. Gordon and Breach, Amsterdam; (c) Itoh K, Takui T (2004) High spin chemistry underlying organic molecular magnetism topological symmetry rule as the first principle of spin alignment in organic open-shell systems of π-conjugation and their ions. Proc Jpn Acad Ser B 80:29–40

    Google Scholar 

  7. (a) Rahimi R, Sato K, Furukawa K, Toyota K, Shiomi D, Nakamura T, Kitagawa M, Takui T (2005) Pulsed ENDOR-based quantum information processing. Int J Quantum Info 3:197–204; (b) Sato K, Rahimi R, Mori N, Nishida S, Toyota K, Shiomi D, Morita Y, Ueda A, Suzuki S, Furukawa K, Nakamura T, Kitagawa M, Nakasuji K, Nakahara M, Hara H, Carl P, Höfer P, Takui T (2007) Implementation of molecular spin quantum computing by pulsed ENDOR technique: direct observation of quantum entanglement and spinor. Physica E 40:363–366; (c) Sato K, Nakazawa S, Rahimi R, Ise T, Nishida S, Yoshino T, Mori N, Toyota K, Shiomi D, Yakiyama Y, Morita Y, Kitagawa M, Nakasuji K, Nakahara M, Hara H, Carl P, Höfer P, Takui T (2009) Molecular electron-spin quantum computers and quantum information processing: pulse-based electron magnetic resonance spin technology applied to matter spin-qubits. J Mater Chem 19:3739–3754; (d) Yoshino T, Nishida S, Sato K, Nakazawa S, Rahimi R, Toyota K, Shiomi D, Morita Y, Kitagawa M, Takui T (2011) ESR and 1H-, 19F-ENDOR/TRIPLE study of fluorinated diphenylnitroxides as synthetic bus spin-qubit radicals with client qubits in solution. J Phys Chem Lett 2:449–453

    Google Scholar 

  8. Nielsen MA, Chuang IL (2000) Quantum computation and quantum information. Cambridge University Press, Cambridge

    Google Scholar 

  9. (a) Sato K, Shiomi D, Takui T, Itoh K, Kaneko T, Tsuchida E, Nishide H (1994) FT pulsed EPR/transient quantum spin nutation spectroscopy applied to inorganic high-spin systems and a high-spin polymer as models for organic ferromagnets. J Spectrosc Soc Jpn 43:280–291; (b) Sato K, Yano M, Furuichi M, Shiomi D, Takui T, Abe K, Itoh K, Higuchi A, Katsuma K, Shirota Y (1997) Polycationic high-spin states of one- and two-dimensional (diarylamino)benzenes, prototypical model units for purely organic ferromagnetic metals as studied by pulsed ESR/electron spin transient nutation spectroscopy. J Am Chem Soc 119:6607–6613; (c) Tomioka H, Watanabe T, Hirai K, Furukawa K, Takui T, Itoh K (1995) 2,2′,4,4′,6,6′-Hexabromodiphenylcarbene. The first stable triplet carbene in fluid solution at low temperature and in the crystal state at room temperature. J Am Chem Soc 117:6376–6377; (d) Shohoji MCBL, Franco MLTMB, Lazana CRLR, Nakazawa S, Sato K, Shiomi D, Takui T (2000) Electronic quartet and triplet states of polyanionic C60 fullerene and their anomalous spin relaxation as studied by cw-ESR/2D-electron spin transient nutation spectroscopy. J Am Chem Soc 122:2962–2963; (e) Sawai T, Sato K, Ise T, Shiomi D, Toyota K, Morita Y, Takui T (2008) Macrocyclic high-spin (S = 2) molecule: spin identification of a sterically rigid metacyclophane-based nitroxide tetraradical by two-dimensional electron spin transient nutation spectroscopy. Angew Chem Int Ed 47:3988–3990

    Google Scholar 

  10. Bally T (2004) Matrix isolation. In: Moss RA, Platz MS, Jones M Jr (eds) Reactive intermediates chemistry. Wiley Interscience, New Jersey

    Google Scholar 

  11. (a) Sato K (1994) Dr thesis. Osaka City University; (b) Banwell CN, Primas H (1963) On the analysis of high-resolution nuclear magnetic resonance spectra I. Methods of calculating N.M.R. spectra. Mol Phys 6:225–256; (c) Belford GG, Belford RL, Burkhalter JF (1973) Eigenfields: a practical direct calculation of resonance fields and intensities for field-swept fixed-frequency spectrometers. J Magn Reson 11:251–265; (d) McGregor KT, Scaringe RP, Hatfield WE (1975) E.P.R. calculations by the eigenfield method. Mol Phys 30:1925–1933

