Skip to main content

Characterizing Organic Carbon Stocks and Flows in Forest Soils

  • Chapter
  • First Online:
Managing Forest Carbon in a Changing Climate

Abstract

Forests are expected to store additional carbon as part of the global initiative to offset the buildup of anthropogenic carbon dioxide (CO2) in the atmosphere. Soil organic carbon (SOC) stored and cycled under forests is a significant portion of the global total carbon stock, but remains poorly understood due to its complexity in mechanisms of storage and inaccessibility at depth. This chapter first reviews our understanding of soil carbon inputs, losses from biotic respiration and the different soil carbon storage pools and mechanisms. Secondly, the paper evaluates methods of measurement and modeling of soil carbon. Thirdly, it summarizes the effects of diverse management histories and disturbance regimes that compound the difficulties in quantifying forest soil carbon pools and fluxes. Alterations of soil carbon cycling by land use change or disturbance may persist for decades or centuries, confounding results of short-term field studies. Such differences must be characterized and sequestration mechanisms elucidated to inform realistic climate change policy directed at carbon management in existing native forests, plantations, and agroforestry systems, as well as reforestation and afforestation. Lastly, the chapter provides recommendations for further research on those areas of soil carbon where knowledge is either scant or absent.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allen AS, Andrews JA, Finzi AC, Matamala R, Richter DD, Schlesinger WH (2000) Effects of free-air CO2 enrichment (FACE) on belowground processes in a Pinus taeda forest. Ecol Appl 10:437–448

    Google Scholar 

  • Allison SD, Wallenstein MD, Bradford MA (2010) Soil-carbon response to warming dependent on microbial physiology. Nat Geosci 3:336–340

    CAS  Google Scholar 

  • Andrews JA, Schlesinger WH (2001) Soil CO2 dynamics, acidification, and chemical weathering in a temperate forest with experimental CO2 enrichment. Glob Biogeochem Cycles 15:149–162

    CAS  Google Scholar 

  • Baker JM, Ochsner TE, Venterea RT, Griffis TJ (2007) Tillage and soil carbon sequestration-what do we really know? Agric Ecosyst Environ 118:1–5

    CAS  Google Scholar 

  • Bird MI, Santruckova H, Arneth A, Grigoriev S, Gleixner G, Kalaschnikov YN, Lloyd J, Schulze ED (2002) Soil carbon inventories and carbon-13 on a latitude transect in Siberia. Tellus B 54:631–641

    Google Scholar 

  • Blackwood CB, Waldrop MP, Zak DR, Sinsabaugh RL (2007) Molecular analysis of fungal communities and laccase genes in decomposing litter reveals differences among forest types but no impact of nitrogen deposition. Environ Microbiol 9:1306–1316

    PubMed  CAS  Google Scholar 

  • Bond-Lamberty B, Wang C, Gower ST (2004) A global relationship between the heterotrophic and autotrophic components of soil respiration? Glob Change Biol 10:1756–1766

    Google Scholar 

  • Borken W, Davidson EA, Savage K, Gaudinski J, Trumbore SE (2003) Drying and wetting effects on carbon dioxide release from organic horizons. Soil Sci Soc Am J 67:1888–1896

    CAS  Google Scholar 

  • Bradford MA, Jones TH, Bardgett RD, Black HIJ, Boag B, Bonkowski M, Cook R, Eggers T, Gange AC, Grayston SJ, Kandeler E, McCaig AE, Newington JE, Prosser JI, Setala H, Staddon PL, Tordoff GM, Tscherko D, Lawton JH (2002a) Impacts of soil faunal community composition on model grassland ecosystems. Science 298:615–618

    PubMed  CAS  Google Scholar 

  • Bradford MA, Tordoff GM, Eggers T, Jones TH, Newington JE (2002b) Microbiota, fauna, and mesh size interactions in litter decomposition. Oikos 99:317–323

    Google Scholar 

  • Bradford MA, Tordoff GM, Black HIJ, Cook R, Eggers T, Garnett MH, Grayston SJ, Hutcheson KA, Ineson P, Newington JE, Ostle N, Sleep D, Stott A, Jones TH (2007) Carbon dynamics in a model grassland with functionally different soil communities. Funct Ecol 21:690–697

    Google Scholar 

  • Bradford MA, Davies CA, Frey SD et al (2008) Thermal adaptation of soil microbial respiration to elevated temperature. Ecol Lett 11:1316–1327

    PubMed  Google Scholar 

  • Butnor JR, Johnsen KH, Oren R, Katul GG (2003) Reduction of forest floor respiration by fertilization on both carbon dioxide-enriched and reference 17-year-old loblolly pine stands. Glob Change Biol 9:849–861

    Google Scholar 

  • Catovsky S, Bradford MA, Hector A (2002) Biodiversity and ecosystem productivity: implications for carbon storage. Oikos 97:443–448

    CAS  Google Scholar 

  • Cerri CEP, Coleman K, Jenkinson DS, Bernoux M, Victoria R, Cerri CC (2003) Modeling soil carbon from forest and pasture ecosystems of Amazon, Brazil. Soil Sci Soc Am J 67:1879–1887

