Skip to main content

Chromium Pollution and Bioremediation: An Overview

  • Chapter
  • First Online:

Part of the book series: Environmental Pollution ((EPOL,volume 20))

Abstract

Chromium, a steel-gray, lustrous, hard, and brittle metal, occurs in nature in bound forms and has been widely used in various industries. Chromium exists in several oxidation states, of which hexavalent chromium is a priority toxic, mutagenic, and carcinogenic chemical, whereas trivalent form is much less toxic and insoluble. Hexavalent chromium causes various chronic health disorders including organ damage, dermatitis, respiratory impairment, etc. Moreover, the discharge of chromium-containing wastes has also led to the destruction of many agricultural lands and water bodies. Therefore, the remediation of chromium contaminated sites is essentially required to offset the chromium toxicity. Many technologies like land filling, stabilization/solidification, physicochemical extraction, soil washing, and flushing are used to clean up chromium-contaminated soils. None of these techniques are completely accepted because either they do not offer a permanent solution, or they simply immobilize the contaminant or are costly when applied to a large area. Bioremediation involving microorganisms is considered the most promising option in cleaning up the chromium-contaminated environment. Phytoremediation has gained importance in chromium remediation, which can be achieved by phytoextraction, rhizofiltration, and phyto-detoxification. A selective overview of the past achievements and current perspective of chromium remediation technologies reported by different workers using promising microorganisms and plants is given.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Acar FN, Malkoc E (2004) The removal of chromium (VI) from aqueous solutions by Fagus orientalis L. Bioresour Technol 94:13–15

    Article  CAS  Google Scholar 

  • Agency for toxic substances and Disease Registry (ATSDR) (1998) Toxicological profile of chromium. US Public Health Service, U.S. Department of Health and Human Services, Atlanta

    Google Scholar 

  • Aksu Z, Acikel Ü (1999) A single-staged bioseparation process for simultaneous removal of copper (II) and chromium (VI) by using C. vulgaris. Process Biochem 34:589–599

    Article  CAS  Google Scholar 

  • Aksu Z, Acikel Ü (2000) Modeling of a single-staged bioseparation process for simultaneous removal of iron (III) and chromium (VI) by using C. vulgaris. Biochem Eng J 4:229–238

    Article  CAS  Google Scholar 

  • Aksu Z, Acikel Ü, Kutsal T (1999) Investigation of simultaneous biosorption of copper (II) and chromium (VI) on dried Chlorella vulgaris from binary metal mixtures: application of multicomponent adsorption isotherms. Sep Sci Technol 34:501–552

    Article  CAS  Google Scholar 

  • Aliabadi M, Morshedzadeh K, Soheyli H (2006) Removal of hexavalent chromium from aqueous solution by lignocellulosic solid wastes. Int J Environ Sci Technol 3:321–325

    CAS  Google Scholar 

  • Allen HE, Huang CP, Bailey GW, Bowers AR (1995) Metals speciation and contamination of soil. Lewis Publishers, Boca Raton

    Google Scholar 

  • Alvarez-Ayuso E, Garcia-Sanchez A, Querol X (2007) Adsorption of Cr (VI) from synthetic solutions and electroplating wastewaters on amorphous aluminium oxide. J Hazard Mater 142:191–198

    Article  CAS  Google Scholar 

  • Aoyama M (2003) Removal of Cr (VI) from aqueous solution by London plane leaves. J Chem Technol Biotechnol 78:601–604

    Article  CAS  Google Scholar 

  • Aquino SF, Stuckey DC (2004) Soluble microbial products formation in anaerobic chemostats in the presence of toxic compounds. Water Res 38:255–266

    Article  CAS  Google Scholar 

  • Aravindhan R, Madhan B, Rao JR, Nair BU, Ramasami T (2004a) Bioaccumulation of chromium from tannery wastewater: an approach for chrome recovery and reuse. Environ Sci Technol 38:300–306

    Article  CAS  Google Scholar 

  • Aravindhan R, Madhan B, Rao JR, Nair BU (2004b) Recovery and reuse of chromium from tannery wastewaters using Turbinaria ornata seaweed. J Chem Technol Biotechnol 79:1251–1258

    Article  CAS  Google Scholar 

  • Arýca MY, Bayramoğlu G (2005) Cr (VI) biosorption from aqueous solutions using free and immobilized biomass of Lentinus sajorcaju: preparation and kinetic characterization. Colloids Surf A Physicochem Eng Aspects 253:203–221

    Article  CAS  Google Scholar 

  • Ayres RU (1992) Toxic heavy metals: materials cycle optimization. Proc Natl Acad Sci USA 89:815–820

    Article  CAS  Google Scholar 

  • Bader JL, Gonzalez G, Goodell PC, Ali AS, Pillai SD (1999) Aerobic reduction of hexavalent chromium in soil by indigenous microorganisms. Biorem J 3:201–211

