Skip to main content

Vitamin C Transport and Its Role in the Central Nervous System

  • Chapter
  • First Online:

Part of the book series: Subcellular Biochemistry ((SCBI,volume 56))

Abstract

Vitamin C, or ascorbic acid, is important as an antioxidant and participates in numerous cellular functions. Although it circulates in plasma in micromolar concentrations, it reaches millimolar concentrations in most tissues. These high ascorbate cellular concentrations are thought to be generated and maintained by the SVCT2 (Slc23a2), a specific transporter for ascorbate. The vitamin is also readily recycled from its oxidized forms inside cells. Neurons in the central nervous system (CNS) contain some of the highest ascorbic acid concentrations of mammalian tissues. Intracellular ascorbate serves several functions in the CNS, including antioxidant protection, peptide amidation, myelin formation, synaptic potentiation, and protection against glutamate toxicity. The importance of the SVCT2 for CNS function is supported by the finding that its targeted deletion in mice causes widespread cerebral hemorrhage and death on post-natal day 1. Neuronal ascorbate content as maintained by this protein also has relevance for human disease, since ascorbate supplements decrease infarct size in ischemia-reperfusion injury models of stroke, and since ascorbate may protect neurons from the oxidant damage associated with neurodegenerative diseases such as Alzheimer’s, Parkinson’s, and Huntington’s. The aim of this review is to assess the role of the SVCT2 in regulating neuronal ascorbate homeostasis and the extent to which ascorbate affects brain function and antioxidant defenses in the CNS.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   179.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   229.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Agus DB, Gambhir SS, Pardridge WM, Speilholz C, Baselga J, Vera JC (1997) Vitamin C crosses the blood-brain barrier in the oxidized form through the glucose transporters. J Clin Invest 100:2842–2848

    Article  PubMed  CAS  Google Scholar 

  • Atlante A, Gagliardi S, Minervini GM, Ciotti MT, Marra E, Calissano P (1997) Glutamate neurotoxicity in rat cerebellar granule cells: a major role for xanthine oxidase in oxygen radical formation. J Neurochem 68:2038–2045

    Article  PubMed  CAS  Google Scholar 

  • Baker RA, Milstien S, Katusic ZS (2001) Effect of vitamin C on the availability of tetrahydrobiopterin in human endothelial cells. J Cardiovasc Pharmacol 37:333–338

    Article  PubMed  CAS  Google Scholar 

  • Berger UV, Lu XC, Liu W, Tang Z, Slusher BS, Hediger MA (2003) Effect of middle cerebral artery occlusion on mRNA expression for the sodium-coupled vitamin C transporter SVCT2 in rat brain. J Neurochem 86:896–906

    Article  PubMed  CAS  Google Scholar 

  • Bianchi J, Wilson FA, Rose RC (1986) Dehydroascorbic acid and ascorbic acid transport systems in the quinea pig ileum. Am J Physiol 250:G461–G468

    PubMed  CAS  Google Scholar 

  • Bielski BH, Allen AO, Schwarz HA (1981) Mechanism of disproportionation of ascorbate radicals. J Am Chem Soc 103:3516–3518

    Article  CAS  Google Scholar 

  • Bigley RH, Stankova L (1974) Uptake and reduction of oxidized and reduced ascorbate by human leukocytes. J Exp Med 139:1084–1092

    Article  PubMed  CAS  Google Scholar 

  • Bode AM, Cunningham L, Rose RC (1990) Spontaneous decay of oxidized ascorbic acid (dehydro-L-ascorbic acid) evaluated by high-pressure liquid chromatography. Clin Chem 36:1807–1809

    PubMed  CAS  Google Scholar 

  • Bornstein SR, Yoshida-Hiroi M, Sotiriou S, Levine M, Hartwig HG, Nussbaum RL, Eisenhofer G (2003) Impaired adrenal catecholamine system function in mice with deficiency of the ascorbic acid transporter (SVCT2). FASEB J 17:1928–1930

    PubMed  CAS  Google Scholar 

  • Brahma B, Forman RE, Stewart EE, Nicholson C, Rice ME (2000) Ascorbate inhibits edema in brain slices. J Neurochem 74:1263–1270

