Skip to main content

Susceptibility and Triggers for Debris Flows: Emergence, Loading, Release and Entrainment

  • Chapter
  • First Online:
Dating Torrential Processes on Fans and Cones

Abstract

Debris flows generally form when unconsolidated material becomes saturated and unstable, either on a hillslope or in a stream channel. The process is defined as a moving mass of loose mud, sand, soil, rock, water and air that travels down a slope under the influence of gravity. Flows can carry material ranging in size from clay to boulders, and may contain a large amount of woody debris. Volumes of material delivered by single events vary from less than 100 to more than 100,000m3. Generally three factors are necessary for a debris flow to develop: water, sufficient inclination, and abundant sediment supply.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abanco C, Hürlimann M (2011) Simple geomorphologic approach to estimate debris-flow entrainment. Applications to the Pyrenees and the Alps. In: Genevois R, Hamilton DL, Prestininzi A (eds) 5th international conference on debris-flow hazards mitigation: mechanics, prediction, and assessment, Padua, 14–17 June 2011. Italian Journal of Engineering Geology and Environment-Book, Casa Editrice Universita La Sapienza, Rome, pp 183–197

    Google Scholar 

  • Akerman HJ, Johansson M (2008) Thawing permafrost and thicker active layers in sub-arctic Sweden. Permafr Periglac Process 19(3):279–292

    Article  Google Scholar 

  • Armanini A, Gregoretti C (2000) Triggering of derbis-flow by overland flow: a comparison between theoretical and experimental results. In: Wieczorek G, Naeser AA (eds) Proceedings of the 2nd international conference on debris flow hazard mitigation: mechanics, prediction and assessment, Taipei, Taiwan, 16–18 Aug 2000. Balkema, Rotterdam, pp 117–124

    Google Scholar 

  • Benda L (1990) The influence of debris flows on channels and valley floors in the Oregon Coast Range, USA. Earth Surf Process Landf 15:457–466

    Article  Google Scholar 

  • Berger C, McArdell BW, Fritschi B, Schlunegger F (2010) A novel method for measuring the timing of bed erosion during debris flows and floods. J Geophys Res 116:F01002. doi:10.1029/2010JF001722

    Article  Google Scholar 

  • Berti M, Genevois R, Simoni A, Tecca PR (1999) Field observations of a debris flow event in the Dolomites. Geomorphology 29:265–274

    Article  Google Scholar 

  • Berzi D, Jenkins JT (2008) A theoretical analysis of free-surface flows of saturated granular-liquid mixtures. J Fluid Mech 608:393–410. doi:10.1017/S0022112008002401

    Article  Google Scholar 

  • Bovis MJ, Jakob M (1999) The role of debris supply conditions in predicting debris flow activity. Earth Surf Process Landf 24(11):1039–1054

    Article  Google Scholar 

  • Bowman ET, Laue J, Imre B, Springman S (2010) Experimental modelling of debis flow behaviour using a geotechnical centrifuge. Can Geotech J 47:742–762. doi:10.1139/T09-141

    Article  Google Scholar 

  • Brand EW (1995) Slope instability in tropical areas. In: Bell DH (ed) Proceedings of the 6th international symposium on landslides. Balkema, Rotterdam, pp 2031–2051

    Google Scholar 

  • Breien H, De Blasio FV, Elverhoi A, Hoeg K (2008) Erosion and morphology of a debris flow caused by a glacial lake outburst flood, Western Norway. Landslides 5:271–280

    Article  Google Scholar 

  • Caine N (1980) The rainfall intensity – duration control of shallow landslides and debris flows. Geogr Ann Ser A Phys Geogr 62(1–2):23–27

    Article  Google Scholar 

  • Cannon SH, Gartner JE, Wilson RC, Bowers JC, Laber JL (2008) Storm rainfall conditions for floods and debris flows from recently burned areas in southwestern Colorado and southern California. Geomorphology 96(3–4):250–269