    Article  CAS  Google Scholar 

  • Bagchi D, Bagchi M, Stohs SJ (2001) Chromium (VI)-induced oxidative stress, apoptotic cell death and modulation of p53 tumour suppressor gene. Mol Cell Biochem 222:149–158

    Article  CAS  Google Scholar 

  • Bai RS, Abraham TE (2001) Biosorption of Cr (VI) from aqueous solution by Rhizopus nigricans. Bioresource Technol 79:73–81

    Article  Google Scholar 

  • Bai RS, Abraham TE (2002) Studies on enhancement of Cr (VI) biosorption by chemically modified biomass of Rhizopus nigricans. Water Res 36:1224–1236

    Article  CAS  Google Scholar 

  • Bai RS, Abraham TE (2003) Studies on chromium (VI) adsorption– desorption using immobilized fungal biomass. Bioresource Technol 87:17–26

    Article  Google Scholar 

  • Bailar JC (1997) Chromium. In: Parker SP (ed.) McGraw-Hill encyclopedia of science and technology, vol 3, 8th edn. McGraw- Hill, New York

    Google Scholar 

  • Bansal M, Garg U, Singh D, Garg VK (2009) Removal of Cr (VI) from aqueous solutions using pre-consumer processing agricultural waste: a case study of rice husk. J Hazard Mater 162:312–320

    Article  CAS  Google Scholar 

  • Baral SS, Das SN, Rath P, Chaudhary GR (2007) Chromium (VI) removal by calcined bauxite. Biochem Eng J 34:69–75

    Article  CAS  Google Scholar 

  • Barlett RJ (1991) Chromium cycling in soils and water: links, gaps and methods. Environ Health Perspect 92:17–24

    Article  Google Scholar 

  • Battaglia-Brunet F, Foucher S, Denamur A, Ignatiadis I, Michel C, Morin D (2002) Reduction of chromate by fixed films of sulfate-reducing bacteria using hydrogen as an electron source. J Ind Microbiol Biotechnol 28:154–159

    Article  CAS  Google Scholar 

  • Bayramoglu G, Celik G, Yalcin E, Yilmaz M, Arica MY (2005) Modification of surface properties of Lentinus sajor-caju mycelia by physical and chemical methods: evaluation of their Cr (VI) removal efficiencies from aqueous medium. J Hazard Mater 119:219–229

    Article  CAS  Google Scholar 

  • Bean H, Schuler C, Leggett RE, Levin RM (2009) Antioxidant levels of common fruits, vegetables, and juices versus protective activity against in vitro ischemia/reperfusion. Int Urol Nephrol 42:409–415

    Google Scholar 

  • Bishnoi NR, Bajaj M, Sharma N, Gupta A (2004) Adsorption of Cr (VI) on activated rice husk carbon and activated alumina. Bioresource Technol 91:305–307

    Article  CAS  Google Scholar 

  • Borah S, Baurah AM, Das AK, Borah J (2009) Determination of mineral content in commonly consumed leafy vegetables. Food Anal Method 2:226–230

    Google Scholar 

  • Brouard D, Gravel JFY, Viger ML, Boudreau D (2007) Use of sol-gels as solid matrixes for laser-induced breakdown spectroscopy. Spectrochim Acta B 6:1361–1369

    Article  CAS  Google Scholar 

  • Butler LR, Edwards MR, Farmer R, Greenly KJ, Hensler S, Jenkins SE, Joyce JM, Mann JA, Prentice BM, Puckette AE, Shuford CM, Porter SEG, Rhoten MC (2009) Investigation of the use of Cucumis sativus for remediation of chromium from contaminated environmental matrices. An interdisciplinary instrumental analysis project. Chem Educ 86:1095

    Article  CAS  Google Scholar 

  • Cervantes C, Campos-García J, Devars S, Gutiérrez-Corona F, Loza-Tavera H, Torres-Guzmán JC, Moreno-Sánchez R (2001) Interaction of chromium with microorganisms and plants. FEMS Microbiol Rev 25:335–347

    Article  CAS  Google Scholar 

  • Chai L, Huang S, Yang Z, Peng B, Huang Y, Chen Y (2009) Cr (VI) remediation by indigenous bacteria in soils contaminated by chromium containing slag. J Hazard Mater 167:516–522

    Article  CAS  Google Scholar 

  • Chen JMN, Hao OJN (1998) Microbial chromium (VI) reduction, critical reviews. Environ Sci Technol 28:219–251

    Article  Google Scholar 

  • Cheung KH, Gu JD (2003) Reduction of chromate (CrO4 2−) by an enrichment consortium and an isolate of marine sulfate-reducing bacteria. Chemosphere 52:1523–1529

    Article  CAS  Google Scholar 

  • Cheung KH, Gu JD (2007) Mechanism of hexavalent chromium detoxication by microorganisms and bioremediation application potential: a review. Int Biodeter Biodegr 59:8–15

    Article  CAS  Google Scholar 

  • Cotton FA, Wilkinson G, Murillo CA, Bochmann M (1999) Advanced inorganic chemistry. Wiley, New York