    Article  PubMed  CAS  Google Scholar 

  • Buettner GR (1993) The pecking order of free radicals and antioxidants: lipid peroxidation, alpha-tocopherol, and ascorbate. Arch Biochem Biophys 300:535–543

    Article  PubMed  CAS  Google Scholar 

  • Buettner GR, Jurkiewicz BA (1993) Ascorbate free radical as a marker of oxidative stress: an EPR study. Free Radic Biol Med 14:49–55

    Article  PubMed  CAS  Google Scholar 

  • Burk RF, Christensen JM, Maguire MJ, Austin LM, Whetsell WO Jr, May JM, Hill KE, Ebner FF (2006) A combined deficiency of vitamins E and C causes severe central nervous system damage in guinea pigs. J Nutr 136:1576–1581

    PubMed  CAS  Google Scholar 

  • Castro M, Caprile T, Astuya A, Millán C, Reinicke K, Vera JC, Vásquez O, Aguayo LG, Nualart F (2001) High-affinity sodium-vitamin C co-transporters (SVCT) expression in embryonic mouse neurons. J Neurochem 78:815–823

    Article  PubMed  CAS  Google Scholar 

  • Chatterjee IB (1970) Biosynthesis of L-ascorbate in animals. Methods Enzymol 18:28–34

    Article  Google Scholar 

  • Chatterjee IB, Chatterjee GC, Ghosh NC, Guha BC (1960) Biological synthesis of L-ascorbic acid in animal tissues: conversion of L-gulonolactone into L-ascorbic acid. Biochem J 74:193–203

    PubMed  CAS  Google Scholar 

  • Ciani E, Groneng L, Voltattorni M, Rolseth V, Contestabile A, Paulsen RE (1996) Inhibition of free radical production or free radical scavenging protects from the excitotoxic cell death mediated by glutamate in cultures of cerebellar granule neurons. Brain Res 728:1–6

    Article  PubMed  CAS  Google Scholar 

  • Coassin M, Tomasi A, Vannini V, Ursini F (1991) Enzymatic recycling of oxidized ascorbate in pig heart: one-electron vs two-electron pathway. Arch Biochem Biophys 290:458–462

    Article  PubMed  CAS  Google Scholar 

  • Daruwala R, Song J, Koh WS, Rumsey SC, Levine M (1999) Cloning and functional characterization of the human sodium-dependent vitamin C transporters hSVCT1 and hSVCT2. FEBS Lett 460:480–484

    Article  PubMed  CAS  Google Scholar 

  • Del Bello B, Maellaro E, Sugherini L, Santucci A, Comporti M, Casini AF (1994) Purification of NADPH-dependent dehydroascorbate reductase from rat liver and its identification with 3a-hydroxysteroid dehydrogenase. Biochem J 304:385–390

    PubMed  CAS  Google Scholar 

  • Dhariwal KR, Hartzell WO, Levine M (1991) Ascorbic acid and dehydroascorbic acid measurements in human plasma and serum. Am J Clin Nutr 54:712–716

    PubMed  CAS  Google Scholar 

  • Drake BB, Smythe CV, King CG (1942) Complexes of dehydroascorbic acid with three sulfhydryl compounds. J Biol Chem 143:89–98

    CAS  Google Scholar 

  • Due AD, Cook JA, Fletcher SJ, Zhi-Chao Q, Powers AC, May JM (1995) A “cysteineless” GLUT1 glucose transporter has normal function when expressed in Xenopus oocytes. Biochem Biophys Res Commun 208:590–596

    Article  PubMed  CAS  Google Scholar 

  • Evans RM, Currie L, Campbell A (1982) The distribution of ascorbic acid between various cellular components of blood, in normal individuals, and its relation to the plasma concentration. Br J Nutr 47:473–482

    Article  PubMed  CAS  Google Scholar 

  • García ML, Salazar K, Millán C, Rodríguez F, Montecinos H, Caprile T, Silva C, Cortes C, Reinicke K, Vera JC, Aguayo LG, Olate J, Molina B, Nualart F (2005) Sodium vitamin C cotransporter SVCT2 is expressed in hypothalamic glial cells. Glia 50:32–47

    Article  Google Scholar 

  • Gould DB, Phalan FC, Breedveld GJ, van Mil SE, Smith RS, Schimenti JC, Aguglia U, van der Knaap MS, Heutink P, John SW (2005) Mutations in Col4a1 cause perinatal cerebral hemorrhage and porencephaly. Science 308:1167–1171