    CAS  Google Scholar 

  • Cerri CEP, Paustian K, Bernoux M, Victoria RL, Melillo JM, Cerri CC (2004) Modeling changes in soil organic matter in Amazon forest to pasture conversion with the century model. Glob Change Biol 10:815–832

    Google Scholar 

  • Certini G (2005) Effects of fire on properties of forest soils: a review. Oecologia 143:1–10

    PubMed  Google Scholar 

  • Chung H, Zak DR, Lilleskov EA (2006) Fungal community composition and metabolism under elevated CO2 and O3. Oecologia 147:143–154

    PubMed  Google Scholar 

  • Cisneros-Dozal LM, Trumbore S, Hanson PJ (2006) Partitioning sources of soil-respired CO2 and their ­seasonal variation using a unique radiocarbon tracer. Glob Change Biol 12:194–204

    Google Scholar 

  • Cleveland CC, Nemergut DR, Schmidt SK, Townsend AR (2007) Increases in soil respiration following labile carbon additions linked to rapid shifts in soil microbial community composition. Biogeochemistry 82:229–240

    CAS  Google Scholar 

  • Czimczik CI, Preston CM, Schmidt MWI, Schulze ED (2003) How surface fire in Siberian Scots pine forests affects soil organic carbon in the forest floor: stocks, molecular structure, and conversion to black carbon (charcoal). Glob Biogeochem Cycles 17:20–21

    Google Scholar 

  • Czimczik CI, Schmidt MWI, Schulze ED (2005) Effects of increasing fire frequency on black carbon and organic matter in podzols of Siberian Scots pine forests. Eur J Soil Sci 56:417–428

    Google Scholar 

  • Dai KH, Johnson CE, Driscoll CT (2001) Organic matter chemistry and dynamics in clear-cut and unmanaged hardwood forest ecosystems. Biogeochemistry 54:51–83

    CAS  Google Scholar 

  • Davidson EA, Janssens IA (2006) Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature 440:165–173

    PubMed  CAS  Google Scholar 

  • Davidson EA, Trumbore SE, Amundson R (2000) Soil warming and organic carbon content. Nature 408:789–790

    PubMed  CAS  Google Scholar 

  • Davidson EA, Janssens IA, Lou Y (2006) On the variability of respiration in terrestrial ecosystems: moving beyond Q10. Glob Change Biol 12:154–164

    Google Scholar 

  • Denman KL, Brasseur G, Chidthaisong A et al (2007) Couplings between changes in the climate system and biogeochemistry. In: Solomon S, Qin D, Manning M et al (eds) Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge

    Google Scholar 

  • Dijkstra FA, Cheng WX (2007) Interactions between soil and tree roots accelerate long-term soil carbon decomposition. Ecol Lett 10:1046–1053

    PubMed  Google Scholar 

  • Don A, Kalbitz K (2005) Amounts and degradability of dissolved organic carbon from foliar litter at different decomposition stages. Soil Biol Biochem 37:2171–2179

    CAS  Google Scholar 

  • Drewitt GB, Black TA, Jassal RS (2005) Using measurements of soil CO2 efflux and concentrations to infer the depth distribution of CO2 production in a forest soil. Can J Soil Sci 85:213–221

    CAS  Google Scholar 

  • Eliasson PE, McMurtrie RE, Pepper DA, Stromgren M, Linder S, Agren GI (2005) The response of heterotrophic CO2 flux to soil warming. Glob Change Biol 11:167–181

    Google Scholar 

  • Eswaran H, Van den Berg E, Reich P, Kimble J (1995) Global soil carbon resources. In: Lal R, Kimble JM, Levine E (eds) Soils and global change. CRC Press, Boca Raton, pp 27–43

    Google Scholar 

  • Fahey TJ, Tierney GL, Fitzhugh RD, Wilson GF, Siccama TG (2005) Soil respiration and soil carbon balance in a northern hardwood forest ecosystem. Can J Forest Res 35:244–253

    Google Scholar 

  • Fierer N, Schimel JP (2002) Effects of drying-rewetting frequency on soil carbon and nitrogen transformations. Soil Biol Biochem 34:777–787

    CAS  Google Scholar 

  • Fierer N, Bradford MA, Jackson RB (2007) Toward an ecological classification of soil bacteria. Ecology 88:1354–1364

    PubMed  Google Scholar 

  • Fimmen RL, Richter DD Jr, Vasudevan D, Williams MA, West LT (2008) Rhizogenic Fe-C redox cycling: a hypothetical biogeochemical mechanism that drives crustal weathering in upland soils. Biogeochemistry 87:127–141

    CAS  Google Scholar 

  • Finzi AC, Schlesinger WH (2002) Species control variation in litter decomposition in a pine forest exposed to elevated CO2. Glob Change Biol 8:1217–1229

