Skip to main content

ER Stress in Intestinal Inflammatory Disease

  • Chapter
  • First Online:

Abstract

Earlier chapters have discussed the details of endoplasmic reticulum (ER) stress and the unfolded protein response (UPR). In this chapter, we will focus attention on intestinal epithelial cells (IEC) which are unique as they are highly secretory cells that are exposed to a great number of ER stress inducers such as bacteria, xenobiotics, toxins, and hypoxia amongst many other factors (Kaser and Blumberg, Mucosal Immunol 3:11–16, 2010). At the same time, IECs are responsible for absorption of nutrients to sustain the host and actively participate in regulation of immune responses in the gut (Artis, Nat Rev Immunol 8:411–420, 2008). Thus the intestinal epithelium has evolved to possess mechanisms that allow for quick but precise resolution of the ER stress back to the levels required for homeostatic functions. Various defects in the UPR pathways from expression of proteins that easily misfold, through defects in the folding apparatus of the ER to abnormalities in the elements directly associated with the UPR within the ER itself may lead to the intestinal inflammation (Fig. 1) which is associated with diseases such as inflammatory bowel disease (IBD) (Kaser and Blumberg, Mucosal Immunol 3:11–16, 2010; Kaser et al., Annu Rev Immunol 28:573–621, 2010). This chapter will review these concepts in light of fundamental biology of the UPR as discussed in the previous chapters of this book.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

AGR2:

Anterior gradient 2

ATF6:

Activating transcription factor 6

ATG16L1:

Autophagy related protein16-like 1

ATG7:

Autophagy related protein 7

ATP:

Adenosine triphosphate

b2m:

b2-microglobulin

Bcl2:

B-cell leukemia/lymphoma 2

BiP:

Immunoglobulin heavy chain-binding protein

C/EBP:

CAATT/enhancer binding protein

CaMKKb:

Ca2 + /calmodulin-dependent protein kinase kinase-β

cAMP:

Cyclic adenosine monophosphate

CD:

Crohn’s disease

CHOP:

C/EBP homologous protein

DAP:

Death-associated protein

DSS:

Dextran sodium sulfate

eIF2α:

Eukaryotic initiation factor 2 α

ENU:

N-ethyl-N-nitrosourea

ER:

Endoplasmic reticulum

Ern2:

Endoplasmic reticulum to nucleus signaling 2

GADD34:

Growth arrest and DNA-damage-inducible 34

GCN2:

General control non-depressible 2

GRP78:

Glucose-regulated protein, 78 kDa

Haspa5:

Heat shock 70 kDa protein 5

HLA-B27:

Human leukocyte antigen B27

HRI:

Heme regulated inhibitor

I/R:

Ischemia reperfusion

IBD:

Inflammatory bowel disease

IEC:

Intestinal epithelial cell

IL:

Interleukin

IRE1:

Inositol-requiring enzyme 1

IRF4:

Interferon regulatory factor 4

IRGM:

Immunity-related GTPase family M protein

JNK:

c-Jun N-terminal kinase

LRKK2:

Leucine-rich repeat kinase 2

Mbtps1:

Membrane-bound transcription factor peptidase, site 1

MMP7:

Matrix metallopeptidase 7

mTOR:

Mechanistic target of rapamycin

MUC2:

Mucin 2

NF-kB:

Nuclear factor kB

NOD2:

Nucleotide oligomerization domain gene 2

ORMDL3:

Orosomucoid 1-like protein 3

PDI:

Protein disulfide isomerase

PERK:

Pancreatic EIF2-a kinase

PI3K:

Phosphatidylinositol-3-kinase

PKC-t:

Protein kinase C t

PKR:

Double stranded RNA activated protein kinase

PolyQ72:

Polyglutamine 72

S1P:

Peptidase site 1 protease

SOD1:

Superoxide dismutase 1

SREBPs:

Sterol regulatory element-binding proteins

Th17:

T helper 17

TLR:

Toll like receptor

TNF:

Tumor necrosis factor

TRAF2:

TNF receptor-associated factor 2

UC:

Ulcerative colitis

ULK1:

unc-51-like kinase 1

UPR:

Unfolded protein response

XBP1:

x-box binding protein 1

References

  1. Kaser A, Blumberg RS (2010) Endoplasmic reticulum stress and intestinal inflammation. Mucosal Immunol 3(1):11–16

    Article  PubMed  CAS  Google Scholar 

  2. Artis D (2008) Epithelial-cell recognition of commensal bacteria and maintenance of immune homeostasis in the gut. Nat Rev Immunol 8(6):411–420

    Article  PubMed  CAS  Google Scholar 

  3. Kaser A, Zeissig S, Blumberg RS (2010) Inflammatory bowel disease. Annu Rev Immunol 28:573–621

    Article  PubMed  CAS  Google Scholar 

  4. Bertolotti A, Wang X, Novoa I, Jungreis R, Schlessinger K, Cho JH, West AB, Ron D (2001) Increased sensitivity to dextran sodium sulfate colitis in IRE1beta-deficient mice. J Clin Invest 107(5):585–593