    Google Scholar 

  12. (a) Sugisaki K, Toyota K, Sato K, Shiomi D, Kitagawa M, Takui T (2009) Ab initio calculations of spin–orbit contribution to the zero-field splitting tensors of nπ* excited states by the CASSCF method with MRMP2 energy correction. Chem Phys Lett 477:369–373; (b) Sugisaki K, Toyota K, Sato K, Shiomi D, Kitagawa M, Takui T (2010) Spin–orbit contributions in high-spin nitrenes/carbenes: A hybrid CASSCF/MRMP2 study of the zero-field splitting tensors. ChemPhysChem 11:3146–3151; (c) Sugisaki K, Toyota K, Sato K, Shiomi D, Kitagawa M, Takui T (2011) Ab initio and DFT studies of the spin–orbit and spin–spin contributions to the zero-field splitting tensors of triplet nitrenes with aryl scaffolds. Phys Chem Chem Phys 13:6970–6980

    Google Scholar 

  13. McWeeny R, Mizuno Y (1961) The density matrix in many-electron quantum mechanics II. Separation of space and spin variables; spin coupling problems. Proc R Soc Lond Ser A 259:554–577

    Article  CAS  Google Scholar 

  14. Petrenko TT, Petrenko TL, Bratus VY (2002) The carbon <100> split interstitial in SiC. J Phys Condens Matter 14:12433–12440

    Article  CAS  Google Scholar 

  15. Shoji M, Koizumi K, Hamamoto T, Taniguchi T, Takeda R, Kitagawa Y, Kawakami T, Okumura M, Yamanaka S, Yamaguchi K (2005) A theoretical study of zero-field splitting of organic biradicals. Polyhedron 24:2708–2715

    Article  CAS  Google Scholar 

  16. (a) Sinnecker S, Neese F (2006) Spin–spin contributions to the zero-field splitting tensor in organic triplets, carbenes and biradicals—a density functional and ab initio study. J Phys Chem A 110:12267–12275; (b) Sander W, Grote D, Kossmann S, Neese F (2008) 2,3,5,6-Tetrafluorophenylnitren-4-yl: electron paramagnetic resonance spectroscopic characterization of a quartet-ground-state nitreno radical. J Am Chem Soc 130:4396–4403; (c) Grote D, Finke C, Kossmann S, Neese F, Sander W (2010) 3,4,5,6-Tetrafluorophenylnitren-2-yl: a ground-state quartet triradical. Chem Eur J 16:4496–4506; (d) Neuhaus P, Winkler M, Sander W (2011) EPR spectroscopic and computational characterization of the 2-dehydro-m-xylylene and 4-dehydro-m-xylylene triradicals. J Phys Org Chem 24:976–992

    Google Scholar 

  17. Koto T, Sugisaki K, Sato K, Shiomi D, Toyota K, Itoh K, Wasserman E, Lahti PM, Takui T (2010) High-spin nitrene fine-structure ESR spectroscopy in frozen rigid glasses: exact analytical expressions for the canonical peaks and a D-tensor gradient method for line broadening. Appl Magn Reson 37:703–736

    Article  Google Scholar 

  18. (a) Misochko EY, Korchagin DV, Bozhenko KV, Chapyshev SV, Aldoshin SM (2010) A density functional theory study of the zero-field splitting in high-spin nitrenes. J Chem Phys 133:064101 (b) Chapyshev SV, Korchagin DV, Budyka MF, Gavrishova TN, Neuhaus P, Sander W (2011) Strain effects in electron spin resonance spectroscopy of quintet 2,6-bis(4′-nitrenophenyl)-4-phenylpyridine. J Phys Chem A 115:8419–8425

    Google Scholar 

  19. van Gastel M (2010) Zero-field splitting of the lowest excited triplet states of C60 and C70 and benzene. J Phys Chem A 114:10864–10870

    Article  Google Scholar 

  20. Perumal SSRR (2011) Zero-field splitting of compact trimethylenemethane analogue radicals with density functional theory. Chem Phys Lett 501:608–611

