Skip to main content

ER-Bound Steps in the Biosynthesis of G Protein-Coupled Receptors

  • Chapter
  • First Online:
GPCR Signalling Complexes – Synthesis, Assembly, Trafficking and Specificity

Part of the book series: Subcellular Biochemistry ((SCBI,volume 63))

Abstract

The polypeptide of a G protein-coupled receptor is inserted into the membrane of the endoplasmic reticulum while being translated and this process by itself may be sufficient to establish the proper receptor fold. X-ray structures reveal a common polypeptide topology with little variation in the alignment and orientation of the seven transmembrane segments, the proximal carboxyl terminus (C-tail) and parts of the extracellular loops. These define a structural core the stability of which probably represents a major criterion for the receptor to pass endoplasmic reticulum (ER) quality control; point mutations affecting the structure of the core have an extraordinary chance of causing receptor retention. In contrast, cytoplasmic loops 2 and 3 and the distal C-tail are poorly ordered at least in the absence of an interaction partner. Similarly, the amino terminal tail of rhodopsin-related receptors (but not of receptor subtypes where ligand binding requires a stable fold of the N-tail) is unlikely to establish a stable fold. These segments can cause ER retention when mutated to inappropriately expose hydrophobic peptide patches; to prevent protein aggregation chaperone molecules attach to them thus initiating selection for ER-associated degradation. It is less clear however if there are additional mechanisms to specifically survey the transmembrane core at the level of the lipid bilayer or if insufficient packing is detected due to misalignment of the cytoplasmic or extracellular face of the receptor.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abrami L, Kunz B, Iacovache I, van der Goot FG (2008) Palmitoylation and ubiquitination regulate exit of the Wnt signaling protein LRP6 from the endoplasmic reticulum. Proc Natl Acad Sci U S A 105:5384–5389

    Article  PubMed  CAS  Google Scholar 

  • Angelotti T, Daunt D, Shcherbakova OG, Kobilka B, Hurt CM (2010) Regulation of G-protein coupled receptor traffic by an evolutionary conserved hydrophobic signal. Traffic 11:560–578

    Article  PubMed  CAS  Google Scholar 

  • Audigier Y, Friedlander M, Blobel G (1987) Multiple topogenic sequences in bovine opsin. Proc Natl Acad Sci U S A 84:5783–5787

    Article  PubMed  CAS  Google Scholar 

  • Bayle D, Weeks D, Sachs G (1997) Identification of membrane insertion sequences of the rabbit gastric cholecystokinin-A receptor by in vitro translation. J Biol Chem 272:19697–19707

    Article  PubMed  CAS  Google Scholar 

  • Bermak JC, Li M, Bullock C, Zhou QY (2001) Regulation of transport of the dopamine D1 receptor by a new membrane-associated ER protein. Nat Cell Biol 3:492–498

    Article  PubMed  CAS  Google Scholar 

  • Bertin B, Freissmuth M, Breyer RM, Schütz W, Strosberg AD, Marullo S (1992) Functional expression of the human serotonin 5-HT1A receptor in Escherichia coli. Ligand binding properties and interaction with recombinant G protein alpha-subunits. J Biol Chem 267:8200–8206

    PubMed  CAS  Google Scholar 

  • Brodsky JL, Skach WR (2011) Protein folding and quality control in the endoplasmic reticulum: recent lessons from yeast and mammalian cell systems. Curr Opin Cell Biol 23:464–475

    Article  PubMed  CAS  Google Scholar 

  • Chapple JP, Cheetham ME (2003) The chaperone environment at the cytoplasmic face of the endoplasmic reticulum can modulate rhodopsin processing and inclusion formation. J Biol Chem 278:19087–19094

    Article  PubMed  CAS  Google Scholar 

  • Chelikani P, Hornak V, Eilers M, Reeves PJ, Smith SO, RajBhandary UL, Khorana HG (2007) Role of group-conserved residues in the helical core of beta2-adrenergic receptor. Proc Natl Acad Sci U S A 104:7027–7032

    Article  PubMed  CAS  Google Scholar 

  • Claeysen S, Govaerts C, Lefort A, Van Sande J, Costagliola S, Pardo L, Vassart G (2002) A conserved Asn in TM7 of the thyrotropin receptor is a common requirement for activation by both mutations and its natural agonist. FEBS Lett 517:195–200