    Google Scholar 

  • Fontaine S, Barot S, Barre P, Bdioui N, Mary B, Rumpel C (2007) Stability of organic carbon in deep soil layers controlled by fresh carbon supply. Nature 450:277–280

    PubMed  CAS  Google Scholar 

  • Froberg M, Jardine PM, Hanson PJ, Swanston CW, Todd DE, Tarver JR, Garten CT Jr (2007a) Low dissolved organic carbon input from fresh litter to deep mineral soils. Soil Sci Soc Am J 71:347–354

    CAS  Google Scholar 

  • Froberg M, Kleja DB, Hagedorn F (2007b) The contribution of fresh litter to dissolved organic carbon leached from a coniferous forest floor. Eur J Soil Sci 58:108–114

    Google Scholar 

  • Gallo ME, Lauber CL, Cabaniss SE, Waldrop MP, Sinsabaugh RL, Zak DR (2005) Soil organic matter and litter chemistry response to experimental N deposition in northern temperate deciduous forest ecosystems. Glob Change Biol 11:1514–1521

    Google Scholar 

  • Giardina CP, Ryan MG (2000) Evidence that decomposition rates of organic carbon in mineral soil do not vary with temperature. Nature 404:858–861

    PubMed  CAS  Google Scholar 

  • Giardina CP, Ryan MG, Hubbard RM, Binkley D (2001) Tree species and soil textural controls on carbon and nitrogen mineralization rates. Soil Sci Soc Am J 65:1272–1279

    CAS  Google Scholar 

  • Giesler R, Hogberg MN, Strobel BW, Richter A, Nordgren A, Hogberg P (2007) Production of dissolved organic carbon and low-molecular weight organic acids in soil solution driven by recent tree photosynthate. Biogeochemistry 84:1–12

    CAS  Google Scholar 

  • Gifford RM, Roderick ML (2003) Soil carbon stocks and bulk density: spatial or cumulative mass coordinates as a basis of expression? Glob Change Biol 9:1507–1514

    Google Scholar 

  • Godbold DL, Hoosbeek MR, Lukac M, Cotrufo MF, Janssens IA, Ceulemans R, Polle A, Velthorst EJ, Scarascia-Mugnozza G, De Angelis P, Miglietta F, Peressotti A (2006) Mycorrhizal hyphal turnover as a dominant process for carbon input into soil organic matter. Plant Soil 281:15–24

    CAS  Google Scholar 

  • Goodale CL, Apps MJ, Birdsey RA, Field CB, Heath LS, Houghton RA, Jenkins JC, Kohlmaier GH, Kurz W, Liu S, Nabuurs GJ, Nilsson S, Shvidenko AZ (2002) Forest carbon sinks in the Northern Hemisphere. Ecol Appl 12:891–899

    Google Scholar 

  • Grandy AS, Neff JC (2008) Molecular C dynamics downstream: the biochemical decomposition sequence and its impact on soil organic matter structure and function. Sci Total Environ 404:297–307

    PubMed  CAS  Google Scholar 

  • Groenigen KJ, Six J, Harris D, Kessel CV (2007) Elevated CO2 does not favor a fungal decomposition pathway. Soil Biol Biochem 39:2168–2172

    Google Scholar 

  • Gu L, Post WM, King AW (2004) Fast labile carbon turnover obscures sensitivity of heterotrophic respiration from soil to temperature: a model analysis. Glob Biogeochem Cycles 18:GB1022

    Google Scholar 

  • Guo LB, Gifford RM (2002) Soil carbon stocks and land use change: a meta analysis. Glob Change Biol 8:345–360

    Google Scholar 

  • Guo D, Li H, Mitchell RJ, Han W, Hendricks JJ, Fahey TJ, Hendrick RL (2008) Fine root heterogeneity by branch order: exploring the discrepancy in root turnover estimates between minirhizotron and carbon isotopic methods. New Phytol 177:443–456

    PubMed  Google Scholar 

  • Hagedorn F, Machwitz M (2007) Controls on dissolved organic matter leaching from forest litter grown under elevated atmospheric CO2. Soil Biol Biochem 39:1759–1769

    CAS  Google Scholar 

  • Hahn V, Hogberg P, Buchmann N (2006) 14C - A tool for separation of autotrophic and heterotrophic soil respiration. Glob Change Biol 12:972–982

    Google Scholar 

  • Hamilton JG, DeLucia EH, George K, Naidu SL, Finzi AC, Schlesinger WH (2002) Forest carbon balance under elevated CO2. Oecologia 131:250–260

    Google Scholar 

  • Hanson PJ, Edwards NT, Garten CT, Andrews JA (2000) Separating root and soil microbial contributions to soil respiration: a review of methods and observations. Biogeochemistry 48:115–146

    CAS  Google Scholar 

  • Hanson PJ, Amthor JS, Wullschleger SD, Wilson KB, Grant RF, Hartley A, Hui D, Hunt ER Jr, Johnson DW, Kimball JS, King AW, Luo Y, McNulty SG, Sun G, Thornton PE, Wang S, Williams M, Baldocchi DD, Cushman RM (2004) Oak forest carbon and water simulations: model intercomparisons and evaluations against independent data. Ecol Monogr 74:443–489