    Google Scholar 

  • Dakiky M, Khami A, Manassra A, Mereb M (2002) Selective adsorption of chromium (VI) in industrial wastewater using low cost abundantly available adsorbents. Adv Environ Res 6:533–540

    Article  CAS  Google Scholar 

  • Deiana S, Gessa C, Usai M, Piu P, Seeber R (1991) Analytical study of the reduction of chromium (VI) by d-galacturonic acid. Anal Chim Acta 248:301–305

    Article  CAS  Google Scholar 

  • Demir A, Arisoy M (2007) Biological and chemical removal of Cr (VI) from waste water: cost and benefit analysis. J Hazard Mater 147:275–280

    Article  CAS  Google Scholar 

  • Deng B, Stone AT (1996) Surface-catalyzed chromium (VI) reduction: reactivity comparisons of different organic reductants and different oxide surfaces. Environ Sci Technol 30:2486–2494

    Google Scholar 

  • Deng S, Ting YP (2005) Polyethylenimine-modified fungal biomass as a high capacity biosorbent for Cr(VI) anions: sorption capacity and uptake mechanisms. Environ Sci Technol 39:8490–8496

    Article  CAS  Google Scholar 

  • Desjardin V, Bayard R, Huck N, Manceau A, Gourdon R (2002) Effect of microbial activity on the mobility of chromium in soils. Waste Manage 22:195–200

    Article  CAS  Google Scholar 

  • Dönmez G, Aksu Z (2002) Removal of chromium (VI) from saline wastewaters by Dunaliella species. Process Biochem 38:751–762

    Article  Google Scholar 

  • Dönmez G, Kocberber N (2005) Bioaccumulation of hexavalent chromium by enriched microbial cultures obtained from molasses and NaCl containing media. Process Biochem 40:2493–2498

    Article  CAS  Google Scholar 

  • Dönmez G, Aksu Z, Oztürk A, Kutsal T (1999) A comparative study on heavy metal biosorption characteristics of some algae. Process Biochem 34:885–892

    Article  Google Scholar 

  • Dwivedi D, Srivastava S, Mishra S, Kumar A, Tripathi RD, Rai UN, Dave R, Tripathi P, Chakraborty D, Trivedi PK (2010) Characterization of native microalgal strains for their chromium bioaccumulation potential: phytoplankton response in polluted habitats. J Hazard Mater 173:95–101

    Article  CAS  Google Scholar 

  • Eapen S, D’Souza DF (2005) Prospects of genetic engineering of plants for phytoremediation of toxic metals. Biotechnol Adv 23:97–114

    Article  CAS  Google Scholar 

  • Eccles H (1999) Treatment of metal-contaminated wastes: why select a biological process? Trends Biotechnol 17:462–465

    Article  CAS  Google Scholar 

  • Farajzadeh MA, Monji AB (2004) Adsorption characteristics of wheat bran towards heavy metal cations. Sep Purif Technol 38:197–207

    Article  CAS  Google Scholar 

  • Fulladosa E, Desjardin V, Murat JC, Gourdon R, Villaescusa I (2006) Cr (VI) reduction into Cr (III) as a mechanism to explain the low sensitivity of Vibrio scheri bioassay to detect chromium pollution. Chemosphere 65:644–650

    Article  CAS  Google Scholar 

  • Gao H, Liu Y, Zeng G, Xu W, Li T, Xia W (2008) Characterization of Cr (VI) removal from aqueous solutions by a surplus agricultural waste-rice straw. J Hazard Mater 150:446–452

    Article  CAS  Google Scholar 

  • Gardea-Torresdey JL, Tiemann KJ, Armendariz V, Bess-Oberto L, Chianelli RR, Rios J, Parsons G, Gamez G (2000) Characterization of Cr (VI) binding and reduction to Cr (III) by the agricultural byproducts of Avena monida (oat) biomass. J Hazard Mater 80:175–188

    Article  CAS  Google Scholar 

  • Garg VK, Gupta R, Kumar R, Gupta RK (2004) Adsorption of chromium from aqueous solution on treated sawdust. Bioresource Technol 92:79–81

    Article  CAS  Google Scholar 

  • Garg UK, Kaur MP, Garg VK, Sud D (2007) Removal of hexavalent Cr from aqueous solutions by agricultural waste biomass. J Hazard Mater 140:60–68

    Article  CAS  Google Scholar 

  • Gomes PIA, Asaeda T (2009) Phycoremediation of chromium (VI) by Nitella and impact of calcium encrustation. J Hazard Mater 166:1332–1338

    Article  CAS  Google Scholar 

  • Gomez V, Callao MP (2006) Chromium determination and speciation since 2000. Trends Anal Chem 25:1006–1015

    Article  CAS  Google Scholar 

  • Gondal MA, Hussain T, Yamani ZH, Baig MA (2009) On-line monitoring of remediation process of chromium polluted soil using LIBS. J Hazard Mater 163:1265–1271