    Article  Google Scholar 

  • Casagrande A (1976) Liquefaction and cyclic deformation of sands – a critical review, Harvard soil mechanics series 88. Harvard University, Cambridge, 51 pp

    Google Scholar 

  • Cetina M, Rajar R, Hojnik T, Zakrajesk M, Krzyk M, Mikos M (2006) Case study: numerical simulations of debris flow below Stoze, Slovenia. J Hydraul Eng 132(2):121–130

    Article  Google Scholar 

  • Chen H, Crosta GB, Lee CF (2006) Erosional effects on runout of fast landslides, debris flows and avalanches: a numerical investigation. Geotechnique 56(5):305–322

    Article  Google Scholar 

  • Costa JE (1984) Physical geomorphology of debris flows. Springer, Berlin, pp 268–317

    Google Scholar 

  • Cruden DM, Varnes DJ (1996) Landslide types and processes. In: Turner AK, Schuster RL (eds) Landslides: investigation and mitigation, Special report 247. National Academic Press, Washington, DC, pp 36–45

    Google Scholar 

  • Decaulne A, Saemundsson P, Petursson O (2005) Debris flow triggered by rapid snowmelt: a case study in the Gleidarhjalli area, northwestern Iceland. Geogr Ann Ser A Phys Geogr 87A(4):487–500

    Article  Google Scholar 

  • De Graaff LWS (1996) The fluvial factor in the evolution of alpine valleys and of ice-marginal topography in Vorarlberg (W-Austria) during the Upper Pleistocene and Holo-cene. Zeitschrift für Geomorphologie NF Supplement 104:129–159

    Google Scholar 

  • Egashira S, Honda N, Itoh T (2001) Experimental study on the entrainment of bed material into debris flow. Phys Chem Earth (C) 26(9):645–650

    Google Scholar 

  • Garcia R, Lopez JL (2005) Debris flows on December 1999 in Venezuela. In: Jakob M, Hungr O (eds) Debris-flow hazards and related phenomena. Springer Verlag Praxis, Berlin

    Google Scholar 

  • Glade T (1998) Establishing the frequency and magnitude of landslide-triggering rainstorm events in New Zealand. Environ Geol 35(2–3):160–174

    Article  Google Scholar 

  • Guzzetti F, Peruccacci S, Rossi M, Stark CP (2008) The rainfall intensity-duration control of shallow landslides and debris flows: an update. Landslides 5(1):3–17

    Article  Google Scholar 

  • Haeberli W, Huggel C, Kääb A, Zgraggen-Oswald S, Polkvoj A, Galushkin I, Zotikov I, Osokin N (2004) The Kolka-Karmadon rock/ice slide of 20 September 2002: an extraordinary event of historical dimensions in North Ossetia, Russian Caucasus. J Glaciol 5(171):533–546

    Article  Google Scholar 

  • Hausmaninger J (2004) Standsicherheitsuntersuchungen der Einhänge des Bretterwandbaches mittels FLAC3D. Diploma thesis at the Technical University Vienna, Austria

    Google Scholar 

  • Hsu L, Dietrich WE, Sklar LS (2008) Experimental study of bedrock erosion by granular flows. J Geophys Res 113: F02001. doi:10.1029/2007JF000778

    Article  Google Scholar 

  • Huber T (2003) Die Großrutschung im Starkenbach am 29.8.1999 in der Gemeinde Schön-wies/Tirol. Wildbach- und Lawinenverbau 150:86–95

    Google Scholar 

  • Huber T, Hübl J (2000) Risk mitigation of a landslide dammed alpine torrent. Geophysical Research Abstracts 2:128 (CD-Rom)

    Google Scholar 

  • Hungr O (1995) A model for the runout analysis of rapid flow slides, debris flows, and avalanches. Can Geotech J 32:610–623