    Article  PubMed  CAS  Google Scholar 

  • Conn PM, Knollman PE, Brothers SP, Janovick JA (2006) Protein folding as posttranslational regulation: evolution of a mechanism for controlled plasma membrane expression of a G protein-coupled receptor. Mol Endocrinol 20:3035–3041

    Article  PubMed  CAS  Google Scholar 

  • Dodevski I, Plückthun A (2011) Evolution of three human GPCRs for higher expression and stability. J Mol Biol 408:599–615

    Article  PubMed  CAS  Google Scholar 

  • Dong C, Filipeanu CM, Duvernay MT, Wu G (2007) Regulation of G protein-coupled receptor export trafficking. Biochim Biophys Acta 1768:853–870

    Article  PubMed  CAS  Google Scholar 

  • Dukhovny A, Yaffe Y, Shepshelovitch J, Hirschberg K (2009) The length of cargo-protein transmembrane segments drives secretory transport by facilitating cargo concentration in export domains. J Cell Sci 122:1759–1767

    Article  PubMed  CAS  Google Scholar 

  • Duvernay MT, Dong C, Zhang X, Zhou F, Nichols CD, Wu G (2009) Anterograde trafficking of G protein-coupled receptors: function of the C-terminal F(X)6LL motif in export from the endoplasmic reticulum. Mol Pharmacol 75:751–761

    Article  PubMed  CAS  Google Scholar 

  • Freissmuth M, Selzer E, Marullo S, Schütz W, Strosberg AD (1991) Expression of two human beta-adrenergic receptors in Escherichia coli: functional interaction with two forms of the stimulatory G protein. Proc Natl Acad Sci U S A 88:8548–8552

    Article  PubMed  CAS  Google Scholar 

  • Griciuc A, Aron L, Piccoli G, Ueffing M (2010) Clearance of Rhodopsin(P23H) aggregates requires the ERAD effector VCP. Biochim Biophys Acta 1803:424–434

    Article  PubMed  CAS  Google Scholar 

  • Hakalahti AE, Vierimaa MM, Lilja MK, Kumpula EP, Tuusa JT, Petäjä-Repo UE (2010) Human beta1-adrenergic receptor is subject to constitutive and regulated N-terminal cleavage. J Biol Chem 285:28850–28861

    Article  PubMed  CAS  Google Scholar 

  • Hassink GC, Zhao B, Sompallae R et al (2009) The ER-resident ubiquitin-specific protease 19 participates in the UPR and rescues ERAD substrates. EMBO Rep 10:755–761

    Article  PubMed  CAS  Google Scholar 

  • Hawtin SR (2006) Pharmacological chaperone activity of SR49059 to functionally recover misfolded mutations of the vasopressin V1a receptor. J Biol Chem 281:14604–14614

    Article  PubMed  CAS  Google Scholar 

  • Hawtin SR, Davies AR, Matthews G, Wheatley M (2001) Identification of the glycosylation sites utilized on the V1a vasopressin receptor and assessment of their role in receptor signalling and expression. Biochem J 357:73–81

    Article  PubMed  CAS  Google Scholar 

  • Hebert DN, Molinari M (2007) In and out of the ER: protein folding, quality control, degradation, and related human diseases. Physiol Rev 87:1377–1408

    Article  PubMed  CAS  Google Scholar 

  • Huyer G, Piluek WF, Fansler Z, Kreft SG, Hochstrasser M, Brodsky JL, Michaelis S (2004) Distinct machinery is required in Saccharomyces cerevisiae for the endoplasmic reticulum-associated degradation of a multispanning membrane protein and a soluble luminal protein. J Biol Chem 279:38369–38378

    Article  PubMed  CAS  Google Scholar 

  • Hwa J, Garriga P, Liu X, Khorana HG (1997) Structure and function in rhodopsin: packing of the helices in the transmembrane domain and folding to a tertiary structure in the intradiscal domain are coupled. Proc Natl Acad Sci U S A 94:10571–10576

    Article  PubMed  CAS  Google Scholar 

  • Ismail N, Crawshaw SG, Cross BC, Haagsma AC, High S (2008) Specific transmembrane segments are selectively delayed at the ER translocon during opsin biogenesis. Biochem J 411:495–506

