Skip to main content

Beneficial Soil Microorganisms, an Ecological Alternative for Soil Fertility Management

  • Chapter
  • First Online:
Book cover Genetics, Biofuels and Local Farming Systems

Part of the book series: Sustainable Agriculture Reviews ((SARV,volume 7))

Abstract

The new challenges that will be faced by agriculture in the twenty-first century impose the adoption of strategies able to increase food production without further increase the area of arable land and with low environmental impact. Soil microorganisms are a major component of the natural fertility of soils. They can promote plant growth, increase crop productivity and contribute significantly to the mineral nutrition of crop plants. This review examines the up-to-date knowledge about the potential and existing uses of beneficial microbes as biofertilizers and gives an outline of their modes of action. Plant growth promoting microorganisms (PGPM) influence plant nutrition and growth through various mechanisms including nitrogen fixation, breakdown of organic matter, solubilization of sparingly soluble minerals, release of chelating compounds and biologically active substances such as phytohormones, vitamins and enzymes, and increase of the root system efficiency in nutrient uptake. Non symbiotic soil- or endophytic bacteria belonging to the genera Azospirillum, Azotobacter, Acetobacter, Gluconacetobacter, Azoarcus, Bacillus, Paenibacillus, Burkholderia, Herbaspirillum, Clostridium, Klebsiella, Enterobacter, Citrobacter, and Pseudomonas are able to fix atmospheric N2 and have been found to be responsible for supply of biologically fixed nitrogen to crop plants. They may also improve plant growth through production of bioactive metabolites and indirect mechanisms, such as suppression of phytopathogens or induction of resistance to pathogens in plants. Numerous species of soil and rhizosphere microorganisms may solubilize insoluble mineral phosphates, mainly through acidification and production of organic acids, and thus mobilize the enormous reserves of phosphorus (P) that are stored in most soils and are otherwise unavailable to plants. Generally, fungi exhibit greater P-solubilizing ability than bacteria. Members of the genera Aspergillus, Penicillium, and Trichoderma are particularly efficient P-solubilizers. Among bacteria, good results have been obtained with Bacillus spp. and Pseudomonas spp., especially in combination with P-solubilizing fungi and arbuscular mycorrhizal fungi (AMF). Under field conditions, the combined use of P-solubilizing microorganisms with mineral fertilizers such as rock-phosphate has often given successful results. Also, the biological activities of microorganisms in the rhizosphere can mediate the solubility, and hence the availability at root surface of micro-nutrients, of which most soils are defective due to the fast depletion resulting from intensive farming. While other elements are also involved, Fe, Mn and Zn deficiencies have the greatest impact on the yields and quality of agricultural produce. PGPM and AMF have the capability to alter soil pH and modify the equilibrium of many chemical and biochemical reactions, such as precipitation/dissolution, adsorption/desorption, complexation/dissociation, and oxidation/reduction of metal cations and thus regulate the plant uptake. Beside enhancing plant nutrition under limited or deficient conditions, they may also reduce detrimental effects of excess of micronutrients, which may occur in acid or polluted soils. In conclusion, in order to reduce the environmental and economic costs of the massive use of synthetic fertilizers and to obtain safer food, the use of PGPM as biofertilizers appears to be a concrete perspective. All the evidence summarized in this review clearly shows that beneficial soil microorganisms, either alone or in combination with mineral or organic fertilizers, may be utilized to increase crop productivity and maintain the fertility of soils without threatening the environment. These multifunctional agents are a renewable resource with low environmental impact. Therefore, beneficial soil microbes should be further studied and exploited for the development of sustainable agriculture.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams P, De-Leij FAAM, Lynch JM (2007a) Trichoderma harzianum Rifai 1295-22 mediates growth promotion of crack willow (Salix fragilis) saplings in both clean and metal-contaminated soil. Microb Ecol 54:306–313

    Article  PubMed  CAS  Google Scholar 

  • Adams P, Lynch JM, De Leij FA (2007b) Desorption of zinc by extracellularly produced metabolites of Trichoderma harzianum, Trichoderma reesei and Coriolus versicolor. J Appl Microbiol 103:2240–2247

    Article  PubMed  CAS  Google Scholar 

  • Adesemoye AO, Torbert HA, Kloepper JW (2009) Plant growth-promoting rhizobacteria allow reduced application rates of chemical fertilizers. Microb Ecol 58:921–929

    Article  PubMed  CAS  Google Scholar 

  • Ahmad F, Ahmad I, Khan MS (2008) Screening of free-living rhizospheric bacteria for their multiple plant growth promoting activities. Microbiol Res 163:173–181

    Article  PubMed  CAS  Google Scholar 

  • Aikio S, Ruotsalainen A (2002) The modelled growth of mycorrhizal and non-mycorrhizal plants under constant versus variable soil nutrient concentration. Plant Physiol 12:257–261

    CAS  Google Scholar 

  • Alexander DB, Zuberer DA (1993) Responses by iron-efficient and inefficient oat cultivars to inoculation with siderophores-producing bacteria in a calcareous soil. Biol Fert Soils 16:118–124

    Article  CAS  Google Scholar 

  • Al-Karaki GN (2000) Growth of mycorrhizal tomato and mineral acquisition under salt stress. Mycorrhiza 10:51–54

    Article  CAS  Google Scholar 

  • Al-Karaki GN (2006) Nursery inoculation of tomato with arbuscular mycorrhizal fungi and subsequent performance under irrigation with saline water. Sci Hortic 109:1–7