    Article  PubMed  CAS  Google Scholar 

  5. Ron D, Walter P (2007) Signal integration in the endoplasmic reticulum unfolded protein response. Nat Rev Mol Cell Biol 8(7):519–529

    Article  PubMed  CAS  Google Scholar 

  6. Imagawa Y, Hosoda A, Sasaka S, Tsuru A, Kohno K (2008) RNase domains determine the functional difference between IRE1alpha and IRE1beta. FEBS Lett 582(5):656–660

    Article  PubMed  CAS  Google Scholar 

  7. Iqbal J, Dai K, Seimon T, Jungreis R, Oyadomari M, Kuriakose G, Ron D, Tabas I, Hussain MM (2008) IRE1beta inhibits chylomicron production by selectively degrading MTP mRNA. Cell Metab 7(5):445–455

    Article  PubMed  CAS  Google Scholar 

  8. Nakamura D, Tsuru A, Ikegami K, Imagawa Y, Fujimoto N, Kohno K (2011) Mammalian ER stress sensor IRE1beta specifically down-regulates the synthesis of secretory pathway proteins. FEBS Lett 585(1):133–138

    Article  PubMed  CAS  Google Scholar 

  9. Kaser A, Lee AH, Franke A, Glickman JN, Zeissig S, Tilg H, Nieuwenhuis EE, Higgins DE, Schreiber S, Glimcher LH, Blumberg RS (2008) XBP1 links ER stress to intestinal inflammation and confers genetic risk for human inflammatory bowel disease. Cell 134(5):743–756

    Article  PubMed  CAS  Google Scholar 

  10. Keshav S, Lawson L, Chung LP, Stein M, Perry VH, Gordon S (1990) Tumor necrosis factor mRNA localized to Paneth cells of normal murine intestinal epithelium by in situ hybridization. J Exp Med 171(1):327–332

    Article  PubMed  CAS  Google Scholar 

  11. Ouellette AJ (2010) Paneth cells and innate mucosal immunity. Curr Opin Gastroenterol 26(6):547–553

    Article  PubMed  Google Scholar 

  12. Takahashi N, Vanlaere I, de Rycke R, Cauwels A, Joosten LA, Lubberts E, Van Den Berg WB, Libert C (2008) IL-17 produced by Paneth cells drives TNF-induced shock. J Exp Med 205(8):1755–1761

    Article  PubMed  CAS  Google Scholar 

  13. Bevins CL, Salzman NH (2011) Paneth cells, antimicrobial peptides and maintenance of intestinal homeostasis. Nat Rev Microbiol 9(5):356–368

    Article  PubMed  CAS  Google Scholar 

  14. Kobayashi KS, Chamaillard M, Ogura Y, Henegariu O, Inohara N, Nunez G, Flavell RA (2005) Nod2-dependent regulation of innate and adaptive immunity in the intestinal tract. Science 307(5710):731–734

    Article  PubMed  CAS  Google Scholar 

  15. Kanneganti TD, Lamkanfi M, Nunez G (2007) Intracellular NOD-like receptors in host defense and disease. Immunity 27(4):549–559

    Article  PubMed  CAS  Google Scholar 

  16. Strober W, Watanabe T (2011) NOD2, an intracellular innate immune sensor involved in host defense and Crohn’s disease. Mucosal Immunol 4(5):484–495

    Article  PubMed  CAS  Google Scholar 

  17. Mondot S, Barreau F, Al Nabhani Z, Dussaillant M, Le Roux K, Dore J, Leclerc M, Hugot JP, Lepage P (2011) Altered gut microbiota composition in immune-impaired Nod2- / - mice. Gut 61(4):634–635

    Google Scholar 

  18. Rehman A, Sina C, Gavrilova O, Hasler R, Ott S, Baines JF, Schreiber S, Rosenstiel P (2011) Nod2 is essential for temporal development of intestinal microbial communities. Gut 60(10):1354–1362

    Article  PubMed  CAS  Google Scholar 

  19. Salzman NH, Hung K, Haribhai D, Chu H, Karlsson-Sjoberg J, Amir E, Teggatz P, Barman M, Hayward M, Eastwood D, Stoel M, Zhou Y, Sodergren E, Weinstock GM, Bevins CL, Williams CB, Bos NA (2010) Enteric defensins are essential regulators of intestinal microbial ecology. Nat Immunol 11(1):76–83

    Article  PubMed  CAS  Google Scholar 

  20. Wehkamp J, Salzman NH, Porter E, Nuding S, Weichenthal M, Petras RE, Shen B, Schaeffeler E, Schwab M, Linzmeier R, Feathers RW, Chu H, Lima H, Jr., Fellermann K, Ganz T, Stange EF, Bevins CL (2005) Reduced Paneth cell alpha-defensins in ileal Crohn’s disease. Proc Natl Acad Sci U S A 102(50):18129–18134