    Article  CAS  Google Scholar 

  • Greenwood NN, Earnshaw A (1997) Chemistry of the elements, 2nd edn. Butterworth, London

    Google Scholar 

  • Guha H, Jayachandran K, Maurrasse F (2001) Kinetics of chromium (VI) reduction by a type strain Shewanella alga under different growth conditions. Environ Pollut 115:209–218

    Article  CAS  Google Scholar 

  • Guha H, Jayachandran K, Maurrasse F (2003) Microbiological reduction of chromium (VI) in presence of pyrolusite-coated sand by Shewanella alga Simidu ATCC 55627 in laboratory column experiments. Chemosphere 52:175–183

    Article  CAS  Google Scholar 

  • Guibaud G, Comte S, Bordas F, Dupuy S, Baudu M (2005) Comparison of the complexation potential of extracellular polymeric substances (EPS), extracted from activated sludges and produced by pure bacteria strains, for cadmium, lead and nickel. Chemosphere 59:629–638

    Article  CAS  Google Scholar 

  • Gupta VK, Ali I (2004) Removal of lead and chromium from wastewater using bagasse fly ash: a sugar industry waste. J Colloid Interface Sci 271:321–328

    Article  CAS  Google Scholar 

  • Gupta VK, Shrivastava AK, Jain N (2001) Biosorption of chromium (VI) from aqueous solutions by green algae spirogyra species. Water Res 35:4079–4085

    Article  CAS  Google Scholar 

  • Haisch C, Panne U, Niessner R (1998) Combination of an intensified charge coupled device with an echelle spectrograph for analysis of colloidal material by laser induced plasma spectroscopy. Spectrochim Acta B 53:1657–1667

    Article  Google Scholar 

  • Hasan SH, Singh KK, Prakash O, Talat M, Ho YS (2008) Removal of Cr (VI) from aqueous solutions using agricultural waste maize bran. J Hazard Mater 152:356–365

    Article  CAS  Google Scholar 

  • Hasin A, Gurman SJ, Murphy LM, Perry A, Smith TJ, Gardiner PHE (2010) Remediation of chromium(VI) by a methane-oxidizing bacterium. Environ Sci Technol 44:400–405

    Article  CAS  Google Scholar 

  • IOCC, CAOBISCO (1996) Heavy metals rapport

    Google Scholar 

  • Jardine PM, Fendorf SE, Mayes MA, Larsen L, Brooks SC, Bailey WB (1999) Fate and transport of hexavalent chromium in undisturbed heterogeneous soil. Environ Sci Technol 33:2939–2944

    Article  CAS  Google Scholar 

  • Jeyasingh J, Philip L (2005) Bioremediation of chromium contaminated soil: optimization of operating parameters under laboratory conditions. J Hazard Mater 118:113–120

    Article  CAS  Google Scholar 

  • Jianlong W, Xinmin Z, Yi Q (2000) Removal of Cr (VI) from aqueous solution by macroporous resin adsorption. J Environ Sci Health A 35:1211–1230

    Article  Google Scholar 

  • Johnson CR, Hellerich LA, Nikolaidis NP, Gschwend PM (2001) Colloid mobilization in the field using citrate to remediate chromium. Groundwater 39:895–903

    CAS  Google Scholar 

  • Kantar C, Cetin Z, Demiray H (2008) In situ stabilization of chromium (VI) in polluted soils using organic ligands: the role of galacturonic, glucuronic and alginic acids. J Hazard Mater 159:287–293

    Article  CAS  Google Scholar 

  • Karthikeyan T, Rajgopal S, Miranda LR (2005) Chromium (VI) adsorption from aqueous solution by Hevea brasiliensis sawdust activated carbon. J Hazard Mater B124:192–199

    Article  CAS  Google Scholar 

  • Katz SA, Salem H (1994) The biological and environmental chemistry of chromium. VCH, New York

    Google Scholar 

  • Khamis M, Jumean F, Abdo N (2009) Speciation and removal of chromium from aqueous solution by white, yellow and red UAE sand. J Hazard Mater 169:948–952

    Article  CAS  Google Scholar 

  • Kotas J, Stasicka Z (2000) Chromium occurrence in the environment and methods of its speciation. Environ Pollut 107:263–283

    Article  CAS  Google Scholar 

  • Kozlowski CA, Walkowiak W (2002) Removal of chromium (VI) from aqueous solutions by polymer inclusion membranes. Water Res 36:4870–4876

    Article  CAS  Google Scholar 

  • Krishanani KK, Parmila V, Meng X (2004) Detoxification of chromium (VI) in coastal water using lignocellulosic agricultural waste. Water SA 30:541–545

    Google Scholar 

  • Krishna KR, Philip L (2005) Bioremediation of Cr (VI) in contaminated soils. J Hazard Mater 121:109–117