    Article  CAS  Google Scholar 

  21. (a) Langhoff SR (1974) Ab initio evaluation of the fine structure of the oxygen molecule. J Chem Phys 61:1708–1716; (b) Langhoff SR, Davidson ER, William Kern C (1975) Ab initio study of the zero-field splitting parameters of 3B1u benzene. J Chem Phys 63:4800–4807; (c) Davidson ER, Ellenbogen JC (1980) An ab initio calculation of the zero-field splitting parameters of the 3A state of formaldehyde. J Chem Phys 73:865–869; (d) Feller D, Borden WT, Davidson ER (1981) Calculation of zero field splitting parameters for trimethylenemethane. J Chem Phys 74:2256–2259; (e) Motten AG, Davidson ER, Kwiram AL (1981) Calculations of zero-field splittings in pyridine derivatives. J Chem Phys 75:2603–2607

    Google Scholar 

  22. Havlas Z, Downing JW, Michl J (1998) Spin–orbit coupling in biradicals. 2. Ab initio methodology and application to 1,1-biradicals: carbene and silylene. J Phys Chem A 102:5681–5692

    Article  CAS  Google Scholar 

  23. Sugisaki K, Toyota K, Sato K, Shiomi D, Kitagawa M, Takui T unpublished results

    Google Scholar 

  24. (a) Havlas Z, Michl J (1999) Ab initio calculation of zero-field splitting and spin–orbit coupling in ground and excited triplets of m-xylylene. J Chem Soc Perkin Trans 2 2299–2303; (b) Havlas Z, Kývala M, Michl J (2003) Spin–orbit coupling in biradicals. 4. Zero-field splitting in triplet nitrenes, phosphinidenes, and arsinidenes. Collect Czech Chem Commun 68:2335–2342; (c) Havlas Z, Kývala M, Michl J (2005) Spin–orbit coupling in biradicals. 5. Zero-field splitting in triplet dimethylnitrenium, dimethylphosphenium and dimethylarsenium cations. Mol Phys 103:407–411

    Google Scholar 

  25. (a) Vahtras O, Loboda O, Minaev B, Ågren H, Ruud K (2002) Ab initio calculations of zero-field splitting parameters. Chem Phys 279:133–142; (b) Loboda O, Minaev B, Vahtras O, Schimmelphennig B, Ågren H, Ruud K, Jonsson D (2003) Ab initio calculations of zero-field splitting parameters in linear polyacenes. Chem Phys 286:127–137; (c) Loboda O, Minaev B, Vahtras O, Ruud K, Ågren H (2003) Ab initio study of nonhomogeneous broadening of the zero-field splitting of triplet guest molecules in diluted glasses. J Chem Phys 119:3120–3129; (d) Rubio-Pons O, Loboda O, Minaev B, Schimmelpfennig B, Vahtras O, Ågren H (2003) CASSCF calculations of triplet state properties: applications to benzene derivatives. Mol Phys 101:2103–2114; (e) Minaev B, Loboda O, Rinkevicius Z, Vahtras O, Ågren H (2003) Fine- and hyperfine- structure in three low-lying 3Σ+ states of molecular hydrogen. Mol Phys 101:2335–2346; (f) Minaev B, Loboda O, Vahtras O, Ruud K, Ågren H (2004) Solvent effects on optically detected magnetic resonance in triplet spin labels. Theor Chem Acc 111:168–175; (g) Rubio-Pons O, Minaev B, Loboda O, Ågren H (2005) Ab initio calculations of vibronic activity in phosphorescence microwave double resonance spectra of p-dichlorobenzene. Theor Chem Acc 113:15–27; (h) Minaev BF, Khomenko EM, Bilan EA, Yashchuk LB (2005) Calculation of the fine structure of the triplet state ã 3 A 2 of the ozone molecule by the method of multiconfiguration self-consistent field. Opt Spectrosc 98:209–213; (i) Loboda O, Tunell I, Minaev B, Ågren H (2005) Theoretical study of triplet state properties of free-base porphin. Chem Phys 312:299–309

    Google Scholar 

  26. Sugisaki K, Toyota K, Sato K, Shiomi D, Kitagawa M, Takui T unpublished results

    Google Scholar 

  27. Gilka N, Taylor PR, Marian CM (2008) Electron spin–spin coupling from multireference configuration interaction wave functions. J Chem Phys 129:044102