    Article  PubMed  CAS  Google Scholar 

  • Grünewald RA (1993) Ascorbic acid in the brain. Brain Res Rev 18:123–133

    Article  PubMed  Google Scholar 

  • Hediger MA (2002) New view at C. Nat Med 8:445–446

    Article  PubMed  CAS  Google Scholar 

  • Heller R, Unbehaun A, Schellenberg B, Mayer B, Werner-Felmayer G, Werner ER (2001) L-ascorbic acid potentiates endothelial nitric oxide synthesis via a chemical stabilization of tetrahydrobiopterin. J Biol Chem 276:40–47

    Article  PubMed  CAS  Google Scholar 

  • Hill KE, Montine TJ, Motley AK, Li X, May JM, Burk RF (2003) Combined deficiency of vitamins E and C causes paralysis and death in guinea pigs. Am J Clin Nutr 77:1484–1488

    PubMed  CAS  Google Scholar 

  • Hillered L, Persson L, Bolander HG, Hallstrom A, Ungerstedt U (1988) Increased extracellular levels of ascorbate in the striatum after middle cerebral artery occlusion in the rat monitored by intracerebral microdialysis. Neurosci Lett 95:286–290

    Article  PubMed  CAS  Google Scholar 

  • Hirschmann JV, Raugi GJ (1999) Adult scurvy. J Am Acad Dermatol 41:895–906

    Article  PubMed  CAS  Google Scholar 

  • Hornig D (1975) Distributin of ascorbic acid, metabolites and analogues in man and animals. Ann NY Acad Sci 258:103–118

    Article  PubMed  CAS  Google Scholar 

  • Hosoya K, Minamizono A, Katayama K, Terasaki T, Tomi M (2004) Vitamin C transport in oxidized form across the rat blood-retinal barrier. Invest Ophthalmol Vis Sci 45:1232–1239

    Article  PubMed  Google Scholar 

  • Huang J, Agus DB, Winfree CJ, Kiss S, Mack WJ, McTaggart RA, Choudhri TF, Kim LJ, Mocco J, Pinsky DJ, Fox WD, Israel RJ, Boyd TA, Golde DW, Connolly ES Jr (2001) Dehydroascorbic acid, a blood-brain barrier transportable form of vitamin C, mediates potent cerebroprotection in experimental stroke. Proc Natl Acad Sci USA 98:11720–11724

    Article  PubMed  CAS  Google Scholar 

  • Hughes RE, Hurley RJ, Jones PR (1971) The retention of ascorbic acid by guinea-pig tissues. Br J Nutr 26:433–438

    Article  PubMed  CAS  Google Scholar 

  • Ito A, Hayashi S, Yoshida T (1981) Participation of a cytochrome b5-like hemoprotein of outer mitochondrial membrane (OM cytochrome b) in NADH- semidehydroascorbic acid reductase activity of rat liver. Biochem Biophys Res Commun 101:591–598

    Article  PubMed  CAS  Google Scholar 

  • Jackson TS, Xu AM, Vita JA, Keaney JF Jr (1998) Ascorbate prevents the interaction of superoxide and nitric oxide only at very high physiological concentrations. Circ Res 83:916–922

    PubMed  CAS  Google Scholar 

  • Jacques PF, Halpner AD, Blumberg JB (1995) Influence of combined antioxidant nutrient intakes on their plasma concentrations in an elderly population. Am J Clin Nutr 62:1228–1233

    PubMed  CAS  Google Scholar 

  • Jin SN, Mun GH, Lee JH, Oh CS, Kim J, Chung YH, Kang JS, Kim JG, Hwang DH, Hwang YI, Shin DH, Lee WJ (2005) Immunohistochemical study on the distribution of sodium-dependent vitamin C transporters in the respiratory system of adult rat. Microsc Res Tech 68:360–367

    Article  PubMed  CAS  Google Scholar 

  • Kontush A, Mann U, Arlt S, Ujeyl A, Lührs C, Müller-Thomsen T, Beisiegel U (2001) Influence of vitamin E and C supplementation on lipoprotein oxidation in patients with Alzheimer’s disease. Free Radic Biol Med 31:345–354

