Skip to main content

Wetland Evapotranspiration

  • Chapter
  • First Online:
Evaporation and Evapotranspiration

Abstract

Wetland, marsh, bog, and fen evapotranspiration (ET) rates historically were estimated far higher than open water evaporation. Recent studies have shown that wetland evapotranspiration is not higher than open water evaporation. Lysimeter studies in south Florida show that there is no significant difference in evapotranspiration between cattails, mixed marsh, and open water. Bowen ratio evapotranspiration measurements also showed wetland evapotranspiration being not more than open water evaporation. Simple equations based on solar radiation and temperature can provide estimates of evaporation and ET in regions where most of the variation in ET is explained by one or two parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abtew W (1996) Evapotranspiration measurements and modeling for three wetland systems in South Florida. J Am Water Resour Assoc 127(3):140–147

    Google Scholar 

  • Abtew W (2005) Evapotranspiration in the Everglades: comparison of Bowen ratio measurements and model estimates. In: Proceedings of the 2005 ASAE annual international meeting. ASAE, St. Joseph, MI

    Google Scholar 

  • Abtew W, Hardee J (1993) Design of a lysimeter for a wetland environment: evapotranspiration of cattails (Typha domingensis). Paper presented at the 1993 ASAE paper no. 93–2553. ASAE, St. Joseph, MI

    Google Scholar 

  • Abtew W, Iricanin N (2008) Hurricane effects on south Florida water management system: a case study of Hurricane Wilma of October 2005. J Spat Hydrol 8(1):1–21

    Google Scholar 

  • Abtew W, Obeysekera J (1995) Lysimeter study of evapotranspiration of cattails and comparison of three estimation methods. Trans ASAE 38(1):121–129

    Google Scholar 

  • Abtew W, Obeysekera J, Ortiz MI, Lyons D, Reardon A (2003) Evapotranspiration estimation for South Florida. In: Bizier P, DeBarry P (eds) Proceedings of the world water and environmental congress 2003. ASCE, Reston

    Google Scholar 

  • Allen RG, Jensen ME, Wright GL, Burman RD (1989) Operational estimates of reference evapotranspiration. Agron J 81:650–662

    Article  Google Scholar 

  • Allen RG, Hill W, Srikanth V (1994) Evapotranspiration parameters for variably sized wetlands. ASAE paper no. 93–2516. ASAE, St. Joseph, MI

    Google Scholar 

  • Benton AR, James WP, Rouse JW Jr (1978) Evapotranspiration from water hyacinth (Eichhornia crassipes (Mart.) Solms) in Texas reservoirs. Water Resour Bull 14(4):919–930

    Article  Google Scholar 

  • Brenzy O, Mehta I, Sharma RK (1973) Studies on transpiration of some aquatic weeds. Weed Sci 21(May):197–204

    Google Scholar 

  • Burba GG, Verma SB (1999) A comparative study of surface energy fluxes of three communities (Phragmites australis, Scirpus acutus, and open water) in a prairie wetland ecosystem. Wetlands 19(2):451–457

    Article  Google Scholar 

  • Cooley KR, Idso SB (1980) Effects of lily pads on evaporation. Water Resour Res 16(3):605–606

    Article  Google Scholar 

  • DeBusk TA, Ryther JH, Williams LD (1983) Evapotranspiration of Eichhornia crassipes (Mart.) solms and Lemna minor L. in central Florida: relation to canopy structure and season. Aquat Bot 1(16):31–39

    Article  Google Scholar 

  • Delclaux F, Coudrain A (2005) Optimal evaporation models for simulation of large lake levels: application to Lake Titicaca, South America. Geophys Res Abstr 7:53–65

    Google Scholar 

  • Dugas WA, Fritschen LJ, Gay LW, Held AA, Mathias AD, Reicosky DC, Stedoto P, Steiner JL (1991) Bowen ratio, eddy correlation, and portable chamber measurements of sensible and latent heat flux over irrigated spring wheat. Agric Forest Meteorol 56:1–20

    Article  Google Scholar 

  • Enku T, van der Tol C, Gieske ASM, Rientjes THM (2011) Evapotranspiration modeling using remote sensing and empirical models in the Fogera floodplain, Ethiopia. In: Melesse A (ed) Nile River Basin: hydrology, climate and water use. Springer, Dordrecht, pp 163–170

    Google Scholar 

  • German ER (2000) Regional evaluation of evapotranspiration in the Everglades. USGS Water Resources Investigations Report 00–4217. USGS, Tallahassee, FL

    Google Scholar 

  • Idso SB (1981) Relative rates of evaporative water losses from open and vegetation covered water bodies. Water Resour Bull 17(1):6–48

    Article  Google Scholar 

  • Idso SB, Anderson MG (1988) A comparison of two recent studies of transpirational water loss from emergent aquatic machrophytes. Aquat Bot 31:191–195