    Google Scholar 

  • Hanson PJ, Swanston CW, Garten CT Jr, Todd DE, Trumbore SE (2005) Reconciling change in Oi-horizon carbon-14 with mass loss for an oak forest. Soil Sci Soc Am J 69:1492–1502

    CAS  Google Scholar 

  • Heinemeyer A, Hartley IP, Evans SP, De la Fuente JAC, Ineson P (2007) Forest soil CO2 flux: uncovering the contribution and environmental responses of ectomycorrhizas. Glob Change Biol 13:1786–1797

    Google Scholar 

  • Hibbard KA, Law BE, Reichstein M, Sulzman J (2005) An analysis of soil respiration across northern hemisphere temperate ecosystems. Biogeochemistry 73:29–70

    Google Scholar 

  • Hogberg MN, Hogberg P (2002) Extramatrical ectomycorrhizal mycelium contributes one-third of microbial biomass and produces, together with associated roots, half the dissolved organic carbon in a forest soil. New Phytol 154:791–795

    CAS  Google Scholar 

  • Högberg P, Read DJ (2006) Towards a more plant physiological perspective on soil ecology. Trends Ecol Evol 21:548–554

    PubMed  Google Scholar 

  • Hogberg P, Nordgren A, Hogberg MN, Ottosson-Lofvenius M, Bhupinderpal S, Olsson P, Linder S (2005) Fractional contributions by autotrophic and heterotrophic respiration to soil-surface CO2 efflux in boreal forests. SEB Exp Biol Ser 2005:251–267

    Google Scholar 

  • Hogberg MN, Hogberg P, Myrold DD (2007) Is microbial community composition in boreal forest soils determined by pH, C-to-N ratio, the trees, or all three? Oecologia 150:590–601

    PubMed  Google Scholar 

  • Hyvonen R, Agren GI (2001) Decomposer invasion rate, decomposer growth rate, and substrate chemical quality: how they influence soil organic matter turnover. Can J Forest Res 31:1594–1601

    CAS  Google Scholar 

  • IPCC (2007) Forestry. In: Climate change 2007: mitigation. Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change

    Google Scholar 

  • Jackson RB, Schenk HJ, Jobbagy EG, Canadell J, Colello GD, Dickinson RE, Field CB, Friedlingstein P, Heimann M, Hibbard K, Kicklighter DW, Kleidon A, Neilson RP, Parton WJ, Sala OE, Sykes MT (2000) Belowground consequences of vegetation change and their treatment in models. Ecol Appl 10:470–483

    Google Scholar 

  • Jandl R, Lindner M, Vesterdal L, Bauwens B, Baritz R, Hagedorn F, Johnson DW, Minkkinen K, Byrne KA (2007) How strongly can forest management influence soil carbon sequestration? Geoderma 137:253–268

    CAS  Google Scholar 

  • Janssens IA, Pilegaard K (2003) Large seasonal changes in Q10 of soil respiration in a beech forest. Glob Change Biol 9:911–918

    Google Scholar 

  • Jarvis P, Rey A, Petsikos C, Wingate L, Rayment M, Pereira J, Banza J, David J, Miglietta F, Borghetti M, Manca G, Valentini R (2007) Drying and wetting of Mediterranean soils stimulates decomposition and carbon dioxide emission: the “Birch effect”. Tree Physiol 27:929–940

    PubMed  CAS  Google Scholar 

  • Jassal RS, Black TA, Drewitt GB, Novak MD, Gaumont-Guay D, Nesic Z (2004) A model of the production and transport of CO2 in soil: predicting soil CO2 ­concentrations and CO2 efflux from a forest floor. Agric Forest Meteorol 124:219–236

    Google Scholar 

  • Jobbagy EG, Jackson RB (2000) The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecol Appl 10:423–436

    Google Scholar 

  • Johnson DW, Curtis PS (2001) Effects of forest management on soil C and N storage: meta analysis. Forest Ecol Manag 140:227–238

    Google Scholar 

  • Johnson DW, Knoepp JD, Swank WT, Shan J, Morris LA, Van Lear DH, Kapeluck PR (2002) Effects of forest management on soil carbon: results of some long-term resampling studies. Environ Pollut 116:S201–S208

    PubMed  CAS  Google Scholar 

  • Jones TH, Bradford MA (2001) Assessing the functional implications of soil biodiversity in ecosystems. Ecol Res 16:845–858

    Google Scholar 

  • Kaiser K, Guggenberger G (2000) The role of DOM sorption to mineral surfaces in the preservation of organic matter in soils. Org Geochem 31:711–725

    CAS  Google Scholar 

  • Kalbitz K, Solinger S, Park JH, Michalzik B, Matzner E (2000) Controls on the dynamics of dissolved organic matter in soils: a review. Soil Sci 165:277–304