    Article  Google Scholar 

  • Hungr O, McDougall S (2009) Two numerical models for landslide dynamic analysis. Comput Geosci 35:978–992

    Article  Google Scholar 

  • Hungr O, Morgan G, Kellerhals R (1984) Quantitative analysis of debris torrent hazards for design of remedial measures. Can Geotech J 21:663–677

    Article  Google Scholar 

  • Hungr O, Evans SG, Bovis MJ, Hutchinson JN (2001) A review of the classification of landslides of the flow type. Environ Eng Geosci VII(3):221–238

    Google Scholar 

  • Hungr O, McDougall S, Bovis M (2005) Entrainment of material by debris flows. In: Jakob M, Hungr O (eds) Debris-flow hazards and related phenomena. Springer Verlag Praxis, Berlin, pp 135–158

    Chapter  Google Scholar 

  • Hutchsinson JN (1988) General report: morphological and geotechnical parameters of landslides in the relation to geology and hydrogeology. In: Bonnard C (ed) Proceedings of the 5th international symposium on landslides, vol 1. Balkema, Rotterdam, pp 3–35

    Google Scholar 

  • Iverson RM (1997) The physics of debris flows. Rev Geophys 35(3):245–296

    Article  Google Scholar 

  • Iverson RM, Reid ME, LaHusen RG (1997) Debris-flow mobilization from landslides. Annu Rev Earth Planet Sci 25:85–138

    Article  CAS  Google Scholar 

  • Iverson RM, Reid ME, Logan M, LaHusen RG, Godt JW, Griswold JP (2011) Positive feedback and momentum growth during debris-flow entrainment of wet bed sediment. Nat Geosci 4:116–121

    Article  CAS  Google Scholar 

  • Jakob M, Hungr O, Thomson B (1997) Two debris flow with anomalously high magnitude. In: Chen CI (ed) Proceedings of the 1st international conference on debris-flow hazard mitigation, San Francisco, USA, 7–9 Aug 1997. American Society of Civil Engineers (ASCE), New York, pp 382–394

    Google Scholar 

  • Jakob M, Bovis M, Oden M (2005) The significance of channel recharge rates for estimating debris-flow magnitude and frequency. Earth Surf Process Landf 30(6):755–766

    Article  Google Scholar 

  • Jibson RW (1989) Debris flows in southern Puerto Rico. In: Schultz AP, Jibson RW (eds) Landslide processes of the eastern United States and Puerto Rico, Geological Society of America special paper 236. Geological Society of America, Boulder, pp 29–55

    Google Scholar 

  • Julien PY (1995) Erosion and sedimentation. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Julien PY, O’Brien JS (1997) Selected notes on debris flow dynamics, recent developments on debris flows, Lecture note in earth sciences. Springer, Berlin, pp 144–162

    Google Scholar 

  • Kienholz H (1995) Gefahrenbeurteilung und –bewertung: Auf dem Weg zu einem Gesamtkonzept. Schweizer Zeitschrift für das Forstwesen 146(9):701–725

    Google Scholar 

  • King J (1996) Tsing Shan debris flow. Special project report SPR 6/96. Geotechnical Engineering Office, Hong Kong Government

    Google Scholar 

  • Larsson S (1982) Geomorphological effects on the slopes of Langyear Valley, Spitsbergen, after a heavy rainstorm in July 1972. Geogr Ann 64A:105–125

    Article  Google Scholar 

  • Lin M-L, Wang K-L, Huang J-J (2005) Debris flows run off simulation and verification – case study of Chen-You-Lan Watershed, Taiwan. Nat Hazard Earth Syst Sci 5:439–445

    Article  Google Scholar 

  • Loat R, Meier E (2003) Wörterbuch Hochwasserschutz. Bundesamt für Wasser und Geologie, Biel