    Article  PubMed  CAS  Google Scholar 

  • Jayadev S, Smith RD, Jagadeesh G, Baukal AJ, Hunyady L, Catt KJ (1999) N-linked glycosylation is required for optimal AT1a angiotensin receptor expression in COS-7 cells. Endocrinology 140:2010–2017

    Article  PubMed  CAS  Google Scholar 

  • Jockers R, Linder ME, Hohenegger M, Nanoff C, Bertin B, Strosberg AD, Marullo S, Freissmuth M (1994) Species difference in the G protein selectivity of the human and bovine A1-adenosine receptor. J Biol Chem 269:32077–32084

    PubMed  CAS  Google Scholar 

  • Katritch V, Cherezov V, Stevens RC (2011) Diversity and modularity of G protein-coupled receptor structures. Trends Pharmacol Sci. doi:10.1016/j.tips.2011.09.003

  • Kiefer H, Vogel R, Maier K (2000) Bacterial expression of G-protein-coupled receptors: prediction of expression levels from sequence. Receptors Channels 7:109–119

    PubMed  CAS  Google Scholar 

  • Korkhov VM, Milan-Lobo L, Zuber B, Farhan H, Schmid JA, Freissmuth M, Sitte HH (2008) Peptide-based interactions with calnexin target misassembled membrane proteins into endoplasmic reticulum-derived multilamellar bodies. J Mol Biol 378:337–352

    Article  PubMed  CAS  Google Scholar 

  • Leskelä TT, Markkanen PM, Pietilä EM, Tuusa JT, Petäjä-Repo UE (2007) Opioid receptor pharmacological chaperones act by binding and stabilizing newly synthesized receptors in the endoplasmic reticulum. J Biol Chem 282:23171–23183

    Article  PubMed  Google Scholar 

  • Li JG, Chen C, Liu-Chen LY (2007) N-glycosylation of the human kappa opioid receptor enhances its stability but slows its trafficking along the biosynthesis pathway. Biochemistry 46:10960–10970

    Article  PubMed  CAS  Google Scholar 

  • Lin X, Janovick JA, Brothers S, Blömenrohr M, Bogerd J, Conn PM (1998) Addition of catfish gonadotropin-releasing hormone (GnRH) receptor intracellular carboxyl-terminal tail to rat GnRH receptor alters receptor expression and regulation. Mol Endocrinol 12:161–171

    Article  PubMed  CAS  Google Scholar 

  • Maiuolo J, Bulotta S, Verderio C, Benfante R, Borgese N (2011) Selective activation of the transcription factor ATF6 mediates endoplasmic reticulum proliferation triggered by a membrane protein. Proc Natl Acad Sci U S A 108:7832–7837

    Article  PubMed  CAS  Google Scholar 

  • Málaga-Diéguez L, Yang Q, Bauer J, Pankevych H, Freissmuth M, Nanoff C (2010) Pharmacochaperoneing of the A1 adenosine receptor is contingent on the endoplasmic reticulum. Mol Pharmacol 77:940–952

    Article  PubMed  Google Scholar 

  • Meimaridou E, Gooljar SB, Ramnarace N, Anthonypillai L, Clark AJ, Chapple JP (2011) The cytosolic chaperone HSC70 promotes traffic to the cell surface of intracellular retained melanocortin-4 receptor mutants. Mol Endocrinol 25:1650–1660

    Article  PubMed  CAS  Google Scholar 

  • Milojevic T, Reiterer V, Stefan E, Korkhov VM, Dorostkar MM, Ducza E, Ogris E, Boehm S, Freissmuth M, Nanoff C (2006) The ubiquitin-specific protease Usp4 regulates the cell surface level of the A2A receptor. Mol Pharmacol 69:1083–1094

    Article  PubMed  CAS  Google Scholar 

  • Mizrachi D, Segaloff DL (2004) Intracellularly located misfolded glycoprotein hormone receptors associate with different chaperone proteins than their cognate wild-type receptors. Mol Endocrinol 18:1768–1777

    Article  PubMed  CAS  Google Scholar 

  • Moukhametzianov R, Warne T, Edwards PC, Serrano-Vega MJ, Leslie AG, Tate CG, Schertler GF (2011) Two distinct conformations of helix 6 observed in antagonist-bound structures of a beta1-adrenergic receptor. Proc Natl Acad Sci U S A 108:8228–8232