    CAS  Google Scholar 

  • Kalbitz K, Schwesig D, Rethemeyer J, Matzner E (2005) Stabilization of dissolved organic matter by sorption to the mineral soil. Soil Biol Biochem 37:1319–1331

    CAS  Google Scholar 

  • Kalbitz K, Kaiser K, Bargholz J, Dardenne P (2006) Lignin degradation controls the production of dissolved organic matter in decomposing foliar litter. Eur J Soil Sci 57:504–516

    CAS  Google Scholar 

  • King JS, Pregitzer KS, Zak DR, Kubiske ME, Ashby JA, Holmes WE (2001) Chemistry and decomposition of litter from Populus tremuloides michaux grown at elevated atmospheric CO2 and varying N availability. Glob Change Biol 7:65–74

    Google Scholar 

  • King JS, Hanson PJ, Bernhardt E, Deangelis P, Norby RJ, Pregitzer KS (2004) A multiyear synthesis of soil respiration responses to elevated atmospheric CO2 from four forest FACE experiments. Glob Change Biol 10:1027–1042

    Google Scholar 

  • King JS, Pregitzer KS, Zak DR, Holmes WE, Schmidt K (2005) Fine root chemistry and decomposition in model communities of north-temperate tree species show little response to elevated atmospheric CO2 and varying soil resource availability. Oecologia 146:318–328

    PubMed  CAS  Google Scholar 

  • Knorr M, Frey SD, Curtis PS (2005a) Nitrogen additions and litter decomposition: a meta-analysis. Ecology 86:3252–3257

    Google Scholar 

  • Knorr W, Prentice IC, House JI, Holland EA (2005b) Long-term sensitivity of soil carbon turnover to warming. Nature 433:298–301

    PubMed  CAS  Google Scholar 

  • Langley JA, Hungate BA (2003) Mycorrhizal controls on belowground litter quality. Ecology 84:2302–2312

    Google Scholar 

  • Li X, Fisk MC, Fahey TJ, Bohlen PJ (2002) Influence of earthworm invasion on soil microbial biomass and activity in a northern hardwood forest. Soil Biol Biochem 34:1929–1937

    CAS  Google Scholar 

  • Lichter J, Barron SH, Bevacqua CE, Finzi AC, Irving KF, Stemmler EA, Schlesinger WH (2005) Soil carbon sequestration and turnover in a pine forest after six years of atmospheric CO2 enrichment. Ecology 86:1835–1847

    Google Scholar 

  • Liski J, Pussinen A, Pingoud K, Makipaa R, Karjalainen T (2001) Which rotation length is favourable to carbon sequestration? Can J Forest Res 31:2004–2013

    Google Scholar 

  • Liski J, Korotkov AV, Prins CFL, Karjalainen T, Victor DG, Kauppi PE (2003) Increased carbon sink in temperate and boreal forests. Climatic Change 61:89–99

    CAS  Google Scholar 

  • Liski J, Palosuo T, Peltoniemi M, Sievanen R (2005) Carbon and decomposition model yasso for forest soils. Ecol Model 189:168–182

    CAS  Google Scholar 

  • Loranger GI, Pregitzer KS, King JS (2004) Elevated CO2 and O3 concentrations differentially affect selected groups of the fauna in temperate forest soils. Soil Biol Biochem 36:1521–1524

    CAS  Google Scholar 

  • Lorenz K, Lal R, Preston CM, Nierop KGJ (2007) Strengthening the soil organic carbon pool by increasing contributions from recalcitrant aliphatic bio(macro)molecules. Geoderma 142:1–10

    CAS  Google Scholar 

  • Loya WM, Pregitzer KS, Karberg NJ, King JS, Giardina CP (2003) Reduction of soil carbon formation by tropospheric ozone under increased carbon dioxide levels. Nature 425:705–707

    PubMed  CAS  Google Scholar 

  • Luo Y, Wan S, Hui D, Wallace LL (2001a) Acclimatization of soil respiration to warming in a tall grass prairie. Nature 413:622–625

    PubMed  CAS  Google Scholar 

  • Luo Y, Wu L, Andrews JA, White L, Matamala R, Schafer K, Schlesinger WH (2001b) Elevated CO2 differentiates ecosystem carbon processes: deconvolution analysis of Duke Forest FACE data. Ecol Monogr 71:357–376

    Google Scholar 

  • Lutzow MV, Kogel-Knabner I, Ekschmitt K, Matzner E, Guggenberger G, Marschner B, Flessa H (2006) Stabilization of organic matter in temperate soils: mechanisms and their relevance under different soil conditions - a review. Eur J Soil Sci 57:426–445

    Google Scholar 

  • Magill AH, Aber JD (2000) Dissolved organic carbon and nitrogen relationships in forest litter as affected by nitrogen deposition. Soil Biol Biochem 32:603–613

    CAS  Google Scholar 

  • Manning P, Saunders M, Bardgett RD, Bonkowski M, Bradford MA, Ellis RJ, Kandeler E, Marhan S, Tscherko D (2008) Direct and indirect effects of nitrogen deposition on litter decomposition. Soil Biol Biochem 40:688–698