    Article  PubMed  CAS  Google Scholar 

  • Korcok J, Yan R, Siushansian R, Dixon SJ, Wilson JX (2000) Sodium-ascorbate cotransport controls intracellular ascorbate concentration in primary astrocyte cultures expressing the SVCT2 transporter. Brain Res 881:144–151

    Article  PubMed  CAS  Google Scholar 

  • Lee JY, Chang MY, Park CH, Kim HY, Kim JH, Son H, Lee YS, Lee SH (2003) Ascorbate-induced differentiation of embryonic cortical precursors into neurons and astrocytes. J Neurosci Res 73:156–165

    Article  PubMed  CAS  Google Scholar 

  • Levine M, Conry-Cantilena C, Wang YH, Welch RW, Washko PW, Dhariwal KR, Park JB, Lazarev A, Graumlich JF, King J, Cantilena LR (1996) Vitamin C pharmacokinetics in healthy volunteers: evidence for a recommended dietary allowance. Proc Natl Acad Sci USA 93:3704–3709

    Article  PubMed  CAS  Google Scholar 

  • Levine M, Wang YH, Padayatty SJ, Morrow J (2001) A new recommended dietary allowance of vitamin C for healthy young women. Proc Natl Acad Sci USA 98:9842–9846

    Article  PubMed  CAS  Google Scholar 

  • Li X, Huang J, May JM (2003) Ascorbic acid spares alpha-tocopherol and decreases lipid peroxidation in neuronal cells. Biochem Biophys Res Commun 305:656–661

    Article  PubMed  CAS  Google Scholar 

  • Liang WJ, Johnson D, Ma LS, Jarvis SM (2002) Regulation of the human vitamin C transporters and expressed in COS-1 cells by protein kinase C. Am J Physiol Cell Physiol 283, C1696–C1704

    PubMed  CAS  Google Scholar 

  • Lönnrot K, Metsä-Ketelä T, Molnár G, Ahonen JP, Latvala M, Peltola J, Pietilä T, Alho H (1996) The effect of ascorbate and ubiquinone supplementation on plasma and CSF total antioxidant capacity. Free Radic Biol Med 21:211–217

    Article  PubMed  Google Scholar 

  • Lutsenko EA, Carcamo JM, Golde DW (2004) A human sodium-dependent vitamin C transporter 2 isoform acts as a dominant-negative inhibitor of ascorbic acid transport. Mol Cell Biol 24:3150–3156

    Article  PubMed  CAS  Google Scholar 

  • MacGregor DG, Higgins MJ, Jones PA, Maxwell WL, Watson MW, Graham DI, Stone TW (1996) Ascorbate attenuates the systemic kainate-induced neurotoxicity in the rat hippocampus. Brain Res 727:133–144

    Article  PubMed  CAS  Google Scholar 

  • Mack WJ, Mocco J, Ducruet AF, Laufer I, King RG, Zhang Y, Guo W, Pinsky DJ, Connolly ES Jr (2006) A cerebroprotective dose of intravenous citrate/sorbitol-stabilized dehydroascorbic acid is correlated with increased cerebral ascorbic acid and inhibited lipid peroxidation after murine reperfused stroke. Neurosurgery 59:383–388

    Article  PubMed  Google Scholar 

  • Maellaro E, Del Bello B, Sugherini L, Santucci A, Comporti M, Casini AF (1994) Purification and characterization of glutathione-dependent dehydroascorbate reductase from rat liver. Biochem J 301:471–476

    PubMed  CAS  Google Scholar 

  • Majewska MD, Bell JA (1990) Ascorbic acid protects neurons from injury induced by glutamate and NMDA. Neuroreport 1:194–196

    Article  PubMed  CAS  Google Scholar 

  • Majewska MD, Bell JA, London ED (1990) Regulation of the NMDA receptor by redox phenomena: inhibitory role of ascorbate. Brain Res 537:328–332

    Article  PubMed  CAS  Google Scholar 

  • May JM (1988) Inhibition of hexose transport and labelling of the hexose carrier in human erythrocytes by an impermeant maleimide derivative of maltose. Biochem J 254:329–336

    PubMed  CAS  Google Scholar 

  • May JM, Asard H (2004) Ascorbate recycling. In: Asard H, May JM, Smirnoff N (eds) Vitamin C. Functions and biochemistry in animals and plants. Bios Scientific Publishers, London, pp 139–158