    Google Scholar 

  • Mangeney A (2011) Landslide boost from entrainment. Nat Geosci 4:77–78

    Article  CAS  Google Scholar 

  • Marchi L, D’Agostino V (2004) Estimation of debris-flow magnitude in the Eastern Italian Alps. Earth Surf Process Landf 29(2):207–220

    Article  Google Scholar 

  • Mathewson CC, Keaton JR, Santi PM (1990) Role of bedrock ground water in the initiation of debris flows and sustained post-storm stream discharge. Bull Assoc Eng Geol 27(1):73–78

    Google Scholar 

  • Moser M (1980) Zur Analyse von Hangbewegungen in schwachbindigen bis rolligen Lockergesteinen im alpinen Raum anlässlich von Starkniederschlägen. Interpraevent 1:121–148

    Google Scholar 

  • Penck A, Brückner E (1909) Die Alpen im Eiszeitalter. Tauchnitz, Leipzig

    Google Scholar 

  • Pfiffner OA, Heitzmann P, Lehner P, Frei W, Pugin A, Felber M (1997) Incision and backfilling of Alpine valleys: Pliocene, Pleistocene and Holocene processes. In: Pfiffner OA, Lehner P, Heitzmann P, Mueller S, Steck A (eds) Deep structure of the Swiss Alps: results of NRP 20. Birkhäuser, Basel, pp 265–288

    Google Scholar 

  • Rapp A (1960) Recent development of mountain slopes in Kärkevagge and surroundings, Northern Scandinavia, Geografiska Annaler 42, Wiley-Blackwell, pp 65–200

    Google Scholar 

  • Reitner JM (2007) Glacial dynamics at the beginning of Termination I in the Eastern Alps and their stratigraphic implications. Quat Int 164–165:64–84

    Article  Google Scholar 

  • Rickenmann D (1999) Empirical relationships for debris flows. Nat Hazard 19(1):47–77. doi:10.1023/A:1008064220727

    Article  Google Scholar 

  • Rickenmann D, Weber D, Stepanov B (2003) Erosion by debris flows in field and laboratory experiments. In: Rickenmann D, Chen C (eds) Debris-flow hazards mitigation: mechanics, prediction, and assessment. Millpress, Rotterdam, pp 883–894

    Google Scholar 

  • Scheidl C, Rickenmann D, Chiari M (2008) The use of airborne LIDAR data for the analysis of debris flow events in Switzerland. Nat Hazard Earth Syst Sci 8:1113–1127

    Article  Google Scholar 

  • Scheuner T, Keusen HR, McArdell BW, Huggel C (2009) Murgangmodellierung mit dynamisch-physikalischem und GIS-basiertem Fliessmodell (in German). Wasser Energie Luft 101:15–21

    Google Scholar 

  • Skermer NA, VanDine DF (2005) Debris flows in history. In: Jakob M, Hungr O (eds) Debris flow hazards and related phenomena. Praxis Publishing Ltd., Chichester, pp 25–51

    Chapter  Google Scholar 

  • Spreafico M, Lehmann C, Naef O (1996) Empfehlung zur Abschätzung von Feststofffrachten in Wildbächen. Teil I: Handbuch, 46p. + Anhang, und Teil II: Fachliche Grundlagen, 113p., Groupe de travail pour l’hydrologie operationelle (GHO), vol 4. Landeshydrologie und –geologie, Bern

    Google Scholar 

  • Stiny J (1931) Die geologischen Grundlagen der Verbauung der Geschiebeherde in Gewässern. Springer, Wien

    Book  Google Scholar 

  • Stock JD, Dietrich WE (2003) Valley incision by debris flows: evidence of a topographic signature. Water Resour Res 39. doi:10.1029/2001WR001057

  • Stock JD, Dietrich WE (2006) Erosion of steepland valley by debris flows. GSA Bull 118(9–10):1125–1148. doi:10.1130/B25902.1