    Article  Google Scholar 

  • Al-Karaki GN, Al-Raddad A (1997) Effects of arbuscular mycorrhizal fungi and drought stress on growth and nutrient uptake of two wheat genotypes differing in drought resistance. Mycorrhiza 7:83–88

    Article  CAS  Google Scholar 

  • Allen EB, Swenson W, Querejeta JI, Egerton-Waburton LM, Treseder KK (2003) Ecology of mycorrhizae: a conceptual framework for complex interactions among plants and fungi. Ann Rev Phytopathol 41:271–303

    Article  CAS  Google Scholar 

  • Altomare C, Norvell WA, Björkman T, Harman GE (1999) Solubilization of phosphates and micronutrients by the plant growth-promoting and biocontrol fungus Trichoderma harzianum Rifai 1295-22. Appl Environ Microbiol 65:2926–2933

    PubMed  CAS  Google Scholar 

  • Amijee F, Tinker PB, Stribley DP (1989) The development of endomycorrhizal root systems. VII. A detailed study of effects of soil phosphorus on colonization. New Phytol 111:435–446

    Google Scholar 

  • Anke H, Kinn J, Bergquist K-E, Sterner O (1991) Production of siderophores by strains of the genus Trichoderma: Isolation and characterization of the new lipophilic coprogen derivative, palmitoylcoprogen. Biometals 4:176–180

    CAS  Google Scholar 

  • Anthoni U, Christophersen C, Nielsen PH, Gram L, Petersen BO (1995) Pseudomonine, an isoxazolidone with siderophoric activity from Pseudomonas fluorescens AH2 isolated from Lake Victorian Nile perch. J Nat Prod 58:1786–1789

    Article  CAS  Google Scholar 

  • Arines J, Vilariño A, Sainz M (1989) Effect of different inocula of vesicular-arbuscular mycorrhizal fungi on manganese content and concentration in red clover (Trifolium pratense L.) plants. New Phytol 112:215–219

    Article  Google Scholar 

  • Arshad M, Frankenberger W (1991) Microbal production of plant hormones. Plant Soil 133:1–8

    Article  CAS  Google Scholar 

  • Artursson V, Finlay R, Jansson J (2006) Interactions between arbuscular mycorrhizal fungi and bacteria and their potential for stimulating plant growth. Environ Microbiol 8:1–10

    Article  PubMed  CAS  Google Scholar 

  • Atkins CA (1984) Efficiencies and inefficiencies in the legume/Rhizobium symbiosis – a review. Plant Soil 82:273–284

    Article  CAS  Google Scholar 

  • Auld DS (2001) Zinc coordination sphere in biochemical zinc sites. Biometals 14:271–313

    Article  PubMed  CAS  Google Scholar 

  • Azcon R, Ruiz-Lozano JM, Rodriguez R (2001) Differential contribution of arbuscular mycorrhizal fungi to the plant uptake (15N) under increasing N supply to the soil. Can J Bot 79:1175–1180

    Article  CAS  Google Scholar 

  • Babana AH, Antoun H (2005) Biological system for improving the availability of Tilemsi phosphate rock for wheat (Triticum aestivum L.) cultivated in Mali. Nut Cycl Agroecosyst 72:147–157

    Article  Google Scholar 

  • Babana AH, Antoun H (2006) Effect of Tilemsi phosphate rock-solubilizing microorganisms on phosphorus uptake and yield of field-grown wheat (Triticum aestivum L.) in Mali. Plant Soil 287:51–58

    Article  CAS  Google Scholar 

  • Baldani JI, Caruso L, Baldani VLD, Goi SR, Döbereiner J (1997) Recent advances in BNF with non-legume plants. Soil Biol Biochem 29:911–922

    Article  CAS  Google Scholar 

  • Barakrt MAS, Gabr SM (1998) Effect of different biofertilizer types and nitrogen fertilizer levels on tomato plants. Alex J Agric research 43:149–160

    Google Scholar 

  • Barea JM, Azcón R, Azcón–Aguilar C (2002) Mycorrhizosphere interactions to improve plant fitness and soil quality. Antonie Leeuwenhoek 81:343–351

    Google Scholar 

  • Barker A, Bryson G (2007) Nitrogen. In: Barker AV, Pilbeam DJ (eds) Handbook of plant nutrition. Taylor & Francis, Boca Raton, pp 21–50

    Google Scholar 

  • Barker AV, Pilbeam DJ (eds) (2007) Handbook of plant nutrition. Taylor & Francis, Boca Raton

    Google Scholar 

  • Barness E, Chen Y, Hadar Y, Marschner H, Romheld V (1991) Siderophores of Pseudomonas putida as an iron source for dicot and monocot plants. Plant Soil 130:231–241

    Article  CAS  Google Scholar 

  • Barroso CB, Nahas E (2007) Solubilization of hardly soluble iron and aluminum phosphates by the fungus Aspergillus niger in the soil. In: Vélazquez E, Rodríguez-Barrueco C (eds) First international meeting on microbial phosphate solubilization. Developments in plant and soil sciences, vol 102. Springer, Dordrecht, pp 193–198

    Google Scholar 

  • Barton LL, Vester CR, Gill PR, Jr Neilands JB (1994) The role of siderophores in symbiotic nitrogen fixation by legume root nodule bacteria. In: Manthey JA, Crowley DE, Luster DG (eds) Biochemistry of metal micronutrients in the rhizosphere. CRC Press, Boca Raton, pp 55–66

    Google Scholar 

  • Bashan Y (1999) Interactions of Azospirillum spp. in soils: a review. Biol Fertil Soils 29:246–256