    Article  PubMed  CAS  Google Scholar 

  21. Wilson CL, Ouellette AJ, Satchell DP, Ayabe T, Lopez-Boado YS, Stratman JL, Hultgren SJ, Matrisian LM, Parks WC (1999) Regulation of intestinal alpha-defensin activation by the metalloproteinase matrilysin in innate host defense. Science 286(5437):113–117

    Article  PubMed  CAS  Google Scholar 

  22. Garabedian EM, Roberts LJ, McNevin MS, Gordon JI (1997) Examining the role of Paneth cells in the small intestine by lineage ablation in transgenic mice. J Biol Chem 272(38):23729–23740

    Article  PubMed  CAS  Google Scholar 

  23. Hetz C, Thielen P, Matus S, Nassif M, Court F, Kiffin R, Martinez G, Cuervo AM, Brown RH, Glimcher LH (2009) XBP-1 deficiency in the nervous system protects against amyotrophic lateral sclerosis by increasing autophagy. Genes Dev 23(19):2294–2306

    Article  PubMed  CAS  Google Scholar 

  24. Iwakoshi NN, Pypaert M, Glimcher LH (2007) The transcription factor XBP-1 is essential for the development and survival of dendritic cells. J Exp Med 204(10):2267–2275

    Article  PubMed  CAS  Google Scholar 

  25. Lee AH, Chu GC, Iwakoshi NN, Glimcher LH (2005) XBP-1 is required for biogenesis of cellular secretory machinery of exocrine glands. Embo J 24(24):4368–4380

    Article  PubMed  CAS  Google Scholar 

  26. Lee AH, Scapa EF, Cohen DE, Glimcher LH (2008) Regulation of hepatic lipogenesis by the transcription factor XBP1. Science 320(5882):1492–1496

    Article  PubMed  CAS  Google Scholar 

  27. Martinon F, Chen X, Lee AH, Glimcher LH (2010) TLR activation of the transcription factor XBP1 regulates innate immune responses in macrophages. Nat Immunol 11(5):411–418

    Article  PubMed  CAS  Google Scholar 

  28. Huh WJ, Esen E, Geahlen JH, Bredemeyer AJ, Lee AH, Shi G, Konieczny SF, Glimcher LH, Mills JC (2010) XBP1 controls maturation of gastric zymogenic cells by induction of MIST1 and expansion of the rough endoplasmic reticulum. Gastroenterology 139(6):2038–2049

    Article  PubMed  CAS  Google Scholar 

  29. Kaser A, Blumberg RS (2009) Endoplasmic reticulum stress in the intestinal epithelium and inflammatory bowel disease. Semin Immunol 21(3):156–163

    Article  PubMed  CAS  Google Scholar 

  30. Bogaert S, De Vos M, Olievier K, Peeters H, Elewaut D, Lambrecht B, Pouliot P, Laukens D (2011) Involvement of endoplasmic reticulum stress in inflammatory bowel disease: a different implication for colonic and ileal disease? PLoS One 6(10):e25589

    Article  PubMed  CAS  Google Scholar 

  31. Heazlewood CK, Cook MC, Eri R, Price GR, Tauro SB, Taupin D, Thornton DJ, Png CW, Crockford TL, Cornall RJ, Adams R, Kato M, Nelms KA, Hong NA, Florin TH, Goodnow CC, McGuckin MA (2008) Aberrant mucin assembly in mice causes endoplasmic reticulum stress and spontaneous inflammation resembling ulcerative colitis. PLoS Med 5(3):e54

    Article  PubMed  Google Scholar 

  32. Shkoda A, Ruiz PA, Daniel H, Kim SC, Rogler G, Sartor RB, Haller D (2007) Interleukin-10 blocked endoplasmic reticulum stress in intestinal epithelial cells: impact on chronic inflammation. Gastroenterology 132(1):190–207

    Article  PubMed  CAS  Google Scholar 

  33. Treton X, Pedruzzi E, Cazals-Hatem D, Grodet A, Panis Y, Groyer A, Moreau R, Bouhnik Y, Daniel F, Ogier-Denis E (2011) Altered endoplasmic reticulum stress affects translation in inactive colon tissue from patients with ulcerative colitis. Gastroenterology 141(3):1024–1035

    Article  PubMed  CAS  Google Scholar 

  34. Moffatt MF, Kabesch M, Liang L, Dixon AL, Strachan D, Heath S, Depner M, von Berg A, Bufe A, Rietschel E, Heinzmann A, Simma B, Frischer T, Willis-Owen SA, Wong KC, Illig T, Vogelberg C, Weiland SK, von Mutius E, Abecasis GR, Farrall M, Gut IG, Lathrop GM, Cookson WO (2007) Genetic variants regulating ORMDL3 expression contribute to the risk of childhood asthma. Nature 448(7152):470–473