    CAS  Google Scholar 

  • Marhan S, Scheu S (2006) Mixing of different mineral soil layers by endogeic earthworms affects carbon and nitrogen mineralization. Biol Fert Soils 42:308–314

    Google Scholar 

  • Martin JL, Gower ST, Plaut J, Holmes B (2005) Carbon pools in a boreal mixedwood logging chronosequence. Glob Change Biol 11:1883–1894

    Google Scholar 

  • Melillo JM, Steudler PA, Aber JD, Newkirk K, Lux H, Bowles FP, Catricala C, Magill A, Ahrens T, Morrisseau S (2002) Soil warming and carbon-cycle feedbacks to the climate system. Science 298:2173–2176

    PubMed  CAS  Google Scholar 

  • Michalzik B, Kalbitz K, Park JH, Solinger S, Matzner E (2001) Fluxes and concentrations of dissolved organic carbon and nitrogen - a synthesis for temperate forests. Biogeochemistry 52:173–205

    Google Scholar 

  • Monson RK, Lipson DL, Burns SP, Turnipseed AA, Delany AC, Williams MW, Schmidt SK (2006) Winter forest soil respiration controlled by climate and microbial community composition. Nature 439:711–714

    PubMed  CAS  Google Scholar 

  • Montano NM, Garcia-Oliva F, Jaramillo VJ (2007) Dissolved organic carbon affects soil microbial activity and nitrogen dynamics in a Mexican tropical deciduous forest. Plant Soil 295:265–277

    CAS  Google Scholar 

  • Morris SJ, Bohm S, Haile-Mariam S, Paul EA (2007) Evaluation of carbon accrual in afforested agricultural soils. Glob Change Biol 13:1145–1156

    Google Scholar 

  • Neff JC, Harden JW, Gleixner G (2005) Fire effects on soil organic matter content, composition, and nutrients in boreal interior Alaska. Can J Forest Res 35:2178–2187

    CAS  Google Scholar 

  • Park JH, Matzner E (2003) Controls on the release of dissolved organic carbon and nitrogen from a deciduous forest floor investigated by manipulations of aboveground litter inputs and water flux. Biogeochemistry 66:265–286

    CAS  Google Scholar 

  • Paul KI, Polglase PJ, Nyakuengama JG, Khanna PK (2002) Change in soil carbon following afforestation. Forest Ecol Manag 168:241–257

    Google Scholar 

  • Pavelka M, Acosta M, Marek MV, Kutsch W, Janous D (2007) Dependence of the Q10 values on the depth of the soil temperature measuring point. Plant Soil 292:171–179

    CAS  Google Scholar 

  • Peltoniemi M, Thurig E, Ogle S, Palosuo T, Schrumpf M, Wutzler T, Butterbach-Bahl K, Chertov O, Komarov A, Mikhailov A, Gardenas A, Perry C, Liski J, Smith P, Makipaa R (2007) Models in country scale carbon accounting of forest soils. Silva Fenn 41:575–602

    Google Scholar 

  • Phillips RL, Zak DR, Holmes WE, White DC (2002) Microbial community composition and function beneath temperate trees exposed to elevated atmospheric carbon dioxide and ozone. Oecologia 131:236–244

    Google Scholar 

  • Phillips RL, Finzi AC, Bernhardt ES (2011) Enhanced root exudation induces microbial feedbacks to N cycling in a pine forest under long-term CO2 fumigation. Ecol Lett 14:187–194

    PubMed  Google Scholar 

  • Post J, Hattermann FF, Krysanova V, Suckow F (2008) Parameter and input data uncertainty estimation for the assessment of long-term soil organic carbon dynamics. Environ Modell Softw 23:125–138

    Google Scholar 

  • Pregitzer K, Loya W, Kubiske M, Zak D (2006) Soil respiration in northern forests exposed to elevated atmospheric carbon dioxide and ozone. Oecologia 148:503–516

    PubMed  Google Scholar 

  • Pregitzer KS, Burton AJ, Zak DR, Talhelm AF (2008) Simulated chronic nitrogen deposition increases ­carbon storage in Northern Temperate forests. Glob Change Biol 14:142–153

    Google Scholar 

  • Pritchard SG, Rogers HH, Davis MA, Van Santen E, Prior SA, Schlesinger WH (2001) The influence of elevated atmospheric CO2 on fine root dynamics in an intact temperate forest. Glob Change Biol 7:829–837

    Google Scholar 

  • Pritchard SG, Strand AE, McCormack ML, Davis MA, Finzi AC, Jackson RB, Matamala R, Rogers HH, Oren R (2008) Fine root dynamics in a loblolly pine forest are influenced by free-air- CO2-enrichment: a six-year-minirhizotron study. Glob Change Biol 14:588–602

    Google Scholar 

  • Quideau SA, Chadwick OA, Trumbore SE, Johnson-Maynard JL, Graham RC, Anderson MA (2001) Vegetation control on soil organic matter dynamics. Org Geochem 32:247–252