    Article  CAS  Google Scholar 

  • Kumar KS, Ganesan K, Rao PVS (2007) Phycoremediation of heavy metals by the three-color forms of Kappaphycus alvarezii. J Hazard Mater 143:590–592

    Article  CAS  Google Scholar 

  • Lei S (2004) Chromium slag treatment and utilization. Chin J Resour Comp Util 10:5–8 (in Chinese)

    Google Scholar 

  • Li C, Chen H, Li Z (2004) Adsorptive removal of Cr (VI) by Fe-modified steam exploded wheat straw. Process Biochem 39:541–545

    Article  CAS  Google Scholar 

  • Lin CJ (2002) The chemical transformation of chromium in natural waters – a model study. Water Air Soil Poll 139:137–158

    Article  CAS  Google Scholar 

  • Loukidou MX, Zouboulis AI, Karapantsios TD, Matis KA (2004a) Equilibrium and kinetic modeling of chromium (VI) biosorption by Aeromonascaviae. Colloids Surf A Physicochem Engg Aspects 242:93–104

    Article  CAS  Google Scholar 

  • Loukidou MX, Karapantsios TD, Zouboulis AI, Matis KA (2004b) Diffusion kinetic study of chromium(VI) biosorption by Aeromonas caviae. Ind Eng Chem Res 43:1748–1755

    Article  CAS  Google Scholar 

  • Macintyre JE (1992) Dictionary of inorganic compounds, 1–3. Chapman & Hall, London

    Google Scholar 

  • Malkoc E, Nuhoglu Y (2003) The removal of chromium (VI) from synthetic wastewater by Ulothrix zonata. Fresenius Environ Bull 4:376–381

    Google Scholar 

  • Mangkoedihardjo S, Ratnawati R, Alfianti N (2008) Phytoremediation of hexavalent chromium polluted soil using Pterocarpus indicus and Jatropha curcas L. World Appl Sci J 4:338–342

    Google Scholar 

  • Manju GN, Anirudhan TS (1997) Use of coconut fiber pith-based pseudo activated carbon for chromium (VI) removal. Ind J Environ Health 4:289–298

    Google Scholar 

  • Marques MJ, Salvador A, Morales-Rubio A, de la Guardia M (2000) Chromium speciation in liquid matrices: a survey of the literature. Fresenius J Anal Chem 367:601–613

    Article  CAS  Google Scholar 

  • Mazierski J (1994) Effect of chromium (VI) on the growth rate of denitrifying bacteria. Water Res 28:1981–1985

    Article  CAS  Google Scholar 

  • Mehrotra R, Dwivedi NN (1988) Removal of chromium (VI) from water using unconventional materials. J Ind Water Works Assoc 20:323–327

    Google Scholar 

  • Merrin JS, Sheela R, Saswathi N, Prakasham RS, Ramakrishna SV (1998) Biosorption of chromium (VI) using Rhizopus arrhizus. Ind J Exp Biol 36:1052–1055

    CAS  Google Scholar 

  • Messer J, Reynolds M, Stoddard L, Zhitkovich A (2006) Causes of DNA single-strand breaks during reduction of chromate by glutathione in vitro and in cells. Free Radic Biol Med 40:1981–1992

    Article  CAS  Google Scholar 

  • Michel C, Brogan M, Aubert C, Bermuda A, Bruschi M (2001) Enzymatic reduction of chromate: comparative studies using sulfate reducing bacteria—key role of polyheme cytochromes c and hydrogenases. Appl Microbiol Biotechnol 55:95–100

    Article  CAS  Google Scholar 

  • Mohan D, Pittman CU Jr (2006) Activated carbons and low cost adsorbents for remediation of trivalent and hexavalent chromium from water. J Hazard Mater B 137:762–811

    Article  CAS  Google Scholar 

  • Mohan D, Singh KP, Singh VK (2005) Removal of hexavalent chromium from aqueous solution using low-cost activated carbons derived from agricultural waste materials and activated carbon fabric cloth. Ind Eng Chem Res 44:1027–1042

    Article  CAS  Google Scholar 

  • Mohan D, Singh KP, Singh VK (2006) Chromium (III) removal from wastewater using low cost activated carbon derived from agriculture waste material and activated carbon fabric filter. J Hazard Mater B135:280–295

    Article  CAS  Google Scholar 

  • Nies DH (1999) Microbial heavy metal resistance. Appl Microbiol Biotechnol 51:730–750

    Article  CAS  Google Scholar 

  • Nourbakhsh MN, Sag Y, Ozer D, Aksu Z, Kutsal T, Caglar A (1994) A comparative study of various biosorbents for removal of chromium (VI) ions from industrial waste waters. Process Biochem 29:1–5

    Article  CAS  Google Scholar 

  • Nourbakhsh MN, Kilicarslan S, Ilhan S, Ozdag H (2002) Biosorption of Cr (VI), Pb2+ and Cu2+ ions in industrial waste water on Bacillus sp. Chem Eng J 85:351–355