    Article  PubMed  CAS  Google Scholar 

  35. Hirschfield GM, Liu X, Xu C, Lu Y, Xie G, Lu Y, Gu X, Walker EJ, Jing K, Juran BD, Mason AL, Myers RP, Peltekian KM, Ghent CN, Coltescu C, Atkinson EJ, Heathcote EJ, Lazaridis KN, Amos CI, Siminovitch KA (2009) Primary biliary cirrhosis associated with HLA, IL12A, and IL12RB2 variants. N Engl J Med 360(24):2544–2555

    Article  PubMed  CAS  Google Scholar 

  36. Barrett JC, Clayton DG, Concannon P, Akolkar B, Cooper JD, Erlich HA, Julier C, Morahan G, Nerup J, Nierras C, Plagnol V, Pociot F, Schuilenburg H, Smyth DJ, Stevens H, Todd JA, Walker NM, Rich SS (2009) Genome-wide association study and meta-analysis find that over 40 loci affect risk of type 1 diabetes. Nat Genet 41(6):703–707

    Article  PubMed  CAS  Google Scholar 

  37. Barrett JC, Hansoul S, Nicolae DL, Cho JH, Duerr RH, Rioux JD, Brant SR, Silverberg MS, Taylor KD, Barmada MM, Bitton A, Dassopoulos T, Datta LW, Green T, Griffiths AM, Kistner EO, Murtha MT, Regueiro MD, Rotter JI, Schumm LP, Steinhart AH, Targan SR, Xavier RJ, Libioulle C, Sandor C, Lathrop M, Belaiche J, Dewit O, Gut I, Heath S, Laukens D, Mni M, Rutgeerts P, Van Gossum A, Zelenika D, Franchimont D, Hugot JP, de Vos M, Vermeire S, Louis E, Cardon LR, Anderson CA, Drummond H, Nimmo E, Ahmad T, Prescott NJ, Onnie CM, Fisher SA, Marchini J, Ghori J, Bumpstead S, Gwilliam R, Tremelling M, Deloukas P, Mansfield J, Jewell D, Satsangi J, Mathew CG, Parkes M, Georges M, Daly MJ (2008) Genome-wide association defines more than 30 distinct susceptibility loci for Crohn’s disease. Nat Genet 40(8):955–962

    Article  PubMed  CAS  Google Scholar 

  38. McGovern DP, Gardet A, Torkvist L, Goyette P, Essers J, Taylor KD, Neale BM, Ong RT, Lagace C, Li C, Green T, Stevens CR, Beauchamp C, Fleshner PR, Carlson M, D’Amato M, Halfvarson J, Hibberd ML, Lordal M, Padyukov L, Andriulli A, Colombo E, Latiano A, Palmieri O, Bernard EJ, Deslandres C, Hommes DW, de Jong DJ, Stokkers PC, Weersma RK, Sharma Y, Silverberg MS, Cho JH, Wu J, Roeder K, Brant SR, Schumm LP, Duerr RH, Dubinsky MC, Glazer NL, Haritunians T, Ippoliti A, Melmed GY, Siscovick DS, Vasiliauskas EA, Targan SR, Annese V, Wijmenga C, Pettersson S, Rotter JI, Xavier RJ, Daly MJ, Rioux JD, Seielstad M (2010) Genome-wide association identifies multiple ulcerative colitis susceptibility loci. Nat Genet 42(4):332–337

    Article  PubMed  CAS  Google Scholar 

  39. Cantero-Recasens G, Fandos C, Rubio-Moscardo F, Valverde MA, Vicente R (2010) The asthma-associated ORMDL3 gene product regulates endoplasmic reticulum-mediated calcium signaling and cellular stress. Hum Mol Genet 19(1):111–121

    Article  PubMed  CAS  Google Scholar 

  40. Breslow DK, Collins SR, Bodenmiller B, Aebersold R, Simons K, Shevchenko A, Ejsing CS, Weissman JS (2010) Orm family proteins mediate sphingolipid homeostasis. Nature 463(7284):1048–1053

    Article  PubMed  CAS  Google Scholar 

  41. Brandl K, Rutschmann S, Li X, Du X, Xiao N, Schnabl B, Brenner DA, Beutler B (2009) Enhanced sensitivity to DSS colitis caused by a hypomorphic Mbtps1 mutation disrupting the ATF6-driven unfolded protein response. Proc Natl Acad Sci U S A 106(9):3300–3305

    Article  PubMed  CAS  Google Scholar 

  42. Sakai J, Rawson RB, Espenshade PJ, Cheng D, Seegmiller AC, Goldstein JL, Brown MS (1998) Molecular identification of the sterol-regulated luminal protease that cleaves SREBPs and controls lipid composition of animal cells. Mol Cell 2(4):505–514

