Skip to main content

Biologically-Inspired Electronics with Memory Circuit Elements

  • Chapter
  • First Online:
Advances in Neuromorphic Memristor Science and Applications

Part of the book series: Springer Series in Cognitive and Neural Systems ((SSCNS,volume 4))

Abstract

Several unique properties of biological systems, such as adaptation to natural environment, or of animals to learn patterns when appropriately trained, are features that are extremely useful, if emulated by electronic circuits, in applications ranging from robotics to solution of complex optimization problems, traffic control, etc. In this chapter, we discuss several examples of biologically-inspired circuits that take advantage of memory circuit elements, namely, electronic elements whose resistive, capacitive or inductive characteristics depend on their past dynamics. We provide several illustrations of what can be accomplished with these elements including learning circuits and related adaptive filters, neuromorphic and cellular computing circuits, analog massively-parallel computation architectures, etc. We also give examples of experimental realizations of memory circuit elements and discuss opportunities and challenges in this new field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    There is no such dependence for traditional basic circuit elements—resistors, capacitors and inductors.

  2. 2.

    Several designs of memristor [7, 46–48] as well as memcapacitor and meminductor [47, 49–51] emulators are known in the literature. These emulators serve as an important practical tool to build small-scale circuits with memory circuit elements.

  3. 3.

    Fast sub-nanosecond switching has been recently reported in tantalum oxide memristive systems [62].

References

  1. Russell SJ, Norvig P (2009) Artificial intelligence: a modern approach, 3rd edn. Prentice Hall, USA

    Google Scholar 

  2. Colorni A, Dorigo MM, Maniezzo V (1991) In Actes de la premire confrence europenne sur la vie artificielle. Elsevier, Paris, pp 134–142

    Google Scholar 

  3. Monmarché N, Guinand F, Siarry P (2010) Artificial ants. Wiley-ISTE, Hoboken, p 576

    Google Scholar 

  4. Di Ventra M, Pershin YV, Chua LO (2009) Circuit elements with memory: memristors, memcapacitors, and meminductors. Proc IEEE 97(10):1717–1724

    Google Scholar 

  5. Di Ventra M, Pershin YV (2010) Memory materials: a unifying description. Mat Today 14:584

    Google Scholar 

  6. Pershin YV, Di Ventra M (2011) Memory effects in complex materials and nanoscale systems. Adv Phys 60:145–227

    Google Scholar 

  7. Chua LO (1971) Memristor—the missing circuit element. IEEE Trans Circuit Theory 18:507–519

    Google Scholar 

  8. Chua LO, Kang SM (1976) Memristive devices and systems. Proc IEEE 64:209–223

    Google Scholar 

  9. Pershin YV, Di Ventra M (2008) Spin memristive systems: spin memory effects in semiconductor spintronics. Phys Rev B 78:113309-1–113309-4

    Google Scholar 

  10. Wang X, Chen Y, Xi H, Li H, Dimitrov D (2009) Spintronic memristor through spin-torque-induced magnetization motion. IEEE Electron Dev Lett 30:294–297

    Google Scholar 

  11. Martinez-Rincon J, Pershin YV (2011) Bistable non-volatile elastic membrane memcapacitor exhibiting chaotic behavior. IEEE Trans Electron Dev 58:1809

    Google Scholar 

  12. Martinez-Rincon J, Di Ventra M, Pershin YV (2010) Solid-state memcapacitive system with negative and diverging capacitance. Phys Rev B 81:195430

    Google Scholar 

  13. Corinto F, Ascoli A, Gilli M (2011) Analysis of current-voltage characteristics for memristive elements in pattern recognition systems (submitted for publication)