    Article  PubMed  CAS  Google Scholar 

  • Mustafi D, Palczewski K (2009) Topology of class A G protein-coupled receptors: insights gained from crystal structures of rhodopsins, adrenergic and adenosine receptors. Mol Pharmacol 75:1–12

    Article  PubMed  CAS  Google Scholar 

  • Noda K, Saad Y, Graham RM, Karnik SS (1994) The high affinity state of the β2-adrenergic receptor requires unique interaction between conserved and non-conserved extracellular loop cysteines. J Biol Chem 269:6743–6752

    PubMed  CAS  Google Scholar 

  • Noorwez SM, Sama RR, Kaushal S (2009) Calnexin improves the folding efficiency of mutant rhodopsin in the presence of pharmacological chaperone 11-cis-retinal. J Biol Chem 284:33333–33342

    Article  PubMed  CAS  Google Scholar 

  • Pankevych H, Korkhov V, Freissmuth M, Nanoff C (2003) Truncation of the A1 adenosine receptor reveals distinct roles of the membrane-proximal carboxyl terminus in receptor folding and G protein coupling. J Biol Chem 278:30283–30293

    Article  PubMed  CAS  Google Scholar 

  • Pult F, Fallah G, Braam U, Detro-Dassen S, Niculescu C, Laube B, Schmalzing G (2011) Robust post-translocational N-glycosylation at the extreme C-terminus of membrane and secreted proteins in Xenopus laevis oocytes and HEK293 cells. Glycobiology 21:1147–1160

    Article  PubMed  CAS  Google Scholar 

  • Qiu XB, Shao YM, Miao S, Wang L (2006) The diversity of the DnaJ/HSP40 family, the crucial partners for HSP70 chaperones. Cell Mol Life Sci 63:2560–2570

    Article  PubMed  CAS  Google Scholar 

  • Ray-Sinha A, Cross BC, Mironov A, Wiertz E, High S (2009) Endoplasmic reticulum-associated degradation of a degron containing polytopic membrane protein. Mol Membr Biol 26:448–464

    Article  PubMed  Google Scholar 

  • Robert J, Auzan C, Ventura MA, Clauser E (2005) Mechanisms of cell-surface rerouting of an endoplasmic reticulum-retained mutant of the vasopressin V1b/V3 receptor by a pharmacological chaperone. J Biol Chem 280:42198–42206

    Article  PubMed  CAS  Google Scholar 

  • Ronchi P, Colombo S, Francolini M, Borgese N (2008) Transmembrane domain-dependent partitioning of membrane proteins within the endoplasmic reticulum. J Cell Biol 181:105–118

    Article  PubMed  CAS  Google Scholar 

  • Rosenbaum DM, Rasmussen SG, Kobilka BK (2009) The structure and function of G-protein-coupled receptors. Nature 459:356–363

    Article  PubMed  CAS  Google Scholar 

  • Rovati GE, Capra V, Neubig RR (2007) The highly conserved DRY motif of class A G protein-coupled receptors: beyond the ground state. Mol Pharmacol 71:959–964

    Article  PubMed  CAS  Google Scholar 

  • Rutz C, Rosenthal W, Schülein R (1999) A single negatively charged residue affects the orientation of a membrane protein in the inner membrane of Escherichia coli only when it is located adjacent to a transmembrane domain. J Biol Chem 274:33757–33763

    Article  PubMed  CAS  Google Scholar 

  • Rutz C, Renner A, Alken M, Schulz K, Beyermann M, Wiesner B, Rosenthal W, Schülein R (2006) The corticotropin-releasing factor receptor type 2a contains an N-terminal pseudo signal peptide. J Biol Chem 281:24910–29421

    Article  PubMed  CAS  Google Scholar 

  • Sato BK, Schulz D, Do PH, Hampton RY (2009) Misfolded membrane proteins are specifically recognized by the transmembrane domain of the HrdHRD1p ubiquitin ligase. Mol Cell 34:212–222

    Article  PubMed  CAS  Google Scholar 

  • Scholl DJ, Wells JN (2000) Serine and alanine mutagenesis of the nine native cysteine residues of the human A(1) adenosine receptor. Biochem Pharmacol 60:1647–1654

    Article  PubMed  CAS  Google Scholar 

  • Schöneberg T, Liu J, Wess J (1995) Plasma membrane localization and functional rescue of truncated forms of a G protein-coupled receptor. J Biol Chem 270:18000–18006