    CAS  Google Scholar 

  • Rasmussen C, Southard RJ, Horwath WR (2006) Mineral control of organic carbon mineralization in a range of temperate conifer forest soils. Glob Change Biol 12:834–847

    Google Scholar 

  • Reichstein M, Rey A, Freibauer A, Tenhunen J, Valentini R, Banza J, Casals P, Cheng Y, Grunzweig JM, Irvine J, Joffre R, Law BE, Loustau D, Miglietta F, Oechel W, Ourcival JM, Pereira JS, Peressotti A, Ponti F, Qi Y, Rambal S, Rayment M, Romanya J, Rossi F, Tedeschi V, Tirone G, Xu M, Yakir D (2003) Modeling temporal and large-scale spatial variability of soil respiration from soil water availability, temperature and vegetation productivity indices. Glob Biogeochem Cycles 17:15, 11

    Google Scholar 

  • Richter DD, Hofmockel M, Callaham MA Jr, Powlson DS, Smith P (2007) Long-term soil experiments: keys to managing Earth’s rapidly chancing ecosystems. Soil Sci Soc Am J 71:266–279

    CAS  Google Scholar 

  • Ryan MG, Law BE (2005) Interpreting, measuring, and modeling soil respiration. Biogeochemistry 73:3–27

    Google Scholar 

  • Salimon CI, Davidson EA, Victoria RL, Melo AWF (2004) CO2 flux from soil in pastures and forests in southwestern Amazonia. Glob Change Biol 10:833–843

    Google Scholar 

  • Sampson DA, Janssens IA, Yuste JC, Ceulemans R (2007) Basal rates of soil respiration are correlated with photosynthesis in a mixed temperate forest. Glob Change Biol 13:2008–2017

    Google Scholar 

  • Savage KE, Davidson EA (2003) A comparison of manual and automated systems for soil CO2 flux measurements: trade-offs between spatial and temporal resolution. J Exp Bot 54:891–899

    PubMed  CAS  Google Scholar 

  • Scheel T, Dorfler C, Kalbitz K (2007) Precipitation of dissolved organic matter by aluminum stabilizes carbon in acidic forest soils. Soil Sci Soc Am J 71:64–74

    CAS  Google Scholar 

  • Schlesinger WH, Lichter J (2001) Limited carbon storage in soil and litter of experimental forest plots under increased atmospheric CO2. Nature 411:466–469

    PubMed  CAS  Google Scholar 

  • Schulze ED, Wirth C, Heimann M (2000) Managing forests after Kyoto. Science 289:2058–2059

    PubMed  CAS  Google Scholar 

  • Schuur EAG, Trumbore SE (2006) Partitioning sources of soil respiration in boreal black spruce forest using radiocarbon. Glob Change Biol 12:165–176

    Google Scholar 

  • Schwesig D, Kalbitz K, Matzner E (2003) Effects of aluminium on the mineralization of dissolved organic carbon derived from forest floors. Eur J Soil Sci 54:311–322

    CAS  Google Scholar 

  • Sinsabaugh RL, Zak DR, Gallo M, Lauber C, Amonette R (2004) Nitrogen deposition and dissolved organic carbon production in northern temperate forests. Soil Biol Biochem 36:1509–1515

    CAS  Google Scholar 

  • Sinsabaugh RL, Gallo ME, Lauber C, Waldrop MP, Zak DR (2005) Extracellular enzyme activities and soil organic matter dynamics for northern hardwood forests receiving simulated nitrogen deposition. Biogeochemistry 75:201–215

    CAS  Google Scholar 

  • Stoy PC, Palmroth S, Oishi AC, Siqueira MB, Juang JY, Novick KA, Ward EJ, Katul GG, Oren R (2007) Are ecosystem carbon inputs and outputs coupled at short time scales? a case study from adjacent pine and hardwood forests using impulse-response analysis. Plant Cell Environ 30:700–710

    PubMed  CAS  Google Scholar 

  • Strand AE, Pritchard SG, McCormack ML, Davis MA, Oren R (2008) Irreconcilable differences: fine-root life spans and soil carbon persistence. Science 319:456–458

    PubMed  CAS  Google Scholar 

  • Strickland MS, Rousk J (2010) Considering fungal: bacterial dominance in soils – methods, controls, and ecosystem implications. Soil Biol Biochem 42:1385–1395

    CAS  Google Scholar 

  • Strickland MS, Devore JL, Maerz JC, Bradford MA (2010) Grass invasion of a hardwood forest is associated with declines in belowground carbon pools. Glob Change Biol 16:1338–1350

    Google Scholar 

  • Subke JA, Inglima I, Cotrufo MF (2006) Trends and methodological impacts in soil CO2 efflux partitioning: a metaanalytical review. Glob Change Biol 12:921–943

    Google Scholar 

  • Suwa M, Katul GG, Oren R, Andrews J, Pippen J, Mace A, Schlesinger WH (2004) Impact of elevated atmospheric CO2 on forest floor respiration in a temperate pine forest. Glob Biogeochem Cycles 18:GB2013