    Google Scholar 

  14. Strukov DB, Snider GS, Stewart DR, Williams RS (2008) The missing memristor found. Nature 453:80

    Google Scholar 

  15. Pershin YV, La Fontaine S, Di Ventra M (2009) Memristive model of amoeba learning. Phys Rev E 80:021926

    Google Scholar 

  16. Krems M, Pershin YV, Di Ventra M (2010) Ionic memcapacitive effects in nanopores. Nano Lett 10:2674

    Google Scholar 

  17. Stotland A, Di Ventra M (2011) Stochastic memory: getting memory out of noise. arXiv:1104.4485v2

    Google Scholar 

  18. Schindler C, Staikov G, Waser R (2009) Electrode kinetics of Cu SiO 2-based resistive switching cells: Overcoming the voltage-time dilemma of electrochemical metallization memories. Appl Phys Lett 94:072109

    Google Scholar 

  19. Lai Q, Zhang L, Li Z, Stickle WF, Williams RS, Chen Y (2009) Analog memory capacitor based on field-configurable ion-doped polymers. Appl Phys Lett 95:213503

    Google Scholar 

  20. Lubecke V, Barber B, Chan E, Lopez D, Gross M, Gammel P (2001) Self-assembling MEMS variable and fixed RF inductors. IEEE Trans Microw Theory Tech 49(11):2093

    Google Scholar 

  21. Zine-El-Abidine I, Okoniewski M, McRory JG (2004) In Proceedings of the 2004 international conference on MEMS, NANO and smart systems (ICMENS’04), pp 636–638

    Google Scholar 

  22. Chang S, Sivoththaman S (2006) A tunable RF MEMS inductor on silicon incorporating an amorphous silicon bimorph in a low-temperature process. IEEE El Dev Lett 27(11):905

    Google Scholar 

  23. Liu S, Wu N, Ignatiev A, Li J (2006) Electric-pulse-induced capacitance change effect in perovskite oxide thin films. J Appl Phys 100:056101

    Google Scholar 

  24. Erokhin VV, Berzina TS, Fontana MP (2007) Polymeric elements for adaptive networks. Crystallogr Rep 52:159

    Google Scholar 

  25. Alibart F, Pleutin S, Guerin D, Novembre C, Lenfant S, Lmimouni K, Gamrat C, Vuillaume D (2010) An organic nanoparticle transistor behaving as a biological spiking synapse. Adv Funct Mater 20:330

    Google Scholar 

  26. Lai Q, Zhang L, Li L, Stickle WF, Williams RS, Chen Y (2010) Ionic/electronic hybrid materials integrated in a synaptic transistor with signal processing and learning functions. Adv Mater 22:2448

    Google Scholar 

  27. Kozlowski T, Pallardy S (2002) Acclimation and adaptive responses of woody plants to environmental stresses. Bot Rev 68:270

    Google Scholar 

  28. Trewavas A (1998) Aspects of plant intelligence. Ann Bot 92:1–20

    Google Scholar 

  29. Calvo Garzon P, Keijzer F (2011) Plants: Adaptive behavior, root-brains, and minimal cognition. Adap Behav 19:155

    Google Scholar 

  30. Staddon JER (1983) Adaptive behavior and learning. Cambridge University Press, New York, pp 299–316

    Google Scholar 

  31. Ojal J (1998) Adaptive behavior with protozoa-inspired dynamic. Biol Cybern 79:403

    Google Scholar 

  32. Saigusa T, Tero A, Nakagaki T, Kuramoto Y (2008) Amoebae anticipate periodic events. Phys Rev Lett 100:018101

    Google Scholar 

  33. Li Q, McNeil B, Harvey LM (2008) Adaptive response to oxidative stress in the filamentous fungus Aspergillus niger B1-D. Free Radic Biol Med 44:394

    Google Scholar 

  34. Hartley J, Cairney JW, Meharg AA (1997) Do ectomycorrhizal fungi exhibit adaptive tolerance to potentially toxic metals in the environment? Plant Soil 189(2):303–319

    Google Scholar 

  35. Thieringer H, Jones P, Inouye M (1998) Cold shock and adaptation. Bio Essays 20:49

    Google Scholar 

  36. Van Der Oost J, Jore MM, Westra ER, Lundgren M, Brouns SJ (2009) CRISPR-based adaptive and heritable immunity in prokaryotes. Trends Biochem Sci 34(8):401–407