    Article  Google Scholar 

  28. Dalton, a molecular electronic structure program, Release Dalton2011 (2011). see http://daltonprogram.org/

  29. Marian CM (2001) Spin–orbit coupling in molecules. In: Lipkowitz KB, Boyd DB (eds) Reviews in computational chemistry, vol 17. Wiley-VCH, New York

    Chapter  Google Scholar 

  30. Neese F, Solomon EI (1998) Calculation of zero-field splittings, g-values, and the relativistic nephelauxetic effect in transition metal complexes. Application to high-spin ferric complexes. Inorg Chem 37:6568–6582

    Article  CAS  Google Scholar 

  31. (a) Hirao K (1992) Multireference Møller–Plesset method. Chem Phys Lett 190:374–380; (b) Hirao K (1992) Multireference Møller–Plesset perturbation theory for high-spin open-shell systems. 196:397–403; (c) Hirao K (1993) State-specific multireference Møller–Plesset perturbation treatment for singlet and triplet excited states, ionized states and electron attached states of H2O. Chem Phys Lett 201:59–66

    Google Scholar 

  32. (a) Ribbing C, Odelius M, Laaksonen A, Kowalewski J, Roos B (1990) Simple nonempirical calculations of the zero-field splitting in transition metal systems: I. The Ni(II)-water complexes. Int J Quantum Chem Quantum Chem Symp 24:295–309; (b) Ribbing C, Odelius M (1993) Normal coordinate analysis of the zero-field splitting in octahedral NiF 4-6 . I. Ab initio calculations. Mol Phys 78:1259–1266; (c) Buenker RJ, Alekseyev AB, Liebermann HP, Lingott R, Hirsch G (1998) Comparison of spin–orbit configuration interaction methods employing relativistic effective core potentials for the calculation of zero-field splittings of heavy atoms with a 2 P O ground state. J Chem Phys 108:3400–3408; (d) Chattopadhyay A, Das KK (2004) Electronic states of TlX (X = As, Sb, Bi): a configuration interaction study. J Phys Chem A 108:7306–7317; (e) Kleinschmidt M, Tatchen J, Marian CM (2006) SPOCK.CI: a multireference spin–orbit configuration interaction method for large molecules. J Chem Phys 124:124101

    Google Scholar 

  33. (a) Andersson K, Malmqvist PÅ, Roos BO, Sadlej AJ, Wolinski K (1990) Second-order perturbation theory with a CASSCF reference function. J Phys Chem 94:5483–5488; (b) Andersson K, Malmqvist PÅ, Roos BO (1992) Second-order perturbation theory with a complete active space self-consistent field reference function. J Chem Phys 96:1218–1226; (c) Roos BO, Andersson K, Fulscher MP, Malmqvist PÅ, Serrano-Andres L, Pierloot K, Merchán M (1996) Multiconfigurational perturbation theory: Applications in electronic spectroscopy. In Prigogine I, Rice SA (eds) Advances in chemical physics: new methods in computational quantum mechanics, vol XCIII. Wiley-VCH, New York

    Google Scholar 

  34. Roos BO, Malmqvist PÅ (2004) Relativistic quantum chemistry: the multiconfigurational approach. Phys Chem Chem Phys 6:2919–2927

    Article  CAS  Google Scholar 

  35. (a) de Graaf C, Sousa C (2006) Assessing the zero-field splitting in magnetic molecules by wave function-based methods. Int J Quantum Chem 106:2470–2478; (b) Maurice R, Bastardis R, de Graaf C, Suaud N, Mallah T, Guihéry N (2009) Universal theoretical approach to exact anisotropic spin Hamiltonians. J Chem Theory Comput 5:2977–2984; (c) Maurice A, Pradipto AM, Guihéry N, Broer R, de Graaf C (2010) Antisymmetric magnetic interactions in oxo-bridged Copper(II) bimetallic systems. J Chem Theory Comput 6:3092–3101

    Google Scholar 

  36. Yoshizawa T, Nakajima T (2011) Second-order generalized unrestricted Møller–Plesset perturbation theory for the spin–orbit part of zero-field splitting tensors. Chem Phys Lett 515:296–301

    Article  CAS  Google Scholar 

  37. Neese F (2007) Calculation of the zero-field splitting tensor on the basis of hybrid density functional and Hartree–Fock theory. J Chem Phys 127:164112