    Google Scholar 

  • Tan ZX, Lal R, Smeck NE, Calhoun FG (2004) Relationships between surface soil organic carbon pool and site variables. Geoderma 121:187–195

    CAS  Google Scholar 

  • Telles ECC, de Camargo PB, Martinelli LA, Trumbore SE, da Costa ES, Santos J, Higuchi N, Oliveira RC Jr (2003) Influence of soil texture on carbon dynamics and storage potential in tropical forest soils of Amazonia. Glob Biogeochem Cycles 17:9, 1

    Google Scholar 

  • Thornley JHM, Cannell MGR (2000) Managing forests for wood yield and carbon storage: a theoretical study. Tree Physiol 20:477–484

    PubMed  Google Scholar 

  • Throop HL, Archer SR (2008) Shrub (Prosopis velutina) encroachment in a semidesert grassland: spatial-temporal changes in soil organic carbon and nitrogen pools. Glob Change Biol 14:2420–2431

    Google Scholar 

  • Thuille A, Schulze ED (2006) Carbon dynamics in successional and afforested spruce stands in Thuringia and the Alps. Glob Change Biol 12:325–342

    Google Scholar 

  • Thuille A, Buchmann N, Schulze ED (2000) Carbon stocks and soil respiration rates during deforestation, grassland use and subsequent Norway spruce ­afforestation in the Southern Alps, Italy. Tree Physiol 20:849–857

    PubMed  Google Scholar 

  • Tierney GL, Fahey TJ (2002) Fine root turnover in a northern hardwood forest: a direct comparison of the radiocarbon and minirhizotron methods. Can J Forest Res 32:1692–1697

    Google Scholar 

  • Trumbore S (2006) Carbon respired by terrestrial ecosystems - recent progress and challenges. Glob Change Biol 12:141–153

    Google Scholar 

  • Trumbore SE, Gaudinski JB (2003) The secret lives of roots. Science 302:1344–1345

    PubMed  CAS  Google Scholar 

  • Uselman SM, Qualls RG, Lilienfein J (2007) Contribution of root vs. leaf litter to dissolved organic carbon leaching through soil. Soil Sci Soc Am J 71:1555–1563

    CAS  Google Scholar 

  • Ussiri DA, Johnson CE (2007) Organic matter composition and dynamics in a northern hardwood forest ecosystem 15 years after clear-cutting. Forest Ecol Manag 240:131–142

    Google Scholar 

  • Van Hees PAW, Jones DL, Finlay R, Godbold DL, Lundstrom US (2005) The carbon we do not see - the impact of low molecular weight compounds on carbon dynamics and respiration in forest soils: a review. Soil Biol Biochem 37:1–13

    Google Scholar 

  • Vogt KA, Vogt DJ, Bloomfield J (1998) Analysis of some direct and indirect methods for estimating root biomass and production of forests at an ecosystem level. Plant Soil 200:71–89

    CAS  Google Scholar 

  • Waldrop MP, Zak DR, Sinsabaugh RL (2004) Microbial community response to nitrogen deposition in northern forest ecosystems. Soil Biol Biochem 36:1443–1451

    CAS  Google Scholar 

  • Wan S, Norby RJ, Pregitzer KS, Ledford J, O’Neill EG (2004) CO2 enrichment and warming of the atmosphere enhance both productivity and mortality of maple tree fine roots. New Phytol 162:437–446

    Google Scholar 

  • Wayson CA, Randolph JC, Hanson PJ, Grimmond CSB, Schmid HP (2006) Comparison of soil respiration methods in a mid-latitude deciduous forest. Biogeochemistry 80:173–189

    Google Scholar 

  • Woodbury PB, Heath LS, Smith JE (2007) Effects of land use change on soil carbon cycling in the conterminous United States from 1900 to 2050. Glob Biogeochem Cycles 21:GB3006

    Google Scholar 

  • Yanai RD, Stehman SV, Arthur MA, Prescott CE, Friedland AJ, Siccama TG, Binkley D (2003) Detecting change in forest floor carbon. Soil Sci Soc Am J 67:1583–1593

    CAS  Google Scholar 

  • Yang Y, Chen G, Guo J, Xie J, Wang X (2007) Soil respiration and carbon balance in a subtropical native forest and two managed plantations. Plant Ecol 193:71–84

    Google Scholar 

  • Zinn YL, Lal R, Bigham JM, Resck DVS (2007) Edaphic controls on soil organic carbon retention in the Brazilian Cerrado: texture and mineralogy. Soil Sci Soc Am J 71:1204–1214

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark S. Ashton .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Price, S.P., Bradford, M.A., Ashton, M.S. (2012). Characterizing Organic Carbon Stocks and Flows in Forest Soils. In: Ashton, M., Tyrrell, M., Spalding, D., Gentry, B. (eds) Managing Forest Carbon in a Changing Climate. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2232-3_2

Download citation

Publish with us

Policies and ethics