    Article  PubMed  CAS  Google Scholar 

  43. Ye J, Rawson RB, Komuro R, Chen X, Dave UP, Prywes R, Brown MS, Goldstein JL (2000) ER stress induces cleavage of membrane-bound ATF6 by the same proteases that process SREBPs. Mol Cell 6(6):1355–1364

    Article  PubMed  CAS  Google Scholar 

  44. Park SW, Zhen G, Verhaeghe C, Nakagami Y, Nguyenvu LT, Barczak AJ, Killeen N, Erle DJ (2009) The protein disulfide isomerase AGR2 is essential for production of intestinal mucus. Proc Natl Acad Sci U S A 106(17):6950–6955

    Article  PubMed  CAS  Google Scholar 

  45. Zhao F, Edwards R, Dizon D, Afrasiabi K, Mastroianni JR, Geyfman M, Ouellette AJ, Andersen B, Lipkin SM (2010) Disruption of Paneth and goblet cell homeostasis and increased endoplasmic reticulum stress in Agr2 - / - mice. Dev Biol 338(2):270–279

    Article  PubMed  CAS  Google Scholar 

  46. Persson S, Rosenquist M, Knoblach B, Khosravi-Far R, Sommarin M, Michalak M (2005) Diversity of the protein disulfide isomerase family: identification of breast tumor induced Hag2 and Hag3 as novel members of the protein family. Mol Phylogenet Evol 36(3):734–740

    Article  PubMed  CAS  Google Scholar 

  47. Zheng W, Rosenstiel P, Huse K, Sina C, Valentonyte R, Mah N, Zeitlmann L, Grosse J, Ruf N, Nurnberg P, Costello CM, Onnie C, Mathew C, Platzer M, Schreiber S, Hampe J (2006) Evaluation of AGR2 and AGR3 as candidate genes for inflammatory bowel disease. Genes Immun 7(1):11–18

    Article  PubMed  CAS  Google Scholar 

  48. Allen A, Hutton DA, Pearson JP (1998) The MUC2 gene product: a human intestinal mucin. Int J Biochem Cell Biol 30(7):797–801

    Article  PubMed  CAS  Google Scholar 

  49. Johansson ME, Larsson JM, Hansson GC (2011) The two mucus layers of colon are organized by the MUC2 mucin, whereas the outer layer is a legislator of host-microbial interactions. Proc Natl Acad Sci U S A 108(Suppl 1):4659–4665

    Article  PubMed  CAS  Google Scholar 

  50. van Klinken BJ, Einerhand AW, Duits LA, Makkink MK, Tytgat KM, Renes IB, Verburg M, Buller HA, Dekker J (1999) Gastrointestinal expression and partial cDNA cloning of murine Muc2. Am J Physiol 276(1 Pt 1):G115–124

    PubMed  Google Scholar 

  51. Velcich A, Yang W, Heyer J, Fragale A, Nicholas C, Viani S, Kucherlapati R, Lipkin M, Yang K, Augenlicht L (2002) Colorectal cancer in mice genetically deficient in the mucin Muc2. Science 295(5560):1726–1729

    Article  PubMed  CAS  Google Scholar 

  52. Van Der Sluis M, De Koning BA, De Bruijn AC, Velcich A, Meijerink JP, Van Goudoever JB, Buller HA, Dekker J, Van Seuningen I, Renes IB, Einerhand AW (2006) Muc2-deficient mice spontaneously develop colitis, indicating that MUC2 is critical for colonic protection. Gastroenterology 131(1):117–129

    Article  PubMed  Google Scholar 

  53. Eri RD, Adams RJ, Tran TV, Tong H, Das I, Roche DK, Oancea I, Png CW, Jeffery PL, Radford-Smith GL, Cook MC, Florin TH, McGuckin MA (2011) An intestinal epithelial defect conferring ER stress results in inflammation involving both innate and adaptive immunity. Mucosal Immunol 4(3):354–364

    Article  PubMed  CAS  Google Scholar 

  54. Dangoria NS, DeLay ML, Kingsbury DJ, Mear JP, Uchanska-Ziegler B, Ziegler A, Colbert RA (2002) HLA-B27 misfolding is associated with aberrant intermolecular disulfide bond formation (dimerization) in the endoplasmic reticulum. J Biol Chem 277(26):23459–23468

    Article  PubMed  CAS  Google Scholar 

  55. Turner MJ, Sowders DP, DeLay ML, Mohapatra R, Bai S, Smith JA, Brandewie JR, Taurog JD, Colbert RA (2005) HLA-B27 misfolding in transgenic rats is associated with activation of the unfolded protein response. J Immunol 175(4):2438–2448