    Article  Google Scholar 

  38. Pederson MR, Khanna SN (1999) Magnetic anisotropy barrier for spin tunneling in Mn12O12 molecules. Phys Rev B 60:9566–9572

    Article  CAS  Google Scholar 

  39. Neese F (2006) Importance of direct spin–spin coupling and spin-flip excitations for the zero-field splittings of transition metal complexes: a case study. J Am Chem Soc 128:10213–10222

    Article  CAS  Google Scholar 

  40. (a) Takeda R, Shoji M, Yamanaka S, Yamaguchi K (2005) Density functional study of zero-field splitting. Polyhedron 24:2238–2241; (b) Takeda R, Koizumi K, Shoji M, Nitta H, Yamanaka S, Okumura M, Yamaguchi K (2007) Ab initio studies on the zero-field splitting parameters of manganese porphyrin complexes. Polyhedron 26:2309–2312

    Google Scholar 

  41. Aquino F, Rodriguez JH (2005) First-principle computation of zero-field splittings: application to a high valent Fe(IV)-oxo model of nonheme iron proteins. J Chem Phys 123:204902

    Article  Google Scholar 

  42. Reviakine R, Arvuznikov AV, Tremblay JC, Remenyi C, Malkina OL, Malkin VG, Kaupp M (2006) Calculation of zero-field splitting parameters: comparison of a two-component noncolinear spin-density-functional method and a one-component perturbational approach. J Chem Phys 125:054110

    Article  Google Scholar 

  43. Neese F ORCA, an ab initio, density functional and semiempirical program package, University of Bonn, Germany

    Google Scholar 

  44. Schmitt S, Jost P, van Wüllen C (2011) Zero-field splittings from density functional calculations: analysis and improvement of known methods. J Chem Phys 134:194113

    Article  Google Scholar 

  45. Huber KP, Herzberg G (1979) Molecular spectra and molecular structure IV. Constants of diatomic molecules. Van Nostrand Reinhold, New York

    Google Scholar 

  46. Ganyushin D, Neese F (2006) First-principle calculations of zero-field splitting parameters. J Chem Phys 125:024103

    Article  Google Scholar 

  47. Schmidt MW, Baldridge KK, Boatz JA, Elbert ST, Gordon MS, Jensen JH, Koseki S, Matsunaga N, Nguyen KA, Su SJ, Windus TL, Dupuis M, Montgomery JA (1993) General atomic and molecular electronic structure system. J Comput Chem 14:1347–1363

    Article  CAS  Google Scholar 

  48. Zein S, Duboc C, Lubitz W, Neese F (2008) A systematic density functional study of the zero-field splitting in Mn(II) coordination compounds. Inorg Chem 47:134–142

    Article  CAS  Google Scholar 

  49. El-Sayed MA (1963) Spin–orbit coupling and the radiationless processes in nitrogen heterocyclics. J Chem Phys 38:2834–2838

    Article  CAS  Google Scholar 

  50. Lwowski W (1970) Nitrenes. Wiley, New York

    Google Scholar 

  51. Wasserman E (1971) Electron spin resonance of nitrene. Prog Phys Org Chem 8:319–336

    Article  CAS  Google Scholar 

  52. Wasserman E, Yager WA, Kuck VJ (1970) EPR of CH2: a substantially bent and partially rotating ground state triplet. Chem Phys Lett 7:409–413

    Article  CAS  Google Scholar 

  53. Kuzaj M, Lüerssen H, Wentrup C (1986) ESR observation of thermally produced triplet nitrenes and photochemically produced triplet cycloheptatrienylidenes. Angew Chem Int Ed Engl 25:480–482

    Article  Google Scholar 

  54. Alverado R, Grivet JP, Igier C, Barcelo J, Rigaudy J (1977) Spectroscopic studies of azides and nitrenes derived from anthracene. J Chem Soc Faraday Trans 2(73):844–857

    Google Scholar 

  55. Whangbo MH (2005) Concepts of perturbation, orbital interaction, orbital mixing and orbital occupation. In: Dykstra CE, Frenking G, Kim KS, Scuseria GE (eds) Theory and applications of computational chemistry The first forty years. Elsevier, Amsterdam

    Google Scholar 

  56. Sugisaki K, Toyota K, Sato K, Shiomi D, Takui T (2006) Ab initio MO analysis of the excited electronic states of high-spin quintet 2-methylphenylene-1,3-dinitrene. Angew Chem Int Ed 45:2257–2261