    Google Scholar 

  • May JM, Qu ZC (2004) Redox regulation of ascorbic acid transport: role of transporter and intracellular sulfhydryls. Biofactors 20:199–211

    Article  CAS  Google Scholar 

  • May JM, Buchs A, Carter-Su C (1990) Localization of a reactive exofacial sulfhydryl on the glucose carrier of human erythrocytes. Biochemistry 29:10393–10398

    Article  PubMed  CAS  Google Scholar 

  • May JM, Mendiratta S, Hill KE, Burk RF (1997) Reduction of dehydroascorbate to ascorbate by the selenoenzyme thioredoxin reductase. J Biol Chem 272:22607–22610

    Article  PubMed  CAS  Google Scholar 

  • May JM, Cobb CE, Mendiratta S, Hill KE, Burk RF (1998a) Reduction of the ascorbyl free radical to ascorbate by thioredoxin reductase. J Biol Chem 273:23039–23045

    Article  PubMed  CAS  Google Scholar 

  • May JM, Qu Z-C, Mendiratta S (1998b) Protection and recycling of a-tocopherol in human erythrocytes by intracellular ascorbic acid. Arch Biochem Biophys 349:281–289

    Article  PubMed  CAS  Google Scholar 

  • May JM, Qu ZC, Cobb CE (2000) Extracellular reduction of the ascorbate free radical by human erythrocytes. Biochem Biophys Res Commun 267:118–123

    Article  PubMed  CAS  Google Scholar 

  • May JM, Li L, Hayslett K, Qu ZC (2006) Ascorbate transport and recycling by SH-SY5Y neuroblastoma cells: response to glutamate toxicity. Neurochem Res 31:785–794

    Article  PubMed  CAS  Google Scholar 

  • Mefford IN, Oke AF, Adams RN (1981) Regional distribution of ascorbate in human brain. Brain Res 212:223–226

    Article  PubMed  CAS  Google Scholar 

  • Mehlhorn RJ (1991) Ascorbate- and dehydroascorbic acid-mediated reduction of free radicals in the human erythrocyte. J Biol Chem 266:2724–2731

    PubMed  CAS  Google Scholar 

  • Miele M, Boutelle MG, Fillenz M (1994) The physiologically induced release of ascorbate in rat brain is dependent on impulse traffic, calcium influx and glutamate uptake. Neuroscience 62:87–91

    Article  PubMed  CAS  Google Scholar 

  • Milby K, Oke A, Adams RN (1982) Detailed mapping of ascorbate distribution in rat brain. Neurosci Lett 28:15–20

    Article  PubMed  CAS  Google Scholar 

  • Mun GH, Kim MJ, Lee JH, Kim HJ, Chung YH, Chung YB, Kang JS, Hwang YI, Oh SH, Kim JG, Hwang DH, Shin DH, Lee WJ (2006) Immunohistochemical study of the distribution of sodium-dependent vitamin C transporters in adult rat brain. J Neurosci Res 83:919–928

    Article  PubMed  CAS  Google Scholar 

  • Nazemi M, Staudinger H (1968) Kinetische Untersuchungen zur mitochondrialen NADH-semidehydroascorbate- oxydoreduktase (EC 1.6.5.4) in der Rattenleber. Hoppe Seylers Z Physiol Chem 349:345–348

    Article  PubMed  CAS  Google Scholar 

  • Niki E, Noguchi N, Tsuchihashi H, Gotoh N (1995) Interaction among vitamin C, vitamin E, and b-carotene. Am J Clin Nutr 62(Suppl):1322S–1326S

    PubMed  CAS  Google Scholar 

  • Nualart FJ, Rivas CI, Montecinos VP, Godoy AS, Guaiquil VH, Golde DW, Vera JC (2003) Recycling of vitamin C by a bystander effect. J Biol Chem 278:10128–10133

    Article  PubMed  CAS  Google Scholar 

  • Pastore P, Rizzetto T, Curcuruto O, Cin MD, Zaramella A, Marton D (2001) Characterization of dehydroascorbic acid solutions by liquid chromatography/mass spectrometry. Rapid Commun Mass Spectrom 15:2051–2057