    Article  Google Scholar 

  • Stoffel M, Bollschweiler M, Beniston M (2011) Rainfall characteristics for periglacial debris flows in the Swiss Alps: past incidences – potential future evolutions. Clim Chang 105(1–2):263–280

    Article  Google Scholar 

  • Sukamoto YT, Otha T, Noguchi H (1982) Hydrological and geomorphological studies of debris flows on forested hill slopes in Japan. In: Recent developments in the explanation and prediction of erosion and sediment yield. Proceedings of the Exeter symposium, IAHS Publication 137. International Association of Hydrological Sciences, Paris, pp 110–122

    Google Scholar 

  • Takahashi T (1987) High velocity flow in steep erodible channels. In: Proceedings XXII IAHR Congress, Lausanne, Technical Session A, pp 42–53

    Google Scholar 

  • Takahashi T (1991) Debris flow, IAHR monograph series. Balkema, Rotterdam

    Google Scholar 

  • Terzaghi K (1925) Erdbaumechanik auf Bodenphysikalischer Grundlage. Fanz Deuticke, Wien

    Google Scholar 

  • Tognacca C, Bezzola GR, Minor HE (2000) Threshold criterion for debris-flow initiation due to channel-bed failure. In: Wieczorek G, Naeser AA (eds) Proceedings of the 2nd international conference on debris flow hazard mitigation: mechanics, prediction and assessment, Taipei, Taiwan, 16–18 Aug 2000. Balkema, Rotterdam, pp 89–97

    Google Scholar 

  • van Husen D (2000) Geological processes during Quaternary. Mitteilungen der Österreichischen Geologischen Gesellschaft 92(1999):135–156

    Google Scholar 

  • Varnes DJ (1978) Slope movement types and processes. In: Landslides, analysis and control, Natural Academy of Science, special report 176. Natural Academy of Science, Washington, DC, pp 11–35

    Google Scholar 

  • Weidner S (2000) Kinematik und Mechanismus tiefgreifender alpiner Hangdefomationen unter besonderer Berücksichtigung der hydrologischen Verhältnisse. PhD-thesis, Fried-rich-Alexander-Universität Erlangen-Nürnberg

    Google Scholar 

  • Wieczorek GF (1996) Landslides: investigation and mitigation. In: Turner AK, Schuster RL (eds) Landslides: investigation and mitigation, Special report 247. National Academic Press, Washington, DC, pp 76–90

    Google Scholar 

  • Wieczorek GF, Glade T (2005) Climatic factors influencing occurrence of debris flows. In: Jakob M, Hungr O (eds) Debris-flow hazards and related phenomena. Springer, Chichester, pp 325–362

    Chapter  Google Scholar 

  • WP/WLI – Working Party on World Landslide Inventory (International Geotechnical Socie-ties UNESCO) (1994) A suggested method for reporting landslide causes. Bull IAEG 50:71–74

    Google Scholar 

  • Youd TL (1973) Liquefaction, flow and associated ground failure, US Geological Survey Circular 688. US Geological Survey, Washington, DC

    Google Scholar 

  • Zimmermann M (1990) Debris flows 1987 in Switzerland: geomorphological and meteorological aspects. International Association of Hydrological Sciences, Wallingford, pp 387–393

    Google Scholar 

  • Zimmermann M, Mani P, Gamma P (1997) Murganggefahr und Klimaänderung – ein GIS-basierter Ansatz. vdf Hochschulverlag, Zürich

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roland Kaitna .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Kaitna, R., Schneuwly-Bollschweiler, M., Sausgruber, T., Moser, M., Stoffel, M., Rudolf-Miklau, F. (2013). Susceptibility and Triggers for Debris Flows: Emergence, Loading, Release and Entrainment. In: Schneuwly-Bollschweiler, M., Stoffel, M., Rudolf-Miklau, F. (eds) Dating Torrential Processes on Fans and Cones. Advances in Global Change Research, vol 47. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4336-6_3

Download citation

Publish with us

Policies and ethics