    Article  CAS  Google Scholar 

  57. (a) Nakatsuji H, Hirao K (1978) Cluster expansion of the wavefunction. Symmetry-adapted-cluster expansion, its variational determination, and extension of open-shell orbital theory. J Chem Phys 68:2053–2065; (b) Nakatsuji H (1978) Cluster expansion of the wavefunction. Excited states. Chem Phys Lett 59:362–364; (c) Nakatsuji H (1979) Cluster expansion of the wavefunction. Electron correlations in ground and excited states by SAC (symmetry-adapted-cluster) and SAC CI theories. Chem Phys Lett 67:329–331; (d) Nakatsuji H (1991) Description of two- and many-electron processes by the SAC-CI method. Chem Phys Lett 177:331–337; (e) Ehara M, Ishida M, Toyota K, Nakatsuji H (2002) SAC-CI general-R method: theory and applications to the multi-electron processes. In Sen KD (ed) Reviews in modern quantum chemistry, vol 2. World scientific, Singapore

    Google Scholar 

  58. (a) Wasserman E, Schueller K, Yager WA (1968) EPR detection of the septet ground state of a trinitrene. Chem Phys Lett 2:259–260; (b) Haider K, Soundararajan N, Shaffer M, Platz MS (1989) EPR spectroscopy of a diaza derivative of meta-xylylene. Tetrahedron Lett 30:1225–1228; (c) Fukuzawa TA, Sato K, Ichimura AS, Kinoshita T, Takui T, Itoh K, Lahti PM (1996) Electronic and molecular structures of quintet bisnitrenes as studied by fine-structure ESR spectra from random orientation: all the documented ZFS constant correct? Mol Cryst Liq Cryst 278:253–260; (d) Nakai T, Sato K, Shiomi D, Takui T, Itoh K, Kozaki M, Okada K (1999) High-spin nitrenes with s-triazine skeleton. Mol Cryst Liq Cryst 334:157–166; (e) Nakai T, Sato K, Shiomi D, Takui T, Itoh K, Kozaki M, Okada K (1999) ESR study of high-spin nitrenes with s-triazine skeleton. Synth Met 103:2265–2266; (f) Chapyshev SV, Walton R, Lahti PM (2000) Effect of substitution on the yield of high-spin nitrenes in the photolysis of 2,6-diazopyridines. Mendeleev Commun 10:114–115; (g) Chapyshev SV, Walton R, Lahti PM (2000) Orbital control in the selective photolysis of azido groups of 2,4,6-triazido-3,6-dichloropyridine. Mendeleev Commun 10:187–188; (h) Chapyshev SV, Walton R, Sanborn JA, Lahti PM (2000) Quintet and septet state systems based on pyridylnitrenes: effects of substitution on open-shell high-spin states. J Am Chem Soc 122:1580–1588; (i) Chapyshev SV, Tomioka H (2003) Photochemical transformations of quintet m-phenylenedinitrenes. Bull Chem Soc Jpn 76:2075–2089; (j) Chapyshev SV, Walton R, Serwinski PR, Lahti PM (2004) Quintet state electron spin resonance spectra of pyridyldinitrenes. J Phys Chem A 108:6643–6649; (k) Sato T, Narazaki A, Kawaguchi Y, Niino H, Bucher G, Grote D, Wolff JJ, Wenk HH, Sander W (2004) Generation and photoreactions of 2,4,6-trinitreno-1,3,5-triazine, a septet trinitrene. J Am Chem Soc 126:7846–7852; (l) Chapyshev SV (2006) Photochemical synthesis and ESR spectra of quintet meta-phenylenedinitrene. Russ Chem Bull Int Ed 55:1126–1131; (m) Chapyshev SV (2006) Photochemical synthesis and properties of quintet pyridyl-2,6-dinitrenes. Russ Chem Bull Int Ed 55:1593–1597; (n) Chapyshev SV, Lahti PM (2006) Zero-field splitting parameters of quintet 2,6-dinitrenopyridines. J Phys Org Chem 19:637–641; (o) Kuzina SI, Mikhailov AI, Chapyshev SV (2007) Radiolysis and photolysis of crystalline 2,4,6-triazido-3,5-dichloropyridine: generation of quintet dinitrenes. High Ener Chem 41:245–250; (p) Misochko EY, Akimov AV, Chapyshev SV (2008) High resolution electron paramagnetic resonance spectroscopy of quintet pyridyl-2,6-dinitrene in solid argon: magnetic properties and molecular structure. J Chem Phys 128:124504; (q) Misochko EY, Akimov AV, Chapyshev SV (2008) High resolution electron paramagnetic resonance spectroscopy of septet pyridyl-2,4,6-trinitrene in solid argon: fine-structure parameters of six electron-spin cluster. J Chem Phys 129:174510; (r) Chapyshev SV, Grote D, Finke C, Sander W (2008) Matrix isolation and EPR spectroscopy of septet 3,5-difluoropyridyl-2,4,6-trinitrene. J Org Chem 73:7045–7051; (s) Chapyshev SV, Misochko EY, Akimov AV, Dorokhov VG, Neuhaus P, Grote D, Sander W (2009) Molecular structure and magnetic parameters of septet 2,4,6-trinitrenotoluene. J Org Chem 74:7238–7244; (t) Chapyshev SV, Neuhaus P, Grote D, Sander W (2010) Matrix isolation and magnetic parameters of septet 3,5-dicyanopyridyl-2,4,6-trinitrene. J Phys Org Chem 23:340–346