    PubMed  CAS  Google Scholar 

  56. Hammer RE, Maika SD, Richardson JA, Tang JP, Taurog JD (1990) Spontaneous inflammatory disease in transgenic rats expressing HLA-B27 and human beta 2 m: an animal model of HLA-B27-associated human disorders. Cell 63(5):1099–1112

    Article  PubMed  CAS  Google Scholar 

  57. DeLay ML, Turner MJ, Klenk EI, Smith JA, Sowders DP, Colbert RA (2009) HLA-B27 misfolding and the unfolded protein response augment interleukin-23 production and are associated with Th17 activation in transgenic rats. Arthritis Rheum 60(9):2633–2643

    Article  PubMed  CAS  Google Scholar 

  58. Goodall JC, Wu C, Zhang Y, McNeill L, Ellis L, Saudek V, Gaston JS (2010) Endoplasmic reticulum stress-induced transcription factor, CHOP, is crucial for dendritic cell IL-23 expression. Proc Natl Acad Sci U S A 107(41):17698–17703

    Article  PubMed  CAS  Google Scholar 

  59. Grootjans J, Hodin CM, de Haan JJ, Derikx JP, Rouschop KM, Verheyen FK, van Dam RM, Dejong CH, Buurman WA, Lenaerts K (2011) Level of activation of the unfolded protein response correlates with Paneth cell apoptosis in human small intestine exposed to ischemia/reperfusion. Gastroenterology 140(2):529–539 e523

    Article  PubMed  CAS  Google Scholar 

  60. Ibrahim CB, Aroniadis OC, Brandt LJ (2010) On the role of ischemia in the pathogenesis of IBD: a review. Inflamm Bowel Dis 16(4):696–702

    PubMed  Google Scholar 

  61. Arsham AM, Neufeld TP (2009) A genetic screen in Drosophila reveals novel cytoprotective functions of the autophagy-lysosome pathway. PLoS One 4(6):e6068

    Article  PubMed  Google Scholar 

  62. Hetz C, Glimcher LH (2009) Fine-tuning of the unfolded protein response: assembling the IRE1alpha interactome. Mol Cell 35(5):551–561

    Article  PubMed  CAS  Google Scholar 

  63. Ogata M, Hino S, Saito A, Morikawa K, Kondo S, Kanemoto S, Murakami T, Taniguchi M, Tanii I, Yoshinaga K, Shiosaka S, Hammarback JA, Urano F, Imaizumi K (2006) Autophagy is activated for cell survival after endoplasmic reticulum stress. Mol Cell Biol 26(24):9220–9231

    Article  PubMed  CAS  Google Scholar 

  64. He C, Klionsky DJ (2009) Regulation mechanisms and signaling pathways of autophagy. Annu Rev Genet 43:67–93

    Article  PubMed  CAS  Google Scholar 

  65. Levine B, Mizushima N, Virgin HW (2011) Autophagy in immunity and inflammation. Nature 469(7330):323–335

    Article  PubMed  CAS  Google Scholar 

  66. Rubinsztein DC, Marino G, Kroemer G (2011) Autophagy and aging. Cell 146(5):682–695

    Article  PubMed  CAS  Google Scholar 

  67. Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls (2007). Nature 447(7145):661–678

    Google Scholar 

  68. Hampe J, Franke A, Rosenstiel P, Till A, Teuber M, Huse K, Albrecht M, Mayr G, De La Vega FM, Briggs J, Gunther S, Prescott NJ, Onnie CM, Hasler R, Sipos B, Folsch UR, Lengauer T, Platzer M, Mathew CG, Krawczak M, Schreiber S (2007) A genome-wide association scan of nonsynonymous SNPs identifies a susceptibility variant for Crohn disease in ATG16L1. Nat Genet 39(2):207–211

    Article  PubMed  CAS  Google Scholar 

  69. Henckaerts L, Cleynen I, Brinar M, John JM, Van Steen K, Rutgeerts P, Vermeire S (2011) Genetic variation in the autophagy gene ULK1 and risk of Crohn’s disease. Inflamm Bowel Dis 17(6):1392–1397

    Article  PubMed  Google Scholar 

  70. Rioux JD, Xavier RJ, Taylor KD, Silverberg MS, Goyette P, Huett A, Green T, Kuballa P, Barmada MM, Datta LW, Shugart YY, Griffiths AM, Targan SR, Ippoliti AF, Bernard EJ, Mei L, Nicolae DL, Regueiro M, Schumm LP, Steinhart AH, Rotter JI, Duerr RH, Cho JH, Daly MJ, Brant SR (2007) Genome-wide association study identifies new susceptibility loci for Crohn disease and implicates autophagy in disease pathogenesis. Nat Genet 39(5):596–604