    Google Scholar 

  37. Larsson J, Nylander AA, Bergman B (2011) Genome fluctuations in cyanobacteria reflect evolutionary, developmental and adaptive traits. BMC Evol Biol 11:187

    Google Scholar 

  38. Holland JH (1992) Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control, and artificial intelligence. Bradford Book, Mass

    Google Scholar 

  39. Driscoll T, Quinn J, Klein S, Kim HT, Kim BJ, Pershin YV, Di Ventra M, Basov DN (2010) Memristive adaptive filters. Appl Phys Lett 97:093502

    Google Scholar 

  40. Driscoll T, Kim HT, Chae BG, Di Ventra M, Basov DN (2009) Phase-transition driven memristive system. Appl Phys Lett 95:043503

    Google Scholar 

  41. Driscoll T, Kim HT, Chae BG, Kim BJ, Lee YW, Jokerst NM, Palit S, Smith DR, Di Ventra M, Basov DN (2009) Memory metamaterials. Science 325:1518

    Google Scholar 

  42. Johnsen GK, Lütken CA, Martinsen OG, Grimnes S (2011) Memristive model of electro-osmosis in skin. Phys Rev E 83:031916

    Google Scholar 

  43. Pavlov I (1927) Conditioned reflexes: an investigation of the physiological activity of the cerebral cortex (trans: Anrep GV). Oxford University Press, London

    Google Scholar 

  44. Pershin YV, Di Ventra M (2010) Experimental demonstration of associative memory with memristive neural networks. Neural Networks 23:881

    Google Scholar 

  45. Hebb DO (1949) The organization of behavior; a neuropsychological theory. Wiley, New York

    Google Scholar 

  46. Pershin YV, Di Ventra M (2010) Practical approach to programmable analog circuits with memristors. IEEE Trans Circ Syst I 57:1857

    Google Scholar 

  47. Biolek D, Biolkova V (2011) Hybrid modelling and emulation of mem-systems. Int J Numer Mod (in press)

    Google Scholar 

  48. Biolek D, Biolkova V, Kolka Z (2011) In 5th international conference on circuits, systems and signals (CSS’11), p 171

    Google Scholar 

  49. Biolek D, Biolkova V (2010) Mutator for transforming memristor into memcapacitor. Electron Lett 46:1428

    Google Scholar 

  50. Pershin YV, Di Ventra M (2011) Emulation of floating memcapacitors and meminductors using current conveyors. Electron Lett 47:243

    Google Scholar 

  51. Pershin YV, Di Ventra M (2010) Memristive circuits simulate memcapacitors and meminductors. Electron Lett 46:517

    Google Scholar 

  52. Tamura T, Hasegawa T, Terabe K, Nakayama T, Sakamoto T, Sunamura H, Kawaura H, Hosaka S, Aono M (2006) Switching property of atomic switch controlled by solid electrochemical reaction. Jpn J Appl Phys 45:L364

    Google Scholar 

  53. Waser RR, Aono M (2007) Nanoionics-based resistive switching memories. Nat Mater 6:833

    Google Scholar 

  54. Lee D, Seong D, Jo I, Xiang F, Dong R, Oh S, Hwang H (2007) Resistance switching of copper doped MoOx films for nonvolatile memory applications. Appl Phys Lett 90:122104

    Google Scholar 

  55. Dietrich S, Angerbauer M, Ivanov M, Gogl D, Hoenigschmid H, Kund M, Liaw C, Markert M (2007) A nonvolatile 2-Mbit CBRAM memory core featuring advanced read and program control. IEEE J Solid-State Circ 42:839

    Google Scholar 

  56. Raoux S, Burr GW, Breitwisch MJ, Rettner CT, Chen YC, Shelby RM, Salinga M, Krebs D, Chen SH, Lung HL, Lam CH (2008) Phase-change random access memory: a scalable technology. IBM J Res Dev 52:465