    Article  PubMed  CAS  Google Scholar 

  • Patel KB, Stratford MRL, Wardman P, Everett SA (2002) Oxidation of tetrahydrobiopterin by biological radicals and scavenging of the trihydrobiopterin radical by ascorbate. Free Radic Biol Med 32:203–211

    Article  PubMed  CAS  Google Scholar 

  • Qiu S, Li L, Weeber EJ, May JM (2007) Ascorbate transport `by primary cultured neurons and its role in neuronal function and protection against excitotoxicity. J Neurosci Res 85:1046–1056

    Article  PubMed  CAS  Google Scholar 

  • Ranjan A, Theodore D, Haran RP, Chandy MJ (1993) Ascorbic acid and focal cerebral ischaemia in a primate model. Acta Neurochir (Wien) 123:87–91

    Article  CAS  Google Scholar 

  • Rao A, Cha EM, Craig AM (2000) Mismatched appositions of presynaptic and postsynaptic components in isolated hippocampal neurons. J Neurosci 20:8344–8353

    PubMed  CAS  Google Scholar 

  • Rebec GV, Pierce RC (1994) A vitamin as neuromodulator: ascorbate release into the extracellular fluid of the brain regulates dopaminergic and glutamatergic transmission. Prog Neurobiol 43:537–565

    Article  PubMed  CAS  Google Scholar 

  • Reiber H, Ruff M, Uhr M (1993) Ascorbate concentration in human cerebrospinal fluid (CSF) and serum. Intrathecal accumulation and CSF flow rate. Clin Chim Acta 217:163–173

    Article  PubMed  CAS  Google Scholar 

  • Rice ME (2000) Ascorbate regulation and its neuroprotective role in the brain. Trends Neurosci 23:209–216

    Article  PubMed  CAS  Google Scholar 

  • Rice ME, Russo-Menna I (1998) Differential compartmentalization of brain ascorbate and glutathione between neurons and glia. Neuroscience 82:1213–1223

    Article  PubMed  CAS  Google Scholar 

  • Rice ME, Lee EJ, Choy Y (1995) High levels of ascorbic acid, not glutathione, in the CNS of anoxia-tolerant reptiles contrasted with levels in anoxia-intolerant species. J Neurochem 64:1790–1799

    Article  PubMed  CAS  Google Scholar 

  • Rose RC (1988) Transport of ascorbic acid and other water-soluble vitamins. Biochim. Biophys. Acta 947:335–366

    PubMed  CAS  Google Scholar 

  • Seno T, Inoue N, Matsui K, Ejiri J, Hirata K, Kawashima S, Yokoyama M (2004) Functional expression of sodium-dependent vitamin C transporter 2 in human endothelial cells. J Vasc Res 41:345–351

    Article  PubMed  CAS  Google Scholar 

  • Shimizu N, Matsunami T, Onishi S (1960) Histochemical demonstration of ascorbic acid in the locus coeruleus of the mammalian brain. Nature 186:479–480

    Article  PubMed  CAS  Google Scholar 

  • Siushansian R, Wilson JX (1995) Ascorbate transport and intracellular concentration in cerebral astrocytes. J Neurochem 65:41–49

    Article  PubMed  CAS  Google Scholar 

  • Sotiriou S, Gispert S, Cheng J, Wang YH, Chen A, Hoogstraten-Miller S, Miller GF, Kwon O, Levine M, Guttentag SH, Nussbaum RL (2002) Ascorbic-acid transporter Slc23a1 is essential for vitamin C transport into the brain and for perinatal survival. Nature Med 8:514–517

    Article  PubMed  CAS  Google Scholar 

  • Spector R (1977) Vitamin homeostasis in the central nervous system. N Engl J Med 296:1393–1398

    Article  PubMed  CAS  Google Scholar 

  • Spector R, Lorenzo AV (1973) Ascorbic acid homeostasis in the central nervous system. Am J Physiol 225:757–763

    PubMed  CAS  Google Scholar 

  • Stevenson NR, Brush MK (1969) Existence and characteristics of Na+-dependent active transport of ascorbic acid in guinea pig. Am J Clin Nutr 22:318–326

    PubMed  CAS  Google Scholar 

  • Takanaga H, Mackenzie B, Hediger MA (2004) Sodium-dependent ascorbic acid transporter family SLC23. Pflugers Arch 447:677–682