    Article  PubMed  CAS  Google Scholar 

  71. Cadwell K, Liu JY, Brown SL, Miyoshi H, Loh J, Lennerz JK, Kishi C, Kc W, Carrero JA, Hunt S, Stone CD, Brunt EM, Xavier RJ, Sleckman BP, Li E, Mizushima N, Stappenbeck TS, Virgin HWt (2008) A key role for autophagy and the autophagy gene Atg16l1 in mouse and human intestinal Paneth cells. Nature 456(7219):259–263

    Article  PubMed  CAS  Google Scholar 

  72. Saitoh T, Fujita N, Jang MH, Uematsu S, Yang BG, Satoh T, Omori H, Noda T, Yamamoto N, Komatsu M, Tanaka K, Kawai T, Tsujimura T, Takeuchi O, Yoshimori T, Akira S (2008) Loss of the autophagy protein Atg16L1 enhances endotoxin-induced IL-1beta production. Nature 456(7219):264–268

    Article  PubMed  CAS  Google Scholar 

  73. Cadwell K, Patel KK, Maloney NS, Liu TC, Ng AC, Storer CE, Head RD, Xavier R, Stappenbeck TS, Virgin HW (2010) Virus-plus-susceptibility gene interaction determines Crohn’s disease gene Atg16L1 phenotypes in intestine. Cell 141(7):1135–1145

    Article  PubMed  CAS  Google Scholar 

  74. Bernales S, McDonald KL, Walter P (2006) Autophagy counterbalances endoplasmic reticulum expansion during the unfolded protein response. PLoS Biol 4(12):e423

    Article  PubMed  Google Scholar 

  75. Kouroku Y, Fujita E, Tanida I, Ueno T, Isoai A, Kumagai H, Ogawa S, Kaufman RJ, Kominami E, Momoi T (2007) ER stress (PERK/eIF2alpha phosphorylation) mediates the polyglutamine-induced LC3 conversion, an essential step for autophagy formation. Cell Death Differ 14(2):230–239

    Article  PubMed  CAS  Google Scholar 

  76. Kegel KB, Kim M, Sapp E, McIntyre C, Castano JG, Aronin N, DiFiglia M (2000) Huntingtin expression stimulates endosomal-lysosomal activity, endosome tubulation, and autophagy. J Neurosci 20(19):7268–7278

    PubMed  CAS  Google Scholar 

  77. Kubota H, Obata T, Ota K, Sasaki T, Ito T (2003) Rapamycin-induced translational derepression of GCN4 mRNA involves a novel mechanism for activation of the eIF2 alpha kinase GCN2. J Biol Chem 278(23):20457–20460

    Article  PubMed  CAS  Google Scholar 

  78. Bashir R, Britton S, Strachan T, Keers S, Vafiadaki E, Lako M, Richard I, Marchand S, Bourg N, Argov Z, Sadeh M, Mahjneh I, Marconi G, Passos-Bueno MR, Moreira Ede S, Zatz M, Beckmann JS, Bushby K (1998) A gene related to Caenorhabditis elegans spermatogenesis factor fer-1 is mutated in limb-girdle muscular dystrophy type 2B. Nat Genet 20(1):37–42

    Article  PubMed  CAS  Google Scholar 

  79. Liu J, Aoki M, Illa I, Wu C, Fardeau M, Angelini C, Serrano C, Urtizberea JA, Hentati F, Hamida MB, Bohlega S, Culper EJ, Amato AA, Bossie K, Oeltjen J, Bejaoui K, McKenna-Yasek D, Hosler BA, Schurr E, Arahata K, de Jong PJ, Brown RH, Jr. (1998) Dysferlin, a novel skeletal muscle gene, is mutated in Miyoshi myopathy and limb girdle muscular dystrophy. Nat Genet 20(1):31–36

    Article  PubMed  CAS  Google Scholar 

  80. Fujita E, Kouroku Y, Isoai A, Kumagai H, Misutani A, Matsuda C, Hayashi YK, Momoi T (2007) Two endoplasmic reticulum-associated degradation (ERAD) systems for the novel variant of the mutant dysferlin: ubiquitin/proteasome ERAD(I) and autophagy/lysosome ERAD(II). Hum Mol Genet 16(6):618–629

    Article  PubMed  CAS  Google Scholar 

  81. Wek RC, Jiang HY, Anthony TG (2006) Coping with stress: eIF2 kinases and translational control. Biochem Soc Trans 34(Pt 1):7–11

    PubMed  CAS  Google Scholar 

  82. Saxena S, Cabuy E, Caroni P (2009) A role for motoneuron subtype-selective ER stress in disease manifestations of FALS mice. Nat Neurosci 12(5):627–636

    Article  PubMed  CAS  Google Scholar 

  83. Niso-Santano M, Bravo-San Pedro JM, Gomez-Sanchez R, Climent V, Soler G, Fuentes JM, Gonzalez-Polo RA (2011) ASK1 overexpression accelerates paraquat-induced autophagy via endoplasmic reticulum stress. Toxicol Sci 119(1):156–168