    Google Scholar 

  59. Tsukada H, Mukai K, Iwamura H (1987) (3-Nitrenophenyl)methylene: a ground state quintet molecule having both carbenic and nitrenic atoms. J Chem Soc Chem Commun 1159–1160

    Google Scholar 

  60. Koto T, Sato K, Shiomi D, Toyota T, Itoh K, Wasserman E, Takui T (2009) Random-orientation high-spin electron spin resonance spectroscopy and comprehensive spectral analyses of the quintet dicarbene and dinitrene with meta-topological linkers: origins of peculiar line-broadening in fine-structure ESR spectra in organic rigid glasses. J Phys Chem A 113:9521–9526

    Article  CAS  Google Scholar 

  61. (a) Nakazawa S, Sato K, Shiomi D, Franco MLTMB, Lazana CRLR, Shohoji MCBL, Itoh K, Takui T (2008) Electronic and molecular structures of C60-based polyanionic high-spin molecular clusters: direct spin identification and electron spin transient nutation spectroscopy for high-spin chemistry. Inorg Chim Acta 361:4031–4037; (b) Takui T (1973) Dr thesis, Osaka University, Osaka; (c) Asano M (1973) Master thesis, Osaka University, Osaka

    Google Scholar 

  62. (a) McGlynn SP, Azumi T, Kinoshita M (1969) Molecular spectroscopy of the triplet state. Prentice-Hall, New Jersey (b) van del Waals JH (2001) EPR of photo-excited triplet states: a personal account. Appl Magn Reson 20:545–561

    Google Scholar 

  63. (a) Hameka HF (1959) Theory of the electron spin resonance of benzene in the triplet state. J Chem Phys 31:315–321; (b) Gouterman M, Moffitt W (1959) Origin of zero-field splittings in triplet states of aromatic hydrocarbons. J Chem Phys 31:1107–1108b; (c) Gouterman M (1959) Calculations on the zero-field splittings in triplet states of various aromatic hydrocarbons. II. J Chem Phys 31:1369–1371; (d) Boorstein SA, Gouterman M (1963) Theory for zero-field splittings in aromatic hydrocarbons. III. J Chem Phys 39:2443–2452; (e) Chiu YN (1963) Zero-field splittings in some triplet-state aromatic molecules. J Chem Phys 39:2736–2748; (f) Chiu YN (1963) Carbon 2p z multiple-center dipolar interaction integrals in the matrix element over LCAO molecular orbitals. J Chem Phys 39: 2749–2756; (g) van del Waals JH, ter Maten G (1964) Zero-field splitting of the lowest triplet state of some aromatic hydrocarbons: calculation and comparison with experiment. Mol Phys 8:301–318; (h) Amos T, Snyder LC (1965) Unrestricted Hartree–Fock calculations. III. Zero-field splittings in triplet state of naphthalene, anthracene, and phenanthrene. J Chem Phys 43:2146–2147; (i) Godfrey M, Kern CW, Karplus M (1966) Studies of zero-field splittings in aromatic molecules. J Chem Phys 44:4459–4469