    Article  CAS  Google Scholar 

  • Bashan Y, Holguin G, de Bashan LE (2004) Azospirillum-plant relationships: physiological, molecular, agricultural, and environmental advances (1997–2003). Can J Microbiol 50:521–577

    Article  PubMed  CAS  Google Scholar 

  • Becker JO, Cook RJ (1988) Role of siderophores in suppression of Pythium species and production of increased-growth response of wheat by fluorescent pseudomonads. Phytopathology 78:778–782

    Article  CAS  Google Scholar 

  • Becker JO, Messens E, Hedges RW (1985) The influence of agrobactin on the uptake of ferric iron by plants. FEMS Microbiol Ecol 31:171–175

    Article  CAS  Google Scholar 

  • Behl RK, Sharma H, Kumar V, Narula N (2003) Interactions amongst mycorrhiza, Azotobacter chroococcum and root characteristics of wheat varieties. J Agron Crop Sci 189:151–155

    Article  Google Scholar 

  • Beneduzi A, Peres D, Vargas LK, Bodanese-Zanettini M, Passaglia L (2008) Evaluation of genetic diversity and plant growth promoting activities of nitrogen-fixing bacilli isolated from rice fields in South Brazil. Appl Soil Ecol 39:311–320

    Article  Google Scholar 

  • Berg G (2009) Plant–microbe interactions promoting plant growth and health: perspectives for controlled use of microorganisms in agriculture. Appl Microbiol Biotechnol 84:11–18

    Article  PubMed  CAS  Google Scholar 

  • Berggren I, van Vuurde JWL, Mårtensson AM (2001) Factors influencing the effect of deleterious Pseudomonas putida rhizobacteria on initial infection of pea roots by Rhizobium leguminosarum bv. Viceae. Appl Soil Ecol 17:97–105

    Article  Google Scholar 

  • Bethlenfalvay GJ, Franson RL (1989) Manganese toxicity alleviated by mycorrhizae in soybean. J Plant Nutr 12:953–970

    Article  CAS  Google Scholar 

  • Bi YL, Li XL, Christie P (2003) Influence of early stages of arbuscular mycorrhiza on uptake of zinc and phosphorus by red clover from a low-phosphorus soil amended with zinc and phosphorus. Chemosphere 50:831–837

    Article  PubMed  CAS  Google Scholar 

  • Birch L, Bachofen R (1990) Complexing agents from microorganisms. Experientia 46:827–834

    Article  CAS  Google Scholar 

  • Bojinova D, Velkova R, Ivanova R (2008) Solubilization of Morocco phosphorite by Aspergillus niger. Bioresour Technol 99:7348–7353

    Article  PubMed  CAS  Google Scholar 

  • Bolan NS, Robson AD, Barrow NJ (1987) Effects of vesicular-arbuscular mycorrhiza on the availability of iron phosphates to plants. Plant Soil 99:401–410

    Article  CAS  Google Scholar 

  • Bolton H, Elliott LF, Turco RF, Kennedy AC (1990) Rhizoplane colonization of pea seedlings by Rhizobium leguminosarum and a deleterious root colonizing Pseudomonas sp. and effect on plant growth. Plant Soil 123:121–124

    Google Scholar 

  • Bromfield SM (1978) The effect of manganese-oxidizing bacteria and pH on the availability of manganous ions and manganese oxides to oats in nutrient solutions. Plant Soil 49:23–39

    Article  CAS  Google Scholar 

  • Brown PH, Graham RD, Nicholas DJD (1984) The effects of managanese and nitrate supply on the levels of phenolics and lignin in young wheat plants. Plant Soil 81:437–440

    Article  CAS  Google Scholar 

  • Brundrett M, Bougher N, Dell N, Grove T, Malajczuk N (1996) Working with mycorrhizas in forestry and agriculture. Australian Centre for International Agricultural Research, Canberra, Monograph 32, 374 p

    Google Scholar 

  • Bryla D, Koide R, 1998. Mycorrhizal response of two tomato genotypes relates to their ability to acquire and utilize phosphorus. Ann Bot 82, 849–857

    Article  Google Scholar 

  • Burdman S, Jurkevitch E, Okon Y (2000) Recent advances in the use of plant growth promoting rhizobacteria (PGPR) in agriculture. In: Subba RN, Dommergues YR (eds) Microbial interactions in agriculture and forestry, vol II. Science Publishers, Plymouth, pp 29–250

    Google Scholar 

  • Bürgmann H, Meier S, Bunge M, Widmer F, Zeyer J (2005) Effects of model root exudates on structure and activity of a soil diazotroph community. Environ Microbiol 7:1711–1724

    Article  PubMed  CAS  Google Scholar 

  • Burla M, Goverde M, Schwinn FJ, Wiemken A (1996) Influence of biocontrol organisms on root pathogenic fungi and on the plant symbiotic micro-organisms Rhizobium phaseoli and Glomus mosseae. J Plant Dis Protect 103:156–163

    Google Scholar 

  • Burnell JN (1988) The biochemistry of manganese in plants. In: Graham RD, Hannam J, Uren NC (eds) Manganese in soils and plants. Kluwer, Dordrecht, pp 125–137

    Chapter  Google Scholar 

  • Buysens S, Heungens K, Poppe J, Höfte M (1996) Involvement of pyochelin and pyoverdin in suppression of Pythium-induced damping-off of tomato by Pseudomonas aeruginosa 7NSK2. Appl Environ Microbiol 62:865–871

    PubMed  CAS  Google Scholar 

  • Cakmak I (2002) Plant nutrition research: priorities to meet human needs for food in sustainable ways. Plant Soil 247:3–24