    Article  PubMed  CAS  Google Scholar 

  84. Hoyer-Hansen M, Bastholm L, Szyniarowski P, Campanella M, Szabadkai G, Farkas T, Bianchi K, Fehrenbacher N, Elling F, Rizzuto R, Mathiasen IS, Jaattela M (2007) Control of macroautophagy by calcium, calmodulin-dependent kinase kinase-beta, and Bcl-2. Mol Cell 25(2):193–205

    Article  PubMed  Google Scholar 

  85. Sakaki K, Wu J, Kaufman RJ (2008) Protein kinase Ctheta is required for autophagy in response to stress in the endoplasmic reticulum. J Biol Chem 283(22):15370–15380

    Article  PubMed  CAS  Google Scholar 

  86. Moehle C, Ackermann N, Langmann T, Aslanidis C, Kel A, Kel-Margoulis O, Schmitz-Madry A, Zahn A, Stremmel W, Schmitz G (2006) Aberrant intestinal expression and allelic variants of mucin genes associated with inflammatory bowel disease. J Mol Med (Berl) 84(12):1055–1066

    Article  CAS  Google Scholar 

  87. Paton AW, Srimanote P, Talbot UM, Wang H, Paton JC (2004) A new family of potent AB(5) cytotoxins produced by Shiga toxigenic Escherichia coli. J Exp Med 200(1):35–46

    Article  PubMed  CAS  Google Scholar 

  88. Tashiro E, Hironiwa N, Kitagawa M, Futamura Y, Suzuki S, Nishio M, Imoto M (2007) Trierixin, a novel Inhibitor of ER stress-induced XBP1 activation from Streptomyces sp. 1. Taxonomy, fermentation, isolation and biological activities. J Antibiot (Tokyo) 60(9):547–553

    Article  CAS  Google Scholar 

  89. Todd DJ, Lee AH, Glimcher LH (2008) The endoplasmic reticulum stress response in immunity and autoimmunity. Nat Rev Immunol 8(9):663–674

    Article  PubMed  CAS  Google Scholar 

  90. Werner T, Wagner SJ, Martinez I, Walter J, Chang JS, Clavel T, Kisling S, Schuemann K, Haller D (2010) Depletion of luminal iron alters the gut microbiota and prevents Crohn’s disease-like ileitis. Gut 60(3):325–333

    Article  PubMed  Google Scholar 

  91. Wu X, Sun L, Zha W, Studer E, Gurley E, Chen L, Wang X, Hylemon PB, Pandak WM, Jr., Sanyal AJ, Zhang L, Wang G, Chen J, Wang JY, Zhou H (2010) HIV protease inhibitors induce endoplasmic reticulum stress and disrupt barrier integrity in intestinal epithelial cells. Gastroenterology 138(1):197–209

    Article  PubMed  CAS  Google Scholar 

  92. Xue X, Piao JH, Nakajima A, Sakon-Komazawa S, Kojima Y, Mori K, Yagita H, Okumura K, Harding H, Nakano H (2005) Tumor necrosis factor alpha (TNFalpha) induces the unfolded protein response (UPR) in a reactive oxygen species (ROS)-dependent fashion, and the UPR counteracts ROS accumulation by TNFalpha. J Biol Chem 280(40):33917–33925

    Article  PubMed  CAS  Google Scholar 

  93. Yamamuro A, Yoshioka Y, Ogita K, Maeda S (2006) Involvement of endoplasmic reticulum stress on the cell death induced by 6-hydroxydopamine in human neuroblastoma SH-SY5Y cells. Neurochem Res 31(5):657–664

    Article  PubMed  CAS  Google Scholar 

  94. Yoshiuchi K, Kaneto H, Matsuoka TA, Kasami R, Kohno K, Iwawaki T, Nakatani Y, Yamasaki Y, Shimomura I, Matsuhisa M (2009) Pioglitazone reduces ER stress in the liver: direct monitoring of in vivo ER stress using ER stress-activated indicator transgenic mice. Endocr J 56(9):1103–1111

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements:

Richard S. Blumberg receives support from NIH DK044319, DK051362, DK053056 and DK088199 and the Harvard Digestive Diseases Center DK034854.Michal F. Tomczak was supported by NIH T32DK007533 and currently receives support from Inflammatory Bowel Disease Working Group. Arthur Kaser receives support from the Austrian Science Fund and Ministry of Science P21530 and Y446, the European Research Council under the European Community’s Seventh Framework Programme (FP7/2007–2013)/ERC grant agreement no. 260961 and the National Institute for Health Research Cambridge Biomedical Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard S. Blumberg .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Tomczak, M., Kaser, A., Blumberg, R. (2012). ER Stress in Intestinal Inflammatory Disease. In: Agostinis, P., Afshin, S. (eds) Endoplasmic Reticulum Stress in Health and Disease. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4351-9_12

Download citation

Publish with us

Policies and ethics