    Google Scholar 

  57. Inoue IH, Yasuda S, Akinaga H, Takagi H (2008) Nonpolar resistance switching of metal/binary-transition-metal oxides/metal sandwiches: homogeneous/inhomogeneous transition of current distribution. Phys Rev B 77:035105

    Google Scholar 

  58. Sawa A (2008) Resistive switching in transition metal oxides. Mater Today 11:28

    Google Scholar 

  59. Jo SH, Kim KH, Lu W (2009) High-density crossbar arrays based on a SI memristive system. Nano Lett 9:870

    Google Scholar 

  60. Jo SH, Chang T, Ebong I, Bhadviya BB, Mazumder P, Lu W (2010) Nanoscale memristor device as synapse in neuromorphic systems. Nano Lett 10:1297

    Google Scholar 

  61. Lee MJ, Lee CB, Lee D, Lee SR, Chang M, Hur JH, Kim YB, Kim CJ, Seo DH, Seo S, Chung UI, Yoo IK, Kim K (2011) A fast, high-endurance and scalable non-volatile memory device made from asymmetric Ta(2)O(5-x)/TaO(2-x) bilayer structures. Nat Mater 10(8):625

    Google Scholar 

  62. Torrezan AC, Strachan JP, Medeiros-Ribeiro G, Williams RS (2011) Sub-nanosecond switching of a tantalum oxide memristor. Nanotechnology 22(48):485203

    Google Scholar 

  63. Levy WB, Steward O (1983) Temporal contiguity requirements for long-term associative potentiation depression in the hippocampus. Neuroscience 8:791

    Google Scholar 

  64. Markram H, Lubke J, Frotscher M, Sakmann B (1997) Regulation of synaptic efficacy by coincidence of postsynaptic APs and EPSPs. Science 275:213

    Google Scholar 

  65. Bi GQ, Poo MM (1998) Synaptic modifications in cultured hippocampal neurons: dependence on spike timing, synaptic strength and postsynaptic cell type. J Neurosci 18:10464

    Google Scholar 

  66. Froemke RC, Dan Y (2002) Spike-timing-dependent synaptic modification induced by natural spike trains. Nature 416:433

    Google Scholar 

  67. Pershin YV, Di Ventra M (2010) Neuromorphic, digital and quantum computation with memory circuit elements. Proc IEEE (in press); arXive:1009.6025

    Google Scholar 

  68. Snider GS (2008) Cortical computing with memristive nanodevices. SciDAC Rev 10:58

    Google Scholar 

  69. Parkin S (2010) Innately three dimensional spintronic memory and logic devices: racetrack memory and spin synapses. Talk at 2010 MRS Spring Meeting

    Google Scholar 

  70. Kaech S, Banker G (2006) Culturing hippocampal neurons. Nat Protoc 1:2406

    Google Scholar 

  71. Zhao WS, Agnus G, Derycke V, Filoramo A, Bourgoin JP, Gamrat C (2010) Nanotube devices based crossbar architecture: toward neuromorphic computing. Nanotechnology 21(17):175202

    Google Scholar 

  72. Pershin YV, Di Ventra M (2011) Solving mazes with memristors: a massively parallel approach. Phys Rev E 84:046703

    Google Scholar 

  73. Likharev KK, Strukov DB (2005) In introducing molecular electronics. In: Cuniberti GF, Richter K (eds) Introducing molecular electronics, vol 657. Springer, Heidelberg, pp 447–477

    Google Scholar 

Download references

Acknowledgement

M.D. acknowledges partial support from the NSF Grant No. DMR-0802830.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Massimiliano Di Ventra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Di Ventra, M., Pershin, Y.V. (2012). Biologically-Inspired Electronics with Memory Circuit Elements. In: Kozma, R., Pino, R., Pazienza, G. (eds) Advances in Neuromorphic Memristor Science and Applications. Springer Series in Cognitive and Neural Systems, vol 4. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4491-2_3

Download citation

Publish with us

Policies and ethics