    Article  Google Scholar 

  • Nriagu JO, Pacyna JM (1988) Quantitative assessment of worldwide contamination of air, water and soils by trace metals. Nature 333:134–139

    Article  CAS  Google Scholar 

  • Oguz E (2005) Adsorption characteristics and the kinetics of the Cr (VI) on the Thuja oriantalis. Colloids Surf A Physicochem Eng Aspects 252:121–128

    Article  CAS  Google Scholar 

  • Oliveira EA, Montanher SF, Andrade AD, Nobrega JA, Rollemberg MC (2005) Equilibrium studies for the sorption of chromium and nickel from aqueous solutions using raw rice bran. Process Biochem 40:3485–3490

    Article  CAS  Google Scholar 

  • Ozdemir G, Baysal SH (2004) Chromium and aluminum biosorption on Chryseomonas luteola TEM05. Appl Microbiol Biotechnol 64:599

    Article  CAS  Google Scholar 

  • Ozdemir G, Ceyhan N, Ozturk T, Akirmak F, Cosar T (2004) Biosorption of chromium (VI), cadmium (II) and copper(II) by Pantoea sp. TEM18. Chem Eng J 102:249–253

    Article  CAS  Google Scholar 

  • Park D, Yun YS, Cho HY, Park JM (2004) Chromium biosorption by thermally treated biomass of the brown seaweed. Ecklonia sp. Ind Eng Chem Res 43:8226

    Article  CAS  Google Scholar 

  • Park D, Yun YS, Park JM (2005a) Use of dead fungal biomass for the detoxification of hexavalent chromium: screening and kinetics. Process Biochem 40:2559

    Article  CAS  Google Scholar 

  • Park D, Yun YS, Park JM (2005b) Studies on hexavalent chromium biosorption by chemically-treated biomass of Ecklonia sp. Chemosphere 60:1356–1364

    Article  CAS  Google Scholar 

  • Park D, Yun YS, Jo JH, Park JM (2005c) Mechanism of hexavalent chromium removal by dead fungal biomass of Aspergillus niger. Water Res 39:533

    Article  CAS  Google Scholar 

  • Patnaik P (2003) Handbook of inorganic chemicals. McGraw-Hill, New York

    Google Scholar 

  • Prakasham RS, Merrie JS, Sheela R, Saswathi N, Ramakrishna SV (1999) Biosorption of chromium (VI) by free and immobilized Rhizopus arrhizus. Environ Pollut 104:421–427

    Article  CAS  Google Scholar 

  • Prashanth RB, Brica RM, David BG (2009) Electrokinetic remediation of wood preservative contaminated soil containing copper, chromium and arsenic. J Hazard Mater 162:490–497

    Article  CAS  Google Scholar 

  • Priester JH, Olson SG, Webb SM, Neu MP, Hersman LE, Holden PA (2006) Enhanced exopolymer production and chromium stabilization in Pseudomonas putida unsaturated biofilms. Appl Environ Microbiol 72:1988–1996

    Article  CAS  Google Scholar 

  • Puzon GJ, Roberts AG, Kramer DM, Xun L (2005) Formation of soluble organochromium (III) complexes after chromate reduction in the presence of cellular organics. Environ Sci Technol 39:2811–2817

    Article  CAS  Google Scholar 

  • Rabbani M, Ghafourian H, Sadeghi S, Nazeri Y (2005) Biosorption of chromium (III) by new bacterial strain (NRC-BT-2). Int Congr Ser 1276:268–269

    Article  CAS  Google Scholar 

  • Rai PK (2009) Heavy metal phytoremediation from aquatic ecosystems with special reference to macrophytes. Crit Rev Environ Sci Technol 39:697–753

    Article  CAS  Google Scholar 

  • Rai PK, Tripathi BD (2007) Heavy metals removal using nuisance blue green alga Microcystis in continuous culture experiment. Environm Sci 4:53–59

    Article  Google Scholar 

  • Rai PK, Tripathi BD (2008) Heavy metals in industrial wastewater, soil and vegetables in Lohta village, India. Toxicol Environ Chem 90:247–257

    Article  CAS  Google Scholar 

  • Ramírez-Díaz MI, Díaz-Pérez C, Vargas E, Riveros-Rosas H, Campos-García J, Cervantes C (2008) Mechanisms of bacterial resistance to chromium compounds. Biometals 21:321–323

    Article  CAS  Google Scholar 

  • Rengaraj S, Joo CK, Kim Y, Yi J (2003) Kinetics of removal of chromium from water and electronic process wastewater by ion exchange resins: 1200H, 1500H and IRN97H. J Hazard Mater 102:257–275

    Article  CAS  Google Scholar 

  • Romero-González J, Peralta-Videa JR, Rodríguez E, Ramirez SL, Gardea-Torresdey JL (2005) Determination of thermodynamic parameters of Cr (VI) adsorption from aqueous solution onto Agave lechuguilla biomass. J Chem Thermodyn 37:243–247