    Article  Google Scholar 

  • Kim J, Verma SB (1996) Surface exchange of water vapour between an open sphagnum fen and the atmosphere. Bound Layer Meteorol 79:243–264

    Article  Google Scholar 

  • Koerselman W, Beltman B (1988) Evapotranspiration from fens in relation to Penman’s potential free water evaporation (Eo) and pan evaporation. Aquat Bot 31(3–4):307–320

    Article  Google Scholar 

  • Lafleur PM, Roulet NT (1992) A comparison of evaporation rates from two fens on the Hudson Bay Lowland. Aquat Bot 44:59–69

    Article  Google Scholar 

  • Mao LM, Bergman MJ, Tai C (2002) Evapotranspiration measurement and estimation of three wetland environments in the Upper St. John’s River Basin, Florida. J Am Water Resour Assoc 5(38):1271–1285

    Article  Google Scholar 

  • Mehta I, Sharma RK (1976) A note on water loss from Typha (Aira) weed. Ann Arid Zone 15(1, 2):114–116

    Google Scholar 

  • Melesse A, Abtew W, Dessalegne T (2009) Evaporation estimation of Rift Valley Lakes: comparison of models. Sensor J 9:9603–9615. doi:10.3390/s91209603

    Article  Google Scholar 

  • Mitsch WJ, Gosselink JG (1993) Wetlands, 2nd edn. Van Nostrand Reinhold, New York

    Google Scholar 

  • Monteith JL (1965) Evaporation and the environment. In: The state and movement of water in living organisms, XIXth symposium of the Society of Experimental Biologists Swansea. Cambridge University Press, Cambridge

    Google Scholar 

  • Ottis CH (1914) The transpiration of emerged water plants: its measurement and its relationships. Bot Gaz LVIII:457–494

    Article  Google Scholar 

  • Oudin L, Hervieu F, Michel C, Perrin C, Andreassian V, Anctil F, Loumagne C (2005) Which potential evapotranspiration input for a lumped model part 2-towards a simple and efficient potential evapotranspiration model for rainfall-runoff modeling. J Hydrol 303:290–306

    Article  Google Scholar 

  • Penfound WM, Earle TT (1948) The biology of the water hyacinth. Ecol Monogr 14(4):448–472

    Google Scholar 

  • Price JS (1994) Evapotranspiration from lakeshore Typha marsh on Lake Ontario. Aquat Bot 48:262–272

    Article  Google Scholar 

  • Roulet NT, Woo M-K (1986) Wetland and lake evaporation in the low Arctic. Arct Alp Res 18(2):195–200

    Article  Google Scholar 

  • Setegn SG, Chowdary VM, Mal BC, Yohannes F, Kono Y (2011) Water balance study and irrigation strategies for sustainable management of a tropical Ethiopian lake: a case study of Lake Alemaya. Water Resour Manage 25(9):2081–2107. doi:10.1007/s11269-011-9797-y

    Article  Google Scholar 

  • Shoemaker WB, Sumner DM (2006) Alternate corrections for estimating actual wetland evapotranspiration from potential evapotranspiration. Wetlands 26(2):528–543

    Article  Google Scholar 

  • Snyder RL, Boyd CE (1987) Evapotranspiration by Eichhornia crassipes (Mart.) and Typha latifolia L. Aquat Bot 27:217–227

    Article  Google Scholar 

  • Souch C, Grimmond CSB, Wolfe CP (1998) Evapotranspiration rates from wetlands with different disturbance histories: Indiana Dunes National Lake Shore. Wetlands 18(2):216–229

    Article  Google Scholar 

  • Takagi K, Tsuboya T, Takahashi H, Inuoe T (1999) Effects of the invasion of vascular plants on heat and water balance in the Sarobetsu Mire, northern Japan. Wetlands 19(1):246–254

    Article  Google Scholar 

  • Timmer CE, Weldon LW (1968) Evapotranspiration and pollution of water by water hyacinth. Hyacinth Control J 6:4–37

    Google Scholar 

  • Weert RV, Kamerling GE (1974) Evapotranspiration of water hyacinth (Eichhornia crassipes). J Hydrol 22:201–212

    Article  Google Scholar 

  • Xu CY, Singh VP (2000) Evaluation and generalization of radiation-based methods for calculating evaporation. Hydrol Process 14:339–349

    Article  Google Scholar 

  • Zhai L, Feng Q, Li Q, Xu C (2009) Comparison and modification of equations for calculating evapotranspiration (ET) with data from Gansu Province, Northwest China. Irrig Drain 58:1–14. doi:10.1002/ird.502

    Article  Google Scholar 

Download references

Acknowledgements

We would like to acknowledge Ed German from U.S. Geological Survey for taking the photographs shown in Fig. 7.6a, b.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wossenu Abtew .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Abtew, W., Melesse, A. (2013). Wetland Evapotranspiration. In: Evaporation and Evapotranspiration. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4737-1_7

Download citation

Publish with us

Policies and ethics