    Article  CAS  Google Scholar 

  • Cakmak I (2008) Enrichment of cereal grains with zinc: agronomic or genetic biofortification? Plant Soil 302:1–17

    Article  CAS  Google Scholar 

  • Çakmakçi R, Dönmez F, Aydin A, Şahin F (2006) Growth promotion of plants by plant growth-promoting rhizobacteria under greenhouse and two different field soil conditions. Soil Biol Biochem 38:1482–1487

    Article  CAS  Google Scholar 

  • Çakmakçi R, Dönmez F, Erdoǧan Ü (2007a) The effect of plant growth promoting rhizobacteria on barley seedling growth, nutrient uptake, some soil properties, and bacterial counts. Turk J Agric For 31:189–199

    Google Scholar 

  • Çakmakçi R, Erat M, Erdoǧan Ü, Dönmez F (2007b) The influence of plant growth-promoting rhizobacteria on growth and enzyme activities in wheat and spinach plants. J Plant Nutr Soil Sci 170:288–295

    Article  CAS  Google Scholar 

  • Campbell LC, Nable RO (1988) Physiological functions of manganese in plants. In: Graham RD, Hannam J, Uren NC (eds) Manganese in soils and plants. Kluwer, Dordrecht, pp 139–154

    Chapter  Google Scholar 

  • Canbolat MY, Bilen S, Çakmakçi R, Şahin F, Aydin A (2006) Effect of plant growth-promoting bacteria and soil compaction on barley seedling growth, nutrient uptake, soil properties and rhizosphere microflora. Biol Fertil Soils 42:350–357

    Article  CAS  Google Scholar 

  • Cardoso IM, Kuyper TW (2006) Mycorrhizas and tropical soil fertility. Agric Ecosyst Environ 116:72–84

    Article  Google Scholar 

  • Caris C, Hördt W, Hawkins H-J, Römheld V, George E (1998) Studies of iron transport by arbuscular mycorrhizal hyphae from soil to peanut and sorghum plants. Mycorrhiza 8:35–39

    Article  CAS  Google Scholar 

  • Carson KC, Holliday S, Glenn AR, Dilworth MJ (1992) Siderophore and organic acid production in root nodule bacteria. Arch Microbiol 157:264–271

    Article  PubMed  CAS  Google Scholar 

  • Castro IM, Fietto JLR, Vieira RX, Tropia MJM, Campos LMM, Paniago EB, Brandao RL (2000) Bioleaching of zinc and nickel from silicates using Aspergillus niger cultures. Hydrometallurgy 57:39–49

    Article  CAS  Google Scholar 

  • Cattelan AJ, Hartel PG, Fuhrmann JJ (1999) Screening for plant growth promoting rhizobacteria to promote early soybean growth. Soil Sci Soc Am J 63:1670–1680

    Article  CAS  Google Scholar 

  • Cavagnaro TR (2008) The role of arbuscular mycorrhizas in improving plant zinc nutrition under low soil zinc concentrations: a review. Plant Soil 304:315–325

    Article  CAS  Google Scholar 

  • Cavagnaro TR, Jackson LE, Six J, Ferris H, Goyal S, Asami D, Scow KM (2006) Arbuscular mycorrhizas, microbial communities, nutrient availability, and soil aggregates in organic tomato production. Plant Soil 282:209–225

    Article  CAS  Google Scholar 

  • Chan YK, Barraquio WL, Knowles R (1994) N2-fixing pseudomonads and related soil bacteria. FEMS Microbiol Rev 13:95–118

    Article  CAS  Google Scholar 

  • Chen J-H, Czajka DR, Lion LW, Shuler ML, Ghiorse WC (1995) Trace metal mobilization in soil by bacterial polymers. Environ Health Perspect 103(suppl 1):53–58

    Article  PubMed  CAS  Google Scholar 

  • Chen BD, Li XL, Tao HQ, Christie P, Wong MH (2003) The role of arbuscular mycorrhiza in zinc uptake by red clover growing in a calcareous soil spiked with various quantities of zinc. Chemosphere 50:839–846

    Article  PubMed  CAS  Google Scholar 

  • Chen BD, Shen H, Li XL, Feng G, Christie P (2004) Effects of EDTA application and arbuscular mycorrhizal colonization on growth and zinc uptake by maize (Zea mays L.) in soil experimentally contaminated with zinc. Plant Soil 261:219–229

    Article  CAS  Google Scholar 

  • Chen YP, Rekha PD, Arun AB, Shen FT, Lai WA, Young CC (2006) Phosphate solubilizing bacteria from subtropical soil and their tricalcium phosphate solubilizing activity. Appl Soil Ecol 34:33–41

    Article  Google Scholar 

  • Chen Z, Ma S, Liu L (2008) Studies on phosphorus solubilizing activity of a strain of phosphobacteria isolated from chestnut type soil in China. Bioresour Technol 99:6702–6707

    Article  PubMed  CAS  Google Scholar 

  • Choudhury ATMA, Kennedy IR (2004) Prospects and potentials for systems of biological nitrogen fixation in sustainable rice production. Biol Fertil Soils 39:219–227

    Article  Google Scholar 

  • Christie P, Li XL, Chen BD (2004) Arbuscular mycorrhiza can depress translocation of zinc to shoots of host plants in soils moderately polluted with zinc. Plant Soil 261:209–217

    Article  CAS  Google Scholar 

  • Chung H, Parka M, Madhaiyana M, Seshadri S, Songb J, Chob H, Sa T (2005) Isolation and characterization of phosphate solubilizing bacteria from the rhizosphere of crop plants of Korea. Soil Biol Biochem 37:1970–1974