    Article  CAS  Google Scholar 

  • Romero-González J, Peralta-Videa JR, Rodríguez E, Delgado M, Gardea-Torresdey JL (2006) Potential of Agave lechuguilla biomass for Cr (III) removal from aqueous solutions: thermodynamic studies. Bioresour Technol 97:178–182

    Article  CAS  Google Scholar 

  • Roundhill DM, Koch HF (2002) Methods and techniques for the selective extraction and recovery of oxo-anions. Chem Soc Rev 31:60–67

    Article  CAS  Google Scholar 

  • Ryan MP, Williams DE, Chater RJ, Hutton BM, McPhail DS (2002) Why stainless steel corrodes? Nature (Lond) 415:770–774

    CAS  Google Scholar 

  • Sag Y, Kutsal Y (1996) Fully competitive biosorption of Cr (VI) and Fe(III) ions from binary metal mixtures by R. arrhizus: use of the competitive Langmuir model. Process Biochem 31:573–585

    Article  CAS  Google Scholar 

  • Sahin Y, Öztürk A (2005) Biosorption of chromium (VI) ions from aqueous solution by the bacterium Bacillus thuringiensis. Process Biochem 40:1895–1901

    Article  CAS  Google Scholar 

  • Salt DE, Blaylock M, Kumar PBAN, Dushenkov V, Ensley V, Chet D, Raskin I (1995) Phytoremediation: a novel strategy for the removal of toxic elements from the environment using plants. Biotechnology 13:468–474

    Article  CAS  Google Scholar 

  • Salt DE, Smith RD, Raskin I (1998) Phytoremediation. Annu Rev Plant Physiol Plant Mol Biol 49:643–648

    Article  CAS  Google Scholar 

  • Sarin V, Pant KK (2006) Removal of chromium from industrial waste by using eucalyptus bark. Bioresour Technol 97:15–20

    Article  CAS  Google Scholar 

  • Sawadaa A, Mori K, Tanaka S et al (2004) Removal of Cr (VI) from contaminated soil by electrokinetic remediation. Waste Manag 24:483–490

    Article  CAS  Google Scholar 

  • Sawalha MF, Gardea-Torresdey JL, Parsons JG, Saupe G, Peralta-Videa JR (2005) Determination of adsorption and speciation of chromium species by saltbush (Atriplex canescens) biomass using a combination of XAS and ICP–OES. Microchem J 81:122–132

    Article  CAS  Google Scholar 

  • Say R, Yilmaz N, Denali A (2004) Removal of chromium (VI) ions from synthetic solutions by the fungus Penicillium purpurogenum. Eng Life Sci 4:276–280

    Article  CAS  Google Scholar 

  • Sekhar KC, Subramanian S, Modak JM, Natarajan KA (1998) Removal of metal ions using an industrial biomass with reference to environmental control. Int J Min Process 53:107–120

    Article  CAS  Google Scholar 

  • Seki H, Suzuki A, Maruyama H (2005) Biosorption of chromium (VI) and arsenic (V) onto methylated yeast biomass. J Colloid Interface Sci 281:261–266

    Article  CAS  Google Scholar 

  • Shanker AK, Cervantes C, Loza-Tavera H, Avudainayagam S (2005) Chromium toxicity in plants. Environ Int 31:735–753

    Article  CAS  Google Scholar 

  • Sharma DC, Sharma CP, Tripathi RD (2003) Phytotoxic lesions of chromium in maize. Chemosphere 51:63–68

    Article  CAS  Google Scholar 

  • Shen H, Wang YT (1993) Characterization of enzymatic reduction of hexavalent chromium by Escherichia coli ATCC 33456. Appl Environ Microbiol 59:3771–3777

    CAS  Google Scholar 

  • Shen H, Wang YT (1994) Biological reduction of chromium by E. coli. J Environ Eng 120:560–572

    Article  CAS  Google Scholar 

  • Sheng GP, Yu H-Q, Yue Z-B (2005) Production of extracellular polymeric substances from Rhodopseudomonas acidophila in the presence of toxic substances. Appl Microbiol Biotechnol 69:216–222

    Article  CAS  Google Scholar 

  • Shi W, Becker J, Bischoff M, Turco RF, Konopka AE (2002) Association of microbial community composition and activity with lead, chromium, and hydrocarbon contamination. Appl Environ Microbiol 68:3859–3866

    Article  CAS  Google Scholar 

  • Srinivasan K, Balasubramanian N, Ramakrishnan TV (1988) Studies on chromium removal by rice husk carbon. Ind J Environ Health 30:376–387

    CAS  Google Scholar 

  • Srivastava S, Thakur IS (2006) Evaluation of bioremediation and detoxication potentiality of Aspergillus niger for removal of hexavalent chromium in soil microcosm. Soil Biol Biochem 38:1904–1911

    Article  CAS  Google Scholar 

  • Tewari N, Vasudevan P, Guha BK (2005) Study on biosorption of Cr (VI) by Mucor hiemalis. Biochem Eng J 23:185–192