    Article  PubMed  Google Scholar 

  • Schülein R, Westendorf C, Krause G, Rosenthal W (2011) Functional significance of cleavable signal peptides of G protein-coupled receptors. Eur J Cell Biol 2011. doi:10.1016/j.ejcb.2011.02.006

  • Schulz K, Rutz C, Westendorf C et al (2010) The pseudo signal peptide of the corticotropin-releasing factor receptor type 2a decreases receptor expression and prevents Gi-mediated inhibition of adenylyl cyclase activity. J Biol Chem 285:32878–32887

    Article  PubMed  CAS  Google Scholar 

  • Sharpe HJ, Stevens TJ, Munro S (2010) A comprehensive comparison of transmembrane domains reveals organelle-specific properties. Cell 142:158–169

    Article  PubMed  CAS  Google Scholar 

  • Shim JY (2009) Transmembrane helical domain of the cannabinoid CB1 receptor. Biophys J 96:3251–3262

    Article  PubMed  CAS  Google Scholar 

  • Snapp EL, Hegde RS, Francolini M, Lombardo F, Colombo S, Pedrazzini E, Borgese N, Lippincott-Schwartz J (2003) Formation of stacked ER cisternae by low affinity protein interactions. J Cell Biol 163:257–269

    Article  PubMed  CAS  Google Scholar 

  • Thielen A, Oueslati M, Hermosilla R, Krause G, Oksche A, Rosenthal W, Schülein R (2005) The hydrophobic amino acid residues in the membrane-proximal C tail of the G protein-coupled vasopressin V2 receptor are necessary for transport-competent receptor folding. FEBS Lett 579:5227–5235

    Article  PubMed  CAS  Google Scholar 

  • Tuusa JT, Markkanen PM, Apaja PM, Hakalahti AE, Petäjä-Repo UE (2007) The endoplasmic reticulum Ca2+-pump SERCA2b interacts with G protein-coupled receptors and enhances their expression at the cell surface. J Mol Biol 371:622–638

    Article  PubMed  CAS  Google Scholar 

  • Vashist S, Ng DT (2004) Misfolded proteins are sorted by a sequential checkpoint mechanism of ER quality control. J Cell Biol 165:41–52

    Article  PubMed  CAS  Google Scholar 

  • Vembar S, Brodsky JL (2008) One step at a time: endoplasmic reticulum-associated degradation. Nat Rev Mol Cell Biol 9:944–957. doi:10.1038/nrm2546

    Article  PubMed  CAS  Google Scholar 

  • Vembar SS, Jin Y, Brodsky JL, Hendershot LM (2009) The mammalian HSP40 ERdj3 requires its HSP70 interaction and substrate-binding properties to complement various yeast HSP40-dependent functions. J Biol Chem 284:32462–32471

    Article  PubMed  CAS  Google Scholar 

  • Weiss HM, Grisshammer R (2002) Purification and characterization of the human adenosine A(2a) receptor functionally expressed in Escherichia coli. Eur J Biochem 269:82–92

    Article  PubMed  CAS  Google Scholar 

  • Wess J, Nanavati S, Vogel Z, Maggio R (1993) Functional role of proline and tryptophan residues highly conserved among G protein-coupled receptors studied by mutational analysis of the m3 muscarinic receptor. EMBO J 12:331–338

    PubMed  CAS  Google Scholar 

  • Xie W, Kanehara K, Sayeed A, Ng DT (2009) Intrinsic conformational determinants signal protein misfolding to the HrdHRD1/Htm1 endoplasmic reticulum-associated degradation system. Mol Biol Cell 20:3317–3329

    Article  PubMed  CAS  Google Scholar 

  • Zeng FY, Soldner A, Schöneberg T, Wess J (1999) Conserved extracellular cysteine pair in the M3 muscarinic acetylcholine receptor is essential for proper receptor cell surface localization but not for G protein coupling. J Neurochem 72:2404–2414

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Nanoff .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Nanoff, C., Freissmuth, M. (2012). ER-Bound Steps in the Biosynthesis of G Protein-Coupled Receptors. In: Dupré, D., Hébert, T., Jockers, R. (eds) GPCR Signalling Complexes – Synthesis, Assembly, Trafficking and Specificity. Subcellular Biochemistry, vol 63. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4765-4_1

Download citation

Publish with us

Policies and ethics