    Article  CAS  Google Scholar 

  • Clark RB, Zeto SK (1996) Mineral acquisition by mycorrhizal maize grown on acid and alkaline soil. Soil Biol Biochem 28:1495–1503

    Article  CAS  Google Scholar 

  • Cleveland CC, Townsend AR, Schimel DS, Fisher H, Howarth RW, Hedein LO, Perakis SS, Latty EF, Von Fischer JC, Elseroad A, Watson MF (1999) Global patterns of terrestrial biological nitrogen (N2) fixation in natural ecosystems. Glob Biogeochem Cycles 13:623–645

    Article  CAS  Google Scholar 

  • Cline GR, Powell PE, Szaniszlo PJ, Reid CPP (1982) Comparison of the abilities of hydroxamic, synthetic, and other natural organic acids to chelate iron and other ions in nutrient solution. Soil Sci Soc Am J 46:1158–1164

    Article  CAS  Google Scholar 

  • Cocking E (2003) Endophytic colonization of plant roots by nitrogen-fixing bacteria. Plant Soil 252:169–175

    Article  CAS  Google Scholar 

  • Coleman JE (1992) Zinc proteins: enzymes, storage proteins, transcription factors, and replication proteins. Annu Rev Biochem 61:897–946

    Article  PubMed  CAS  Google Scholar 

  • Colla G, Rouphael Y, Cardarelli M, Tullio M, Rivera CM, Rea E (2008) Alleviation of salt stress by arbuscular mycorrhizal in zucchini plants grown at low and high phosphorus concentration. Biol Fertil Soils 44:501–509

    Article  CAS  Google Scholar 

  • Compant S, Duffy B, Nowak J, Clément C, Barka EA (2005) Use of plant growth-promoting bacteria for biocontrol of plant diseases: principles, mechanisms of action, and future prospects. Appl Environ Microbiol 71:4951–4959

    Article  PubMed  CAS  Google Scholar 

  • Cornelis P, Matthijs S (2007) Pseudomonas siderophores and their biological significance. In: Varma A, Chincholkar S (eds) Microbial siderophores. Springer, Berlin/Heidelberg, pp 193–203

    Chapter  Google Scholar 

  • Cornelis P, Hohnadel D, Meyer J-M (1989) Evidence for different pyoverdine-mediated iron uptake systems among Pseudomonas aeruginosa strains. Infect Immun 57:3491–3497

    PubMed  CAS  Google Scholar 

  • Cornish AS, Page WJ (1998) The catecholate siderophores of Azotobacter vinelandii: their affinity for iron and role in oxygen stress management. Microbiology 144:1747–1754

    Article  CAS  Google Scholar 

  • Cornish AS, Page WJ (2000) Role of molybdate and other transition metals in the accumulation of protochelin by Azotobacter vinelandii. Appl Environ Microbiol 66:1580–1586

    Article  PubMed  CAS  Google Scholar 

  • Cress WA, Johnson GV, Barton LL (1986) The role of endomycorrhizal fungi in iron uptake by Hillaria jamesii. J Plant Nutr 9:547–556

    Article  Google Scholar 

  • Crowley DE, Reid CPP, Szaniszlo PJ (1988) Utilization of microbial siderophores in iron acquisition by oat. Plant Physiol 87:680–685

    Article  PubMed  CAS  Google Scholar 

  • Crowley DE, Wang YC, Reid CPP, Szaniszlo PJ (1991) Mechanisms of iron acquisition from siderophores by microorganisms and plants. Plant Soil 130:179–198

    Article  CAS  Google Scholar 

  • Das A, Prasad M, Shivay YS, Subha KM (2004) Productivity and sustainability of cotton (Gossypium hirsutum L.) – wheat (Triticum aestivum L.) cropping system as influenced by prilled urea, farmyard manure and Azotobacter. J Agron Crop Sci 190:298–304

    Google Scholar 

  • de Freitas JR (2000) Yield and N assimilation of winter wheat (Triticum aestivum L., var. Norstar) inoculated with rhizobacteria. Pedobiologia 44:97–104

    Article  Google Scholar 

  • de Freitas JR, Gupta VVSR, Germida JJ (1993) Influence of Pseudomonas syringae R25 and P. putida R105 on the growth and N2 fixation (acetylene reduction activity) of pea (Pisum sativum L.) and field bean (Phaseolus vulgaris L.). Biol Fertil Soils 16:215–220

    Article  Google Scholar 

  • de Freitas JR, Banerjee MR, Germida JJ (1997) Phosphate-solubilizing rhizobacteria enhance the growth and yield but not phosphorus uptake of canola (Brassica napus L.). Biol Fertil Soils 24:358–364

    Article  Google Scholar 

  • de Miranda JCC, Harris PJ, Wild A (1989) Effects of soil and plant phosphorus concentrations on vesicular-arbuscular mycorrhizae in sorghum plants. New Phytol 112:405–410

    Article  Google Scholar 

  • de Oliveira Pinheiro R, Boddey L, James EK, Sprent JI, Boddey RM (2002) Adsorption and anchoring of Azospirillum strains to roots of wheat seedlings. Plant Soil 246:151–166

    Article  Google Scholar 

  • De Schamphelaire L, Rabaey K, Boon N, Verstraete W (2007) Minireview: the potential of enhanced manganese redox cycling for sediment oxidation. Geomicrobiol J 24:547–558

    Article  CAS  Google Scholar 

  • Deubel A, Merbach W (2005) Influence of microorganisms on phosphorus bioavailability in soils. In: Buscot F, Varma A (eds) Microorganisms in soils: roles in genesis and functions. Springer, Berlin, pp 177–191