    Article  CAS  Google Scholar 

  • Tunali S, Kiran I, Akar T (2005) Chromium(VI) biosorption characteristics of Neurospora crassa fungal biomass. Min Eng 18:681–689

    Article  CAS  Google Scholar 

  • Turner MA, Rust RH (1971) Effects of chromium on growth and mineral nutrition of soybeans. Soil Sci Soc Am J 35:755–758

    Article  CAS  Google Scholar 

  • Turpeinen R, Kairesalo T, Haggblom MM (2004) Microbial community structure and activity in arsenic-, chromium- and copper contaminated soils. FEMS Microbiol Ecol 47:39–50

    Article  CAS  Google Scholar 

  • Ucun H, Bayhan YK, Kaya Y, Cakici A, Algur OF (2002) Biosorption of chromium (VI) from aqueous solution by cone biomass of Pinus sylvestris. Bioresour Technol 85:155–158

    Article  CAS  Google Scholar 

  • United States Environmental Protection Agency (1998) Toxicological review of hexavalent chromium. National Centre for Environmental Assessment, Office of Research and Development, Washington, DC

    Google Scholar 

  • United States Environmental Protection Agency (1999) Integrated Risk Information System (IRIS) on chromium (III). National Centre for Environmental Assessment, Office of Research and Development, Washington, DC

    Google Scholar 

  • Uysal M, Irfan A (2007) Removal of Cr (VI) from industrial wastewaters by adsorption. Part I: determination of optimum condition. J Hazard Mater 149:482–491

    Article  CAS  Google Scholar 

  • Vadillo JM, Garcia CC, Alcantara JF, Laserna JJ (2005) Thermal to plasma transitions and energy thresholds in laser ablated metals monitored by atomic emission/mass spectrometry coincidence analysis. Spec Acta B At Spectrosc 60:948–954

    Article  CAS  Google Scholar 

  • Venkateswarlu P, Venkata Ratnam M, Subba Rao D, Venkateswara Rao M (2007) Removal of chromium from an aqueous solution using Azadirachta indica (neem) leaf powder as an adsorbent. Int J Phys Sci 2:188–195

    Google Scholar 

  • Vinodhini V, Das N (2009) Biowaste materials as sorbents to remove chromium (VI) from aqueous environment- a comparative study. ARPN J Agric Biol Sci 4:19–23

    Google Scholar 

  • Vinodhini V, Das N (2010) Relevant approach to assess the performance of sawdust as adsorbent of Cr (VI) ions from aqueous solutions. Int J Environ Sci Technol 7:85–92

    CAS  Google Scholar 

  • World Health Organization (1998) Chromium environmental health criteria. WHO, Geneva

    Google Scholar 

  • Yadav S, Shukla OP, Rai UN (2005) Chromium pollution and bioremediation. Environ News Arch 11:1–4

    CAS  Google Scholar 

  • Yadav SK, Juwarkar AA, Kumar GP, Thawale PR, Singh SK, Chakrabarti T (2009) Bioaccumulation and phyto-translocation of arsenic, chromium and zinc by Jatropha curcas L.: impact of dairy sludge and biofertilizer. Bioresour Technol 100:4616–4622

    Article  CAS  Google Scholar 

  • Young RV (2000) World of chemistry. Gale Group, Farmington Hills

    Google Scholar 

  • Yun YS, Park D, Park JM, Volesky B (2001) Biosorption of trivalent chromium on the brown seaweed biomass. Environ Sci Technol 35:4353–4358

    Article  CAS  Google Scholar 

  • Zetic VG, Steklik-Tomas V, Grba S, Lutilsky L, Kozlek D (2001) Chromium uptake by Saccharomyces cerevisiae and isolation of glucose tolerance factor from yeast biomass. J Biosci 26:217–223

    Article  CAS  Google Scholar 

  • Zhang P, Jin C, Zhao Z, Tian G (2010) 2D crossed electric field for electrokinetic remediation of chromium contaminated soil. J Hazard Mater 177:1126–1133

    Article  CAS  Google Scholar 

  • Zhao M, Duncan JR (1998) Column sorption of Cr (VI) from electroplating effluent using formaldehyde cross-linked Saccharomyces cerevisiae. Biotechnology 20:603–606

    CAS  Google Scholar 

  • Zhou J, Xia B, Treves DS, Wu LY, Marsh TL, O’Neill RV, Palumbo AV, Tiedje JM (2002) Spatial and resource factors influencing high microbial diversity in soil. Appl Environ Microbiol 68:326–334

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nilanjana Das .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Das, N., Mathew, L. (2011). Chromium Pollution and Bioremediation: An Overview. In: Khan, M., Zaidi, A., Goel, R., Musarrat, J. (eds) Biomanagement of Metal-Contaminated Soils. Environmental Pollution, vol 20. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1914-9_13

Download citation

Publish with us

Policies and ethics