    Google Scholar 

  64. Burland DM, Schmidt J (1971) The dynamic properties of the lowest triplet states of pyrazine and pyrimidine in zero magnetic field. Mol Phys 22:19–31

    Article  CAS  Google Scholar 

  65. Hochstrasser RM, Lin T (1970) Optical and magnetic field studies of the lowest triplet state of the pyrazine crystal. J Chem Phys 53:2676–2680

    Article  CAS  Google Scholar 

  66. Terajima M, Yamauchi S, Hirota N (1986) Properties of the short-lived triplet states of pyridazine and 3,6-dichloropyridazine studied by a time-resolved EPR method. J Chem Phys 84:3679–3687

    Google Scholar 

  67. Weber P, Reimers JR (1999) Ab initio and density functional calculations of the energies of the singlet and triplet valence excited states of pyrazine. J Phys Chem A 103:9821–9829

    Article  CAS  Google Scholar 

  68. (a) Singh B, Brinen JS (1971) Low-temperature photochemistry of p-diazidobenzene and 4,4′-diazidoazobenzene. J Am Chem Soc 93:540–542; (b) Nimura S, Kikuchi O, Ohana T, Yabe A, Kaise M (1996) Singlet–triplet energy gaps of quinonoidal dinitrenes. Chem Lett 125; (c) Minato M, Lahti PM (1997) Characterizing triplet states of quinonoidal dinitrenes as a function of conjugation length. J Am Chem Soc 119:2187–2195

    Google Scholar 

  69. Ichimura AS, Lahti PM (1993) Meta- and para-phenylenedinitrene; an ab initio computational study. Mol Cryst Liq Cryst 233:33–40

    Article  CAS  Google Scholar 

  70. Nicolaides A, Tomioka H, Murata S (1998) Direct observation and characterization of p-phenylenebisnitrene. A labile quinonoidal diradical. J Am Chem Soc 120:11530–11531

    Article  CAS  Google Scholar 

  71. (a) Sommerdijk JL, de Boer E (1969) Calculation of the zero-field-splitting parameters of the triplet dianion of triphenylene and its ion triple. J Chem Phys 50:4771–4775; (b) Sommerdijk JL, van Broekhoven JAM, van Willigen H, de Boer E (1969) Interpretation of ESR experiments on the triplet dianions of 1,3,5-triphenylbenzene and triphenylene. J Chem Phys 51:2006–2010

    Google Scholar 

  72. (a) Ebata K, Setaka W, Inoue T, Kabuto C, Kira M, Sakurai H (1998) Planar hexasilylbenzene dianion with thermally accessible triplet state. J Am Chem Soc 120:1335–1336; (b) Setaka W, Ebata K, Sakurai H, Kira M (2000) Multiplicity of planar hexasilylbenzene dianions: effects of substituents and counterions. J Am Chem Soc 122:7781–7786

    Google Scholar 

  73. Suzuki S, Nagata A, Kuratsu M, Kozaki M, Tanaka R, Shiomi D, Sugisaki K, Toyota K, Sato K, Takui T (2012) Trinitroxide-trioxytriphenylamine: spin-state conversion from triradical doublet to diradical cation triplet by oxidative modulation of a π-conjugated system. Angew Chem Int Ed 51:3193–3197

    Google Scholar 

  74. Suzuki S, Furui T, Kuratsu M, Kozaki M, Shiomi D, Sato K, Takui T, Okada K (2010) Nitroxide-substituted nitronyl nitroxide and iminonitroxide. J Am Chem Soc 132:15908–15910

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work has been supported by Grants-in-Aid for Scientific Research (B) and Scientific Research on Innovative Areas, “Quantum Cybernetics” from MEXT, Japan. The support by JST through Core Research for Evolutional Science and Technology (CREST) project, “Implementation of Molecular Spin Quantum Computers” and the support by the Funding Program for World-Leading Innovative R&D on Science and Technology (FIRST) project on “Quantum Information Processing”, JSPS, Japan are also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takeji Takui .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Sugisaki, K., Toyota, K., Sato, K., Shiomi, D., Kitagawa, M., Takui, T. (2013). Quantum Chemical Calculations of the Zero-Field Splitting Tensors for Organic Spin Multiplets. In: Lund, A., Shiotani, M. (eds) EPR of Free Radicals in Solids I. Progress in Theoretical Chemistry and Physics, vol 24. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4893-4_8

Download citation

Publish with us

Policies and ethics