    Chapter  Google Scholar 

  • Di Simine CD, Sayer JA, Gadd GM (1998) Solubilization of zinc phosphate by a strain of Pseudomonas fluorescens isolated from forest soil. Biol Fertil Soils 28:87–94

    Article  Google Scholar 

  • Diby P, Sarma YR, Srinivasan V, Anandaraj M (2005) Pseudomonas fluorescens mediated vigour in black pepper (Piper nigrum L.) under green house cultivation. Ann Microbiol 55:171–174

    Google Scholar 

  • Dobbelaere S, Vanderleyden J, Okon Y (2003) Plant growth-promoting effects of diazotrophs in the rhizosphere. Crit Rev Plant Sci 22:107–149

    Article  CAS  Google Scholar 

  • Döbereiner J (1997) Biological nitrogen fixation in the tropics: social and economical contributions. Soil Biol Biochem 29:771–774

    Article  Google Scholar 

  • Dossier Third World Network (1990) Return to the good earth: damaging effects of modern agriculture and the case for ecological farming. Third World Network, Penang, 570 p

    Google Scholar 

  • Duffy BK, Défago G (1999) Environmental factors modulating antibiotic and siderophore biosynthesis by Pseudomonas fluorescens biocontrol strains. Appl Environ Microbiol 65:2429–2438

    PubMed  CAS  Google Scholar 

  • Duffy B, Keel C, Défago G (2004) Potential role of pathogen signaling multitrophic plant-microbe interactions involved in disease protection. Appl Environ Microbiol 70:1836–1844

    Article  PubMed  CAS  Google Scholar 

  • Duijff BJ, Bakker PAHM, Schippers B (1994) Ferric pseudobactin 358 as an iron source for carnation. J Plant Nutr 17:2069–2078

    Article  CAS  Google Scholar 

  • Duponnois R, Galiana A, Prin Y (2008) The mycorrhizosphere effect: a multitrophic interaction complex improves mycorrhizal symbiosis and plant growth. In: Siddiqui ZA, Akhtar MS, Futai K (eds) Mycorrhizae: sustainable agriculture and forestry. Springer, Dordrecht, pp 227–240

    Chapter  Google Scholar 

  • Edathil TT, Manian S, Udaiyan K (1996) Interaction of multiple VAM fungal species on root colonization, plant growth and nutrient status of tomato seedlings (Lycopersicon esculentum Mill.). Agric Ecosyst Environ 59:63–68

    Article  Google Scholar 

  • Egamberdiyeva D (2007) The effect of plant growth promoting bacteria on growth and nutrient uptake of maize in two different soils. Appl Soil Ecol 36:184–189

    Article  Google Scholar 

  • Egorenkova IV, Konnova SA, Skvortsov IM, Ignatov VV (2000) Investigation of the initial stages of interaction of the bacterium Azospirillum brasilense with wheat seedling roots: adsorption and root hair deformation. Microbiol Moscow Russ Ed 69:103–108

    CAS  Google Scholar 

  • El-Joual T, Cox DA (1998) Manganese toxicity in plants. J Plant Nutr 21:353–356

    Article  Google Scholar 

  • Elkan GH (1992) Biological nitrogen fixation systems in tropical ecosystems: an overview. In: Mulongoy K, Gueye M, Spencer DSC (eds) Biological nitrogen fixation and sustainability of tropical agriculture. Wiley, Chichester, pp 27–40

    Google Scholar 

  • El-Komy HMA (2005) Coimmobilization of A. lipoferum and B. megaterium for successful phosphorus and nitrogen nutrition of wheat plants. Food Technol Biotechnol 43:19–27

    Google Scholar 

  • El-Zemrany H, Czarnes S, Hallett PD, Alamercery S, Bally R, Monrozier LJ (2007) Early changes in root characteristics of maize (Zea mays) following seed inoculation with the PGPR Azospirillum lipoferum CRT1. Plant Soil 291:109–118

    Article  CAS  Google Scholar 

  • Evans A (1991) Influence of low molecular weight organic acids on zinc distribution within micronutrient pools and zinc uptake by wheat. J Plant Nutr 14:1307–1318

    Article  CAS  Google Scholar 

  • FAO (2002) World agriculture: towards 2015/2030. Summary report. Food and Agriculture Organization of the United Nations, Rome

    Google Scholar 

  • Fasim F, Ahmed N, Parsons R, Gadd GM (2002) Solubilization of zinc salts by bacterium isolated by the air environment of tannery. FEMS Microb Lett 213:1–6

    Article  CAS  Google Scholar 

  • Feng G, Zhang F, Li X, Tian C, Tang C, Rengel Z (2002) Improved tolerance of maize plants to salt stress by arbuscular mycorrhiza is related to higher accumulation of soluble sugars in roots. Mycorrhiza 12:185–190

    Article  PubMed  CAS  Google Scholar 

  • Ferguson MW, Maxwell JA, Vincent TS, da Silva J, Olson JC (2001) Comparison of the exoS gene and protein expression in soil and clinical isolates of Pseudomonas aeruginosa. Infect Immun 69:2198–2210

    Article  PubMed  CAS  Google Scholar 

  • Fernández V, Ebert G, Winkelmann G (2005) The use of microbial siderophores for foliar iron application studies. Plant Soil 272:245–252

    Article  CAS  Google Scholar 

  • Fernández L, Zalba P, Gómez M, Sagardoy M (2007) Phosphate-solubilization activity of bacterial strains in soil and their effect on soybean growth under greenhouse conditions. Biol Fertil Soils 43:805–809