    Article  PubMed  CAS  Google Scholar 

  • Taylor A, Jacques PF, Nowell T, Perrone G, Blumberg J, Handelman G, Jozwiak B, Nadler D (1997) Vitamin C in human and guinea pig aqueous, lens and plasma in relation to intake. Curr Eye Res 16:857–864

    Article  PubMed  CAS  Google Scholar 

  • Tolbert BM, Ward JB (1982) Dehydroascorbic acid. In: Seib PA, Tolbert BM (eds) Ascorbic acid: chemistry, metabolism, and uses. American Chemical Society, Washington, DC, pp 101–123

    Chapter  Google Scholar 

  • Tsukaguchi H, Tokui T, Mackenzie B, Berger UV, Chen X-Z, Wang YX, Brubaker RF, Hediger MA (1999) A family of mammalian Na+-dependent L-ascorbic acid transporters. Nature 399:70–75

    Article  PubMed  CAS  Google Scholar 

  • VanDuijn MM, Tijssen K, VanSteveninck J, van den Broek PJA, Van der Zee J (2000) Erythrocytes reduce extracellular ascorbate free radicals using intracellular ascorbate as an electron donor. J Biol Chem 275:27720–27725

    PubMed  CAS  Google Scholar 

  • Vera JC, Rivas CI, Fischbarg J, Golde DW (1993) Mammalian facilitative hexose transporters mediate the transport of dehydroascorbic acid. Nature 364:79–82

    Article  PubMed  CAS  Google Scholar 

  • Villalba JM, Canalejo A, Rodríguez-Aguilera JC, Burón MI, Moore DJ, Navas P (1993) NADH-ascorbate free radical and -ferricyanide reductase activities represent different levels of plasma membrane electron transport. J Bioenerg Biomembr 25:411–417

    Article  PubMed  CAS  Google Scholar 

  • Washburn MP, Wells WW (1999) Identification of the dehydroascorbic acid reductase and thioltransferase (glutaredoxin) activities of bovine erythrocyte glutathione peroxidase. Biochem Biophys Res Commun 257:567–571

    Article  PubMed  CAS  Google Scholar 

  • Wilson JX (1997) Antioxidant defense of the brain: a role for astrocytes. Can J Physiol Pharmacol 75:1149–1163

    Article  PubMed  CAS  Google Scholar 

  • Wilson JX (2004) Vitamin C transport in animals and plants. In: Asard H, May JM, Smirnoff N (eds) Vitamin C. Functions and biochemistry in animals and plants. Bios Scientific Publishers, London, pp 97–113

    Google Scholar 

  • Wilson JX, Jaworski EM, Kulaga A, Dixon SJ (1990) Substrate regulation of ascorbate transport activity in astrocytes. Neurochem. Res 15:1037–1043

    CAS  Google Scholar 

  • Wilson JX, Peters CE, Sitar SM, Daoust P, Gelb AW (2000) Glutamate stimulates ascorbate transport by astrocytes. Brain Res 858:61–66

    Article  PubMed  CAS  Google Scholar 

  • Winkler BS (1987) In vitro oxidation of ascorbic acid and its prevention by GSH. Biochim Biophys Acta 925:258–264

    Article  PubMed  CAS  Google Scholar 

  • Winkler BS, Orselli SM, Rex TS (1994) The redox couple between glutathione and ascorbic acid: a chemical and physiological perspective. Free Radic Biol Med 17:333–349

    Article  PubMed  CAS  Google Scholar 

  • Wu X, Itoh N, Taniguchi T, Nakanishi T, Tanaka K (2003) Requirement of calcium and phosphate ions in expression of sodium-dependent vitamin C transporter 2 and osteopontin in MC3T3-E1 osteoblastic cells. Biochim Biophys Acta 1641:65–70

    Article  PubMed  CAS  Google Scholar 

  • Yusa T (2001) Increased extracellular ascorbate release reflects glutamate re-uptake during the early stage of reperfusion after forebrain ischemia in rats. Brain Res 897:104–113

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

This work was supported by NIH grant AG023138.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James M. May .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

May, J.M. (2012). Vitamin C Transport and Its Role in the Central Nervous System. In: Stanger, O. (eds) Water Soluble Vitamins. Subcellular Biochemistry, vol 56. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2199-9_6

Download citation

Publish with us

Policies and ethics