    Article  CAS  Google Scholar 

  • Fischer G, Shah M, van Velthuizen H (2002) Climate change and agricultural vulnerability. International Institute for Applied Systems Analysis, Vienna

    Google Scholar 

  • Fox TC, Guerinot ML (1998) Molecular biology of cation transport in plants. Annu Rev Plant Physiol Plant Mol Biol 49:669–696

    Article  PubMed  CAS  Google Scholar 

  • Fuhrmann J, Wollum AG (1989) Nodulation competition among Bradyrhizobium japonicum strains as influenced by rhizosphere bacteria and iron availability. Biol Fertil Soils 7:108–112

    Article  Google Scholar 

  • Furina EK, Bonartseva GA (2007) The effect of combined and separate inoculation of alfalfa plants with Azospirillum lipoferum and Sinorhizobium meliloti on denitrification and nitrogen-fixing activities. Appl Biochem Microbiol 43:286–291

    Article  CAS  Google Scholar 

  • Galloway JN, Schlesinger WH, Levy IH, Michaels A, Schnoor JL (1995) Nitrogen fixation: anthropogenic enhancement – environmental response. Glob Biochem Cycles 9:235–252

    Article  CAS  Google Scholar 

  • Gamalero E, Martinotti MG, Trotta A, Lemanceau P, Berta G (2002) Morphogenetic modifications induced by Pseudomonas fluorescens A6RI and Glomus mosseae BEG12 in the root system of tomato differ according to plant growth conditions. New Phytol 155:293–301

    Article  Google Scholar 

  • Gamalero E, Trotta A, Massa N, Copetta A, Martinotti MG, Berta G (2004) Impact of two fluorescent pseudomonads and an arbuscular mycorrhizal fungus on tomato plant growth, root architecture and P acquisition. Mycorrhiza 14:185–192

    Article  PubMed  Google Scholar 

  • Garrett SD (1981) Introduction. In: Asher MJC, Shipton PJ (eds) Biology and control of take-all. Academic, New York, pp 1–14

    Google Scholar 

  • George E, Römheld V, Marschner H (1994) Contribution of mycorrhizal fungi to micronutrient uptake by plants. In: Manthey JA, Crowley DE, Luster DG (eds) Biochemistry of metal micronutrients in the rhizosphere. CRC Press, Boca Raton, pp 93–109

    Google Scholar 

  • Gildon A, Tinker PB (1983) Interactions of vesicular-arbuscular mycorrhizal infection and heavy metals in plants. I. The effects of heavy metals on the developmnet of vesicular-arbuscular mycorrhizas. New Phytol 95:247–261

    CAS  Google Scholar 

  • González-Chávez MC, Carrillo-González R, Wright SF, Nichols KA (2004) The role of glomalin, a protein produced by arbuscular mycorrhizal fungi, in sequestering potentially toxic elements. Environ Pollut 130:317–323

    Article  PubMed  CAS  Google Scholar 

  • González-Guerrero M, Melville L-H, Ferrol N, Azcón-Aguilar C, Peterson R-L (2008) Ultrastructural localization of heavy metals in the extraradical mycelium and spores of the arbuscular mycorrhizal fungus Glomus intraradices. Can J Microbiol 54:103–110

    Article  PubMed  CAS  Google Scholar 

  • González-López J, Rodelas B, Pozo C, Salmerón-López V, Martínez-Toledo MV, Salmerón V (2005) Liberation of amino acids by heterotrophic nitrogen fixing bacteria. Amino Acids 28:363–367

    Article  PubMed  CAS  Google Scholar 

  • Govindarajan M, Balandreau J, Kwon S, Weon H, Cunthipuram L (2008) Effects of the inoculation of Burkholderia vietnamensis and related endophytic diazotrophic bacteria on grain yield of rice. Microb Ecol 55:21–37

    Article  PubMed  Google Scholar 

  • Graham RD, Webb MJ (1991) Micronutrients and disease resistance and tolerance in plants. In: Mortvedt JJ, Cox FR, Shuman LM, Welch RM (eds) Micronutrients in agriculture, 2nd edn. Soil Science Society of America, Madison, pp 329–370

    Google Scholar 

  • Graham RD, Welch RM (1996) Breeding for staple-food crops with high micronutrient density: working papers on agricultural strategies for micronutrients, vol 3. International Food Policy Institute, Washington

    Google Scholar 

  • Grifoni A, Bazzicalupo M, Di Serio C, Farcelli S, Fani R (1995) Identification of Azospirillum strains by restriction fragment length polymorphism of 16S rDNA and the histidine operon. FEMS Microbiol Lett 127:85–91

    Article  PubMed  CAS  Google Scholar 

  • Gryndler M, Larsen J, Hršelová H, Řezáčová V, Gryndlerová H, Kubát J (2006) Organic and mineral fertilization, respectively, increase and decrease the development of external mycelium of arbuscular mycorrhizal fungi in a long-term field experiment. Mycorrhiza 16:159–166

    Article  PubMed  CAS  Google Scholar 

  • Gyaneshwar P, Naresh-Kumar G, Parekh LJ, Poole PS (2002) Role of soil microorganisms in improving P nutrition of plants. Plant Soil 245:83–93

    Article  CAS  Google Scholar 

  • Haas D, Défago G (2005) Biological control of soil-borne pathogens by fluorescent pseudomonads. Nat Rev Microbiol 3:307–319

    Article  PubMed  CAS  Google Scholar 

  • Haas H, Eisendle M, Turgeon BG (2008) Siderophores in fungal physiology and virulence. Annu Rev Phytopathol 46:149–187

    Article  PubMed  CAS  Google Scholar 

  • Hafeez FY, Yasmin S, Ariani D, Rahman M, Zafar Y, Malik KA (2006) Plant growth-promoting bacteria as biofertilizer. Agron Sustain Dev 26:143–150

    Article  CAS  Google Scholar 

  • Hamdali H, Bouizgarne B, Hafidi M, Lebrihi A, Virolle MJ, Ouhdouch Y (2008) Screening for rock phosphate solubilizing Actinomycetes from Moroccan phosphate mines. Appl Soil Ecol 38:12–19

    Article  Google Scholar 

  • Hamilton MA, Westermann DT, James DW (1993) Factors affecting zinc uptake in cropping systems. Soil Sci Soc Am J 57:1310–1315

    Article  CAS  Google Scholar 

  • Han SO, New PB (1998) Variation in nitrogen fixing ability among natural isolates of Azospirillum. Microb Ecol 36:193–201

    Article  PubMed  CAS  Google Scholar 

  • Harman GE, Björkman T (1998) Potential and existing uses of Trichoderma and Gliocladium for plant disease control and plant growth enhancement. In: Harman GE, Kubicek CP (eds) Trichoderma and gliocladium, vol 2. Taylor & Francis, London, pp 229–265

    Google Scholar 

  • Harman GE, Howell CR, Viterbo A, Chet I, Lorito M (2004) Trichoderma species: opportunistic, avirulent plant symbionts. Nat Rev Microbiol 2:43–56

    Article  PubMed  CAS  Google Scholar 

  • Haselwandter K, Dobernigg B, Beck W, Jung G, Cansier A, Winkelmann G (1992) Isolation and identification of hydroxamate siderophores of ericoid mycorrhizal fungi. Biometals 5:51–56

    Article  CAS  Google Scholar 

  • He ZL, Yang XE, Stoffella PJ (2005) Trace elements in agroecosystems and impacts on the environment. J Trace Elem Med Biol 19:125–140

    Article  PubMed  CAS  Google Scholar 

  • Heggo A, Angle JS, Chaney RL (1990) Effects of vesicular-arbuscular mycorrhizal fungi on heavy metal uptake by soybeans. Soil Biol Biochem 22:865–869

    Article  CAS  Google Scholar 

  • Hildebrandt U, Kaldorf M, Bothe H (1999) The zinc violet and its colonization by arbuscular mycorrhizal fungi. J Plant Physiol 154:709–711

    Article  CAS  Google Scholar 

  • Hildebrandt U, Regvar M, Bothe H (2007) Arbuscular mycorrhiza and heavy metal tolerance. Phytochemistry 68:139–146

    Article  PubMed  CAS  Google Scholar 

  • Hodge A (2001) Arbuscular mycorrhizal fungi influence decomposition of, but not plant nutrient capture from, glycine patches in soil. New Phytol 151:725–734

    Article  CAS  Google Scholar 

  • Hodge A (2003) Plant nitrogen capture from organic matter as affected by spatial dispersion, interspecific competition and mycorrhizal colonization. New Phytol 157:303–314

    Article  Google Scholar 

  • Hodge A, Campbell CD, Fitter AH (2001) An arbuscular mycorrhizal fungus accelerates decomposition and acquires nitrogen directly from organic material. Nature 413:297–299

    Article  PubMed  CAS  Google Scholar 

  • Hoefsloot G, Termorshuizen AJ, Watt DA, Cramer MD (2005) Biological nitrogen fixation is not a major contributor to the nitrogen demand of a commercially grown South African sugarcane cultivar. Plant Soil 277:85–96

    Article  CAS  Google Scholar 

  • Höfte M, Seong KY, Jurkevitch E, Verstraete W (1991) Pyoverdin production by the plant growth beneficial Pseudomonas strain 7NSK2: ecological significance in soil. Plant Soil 130:249–257

    Article  Google Scholar 

  • Höfte M, Vande WM, Verstraete W (1994) Role of siderophores in plant growth promotion and plant protection by fluorescent pseudomonads. In: Manthey JA, Crowley DE, Luster DG (eds) Biochemistry of metal micronutrients in the rhizosphere. CRC Press, Boca Raton, pp 81–92

    Google Scholar 

  • Hördt W, Römheld V, Winkelmann G (2000) Fusarinines and dimerum acid, mono- and dihydrate siderophores from Penicillium chrysogenum, improve iron utilisation by strategy I and strategy II plants. Biometals 13:37–46

    Article  PubMed  Google Scholar 

  • Hotz C, Brown KH (2004) Assessment of the risk of zinc deficiency in populations and options for its control. Food Nutr Bull 25:94–204

    Google Scholar 

  • Howard JB, Rees DC (1996) Structural basis of biological nitrogen fixation. Chem Rev 96: 2965–2982

    Article  PubMed  CAS  Google Scholar 

  • Huber DM, McCay-Buis TS (1993) A multiple component analysis of the take-all disease of cereals. Plant Dis 77:437–447

    Article  Google Scholar 

  • Huber DM, Wilhelm NS (1988) The role of manganese in resistance to plant diseases. In: Graham RD, Hannam RJ, Uren NC (eds) Manganese in soils and plants. Kluwer, Dordrecht, pp 155–173

    Chapter  Google Scholar 

  • Huber DM, El-Nasshar H, Moore LW, Mathre DE, Wagner JE (1989) Interaction between a peat carrier and bacterial seed treatments evaluated for biological control of the take-all diseases of wheat (Triticum aestivum L.). Biol Fertil Soils 8:166–171

    Article  Google Scholar 

  • Hughes NP, Williams RJP (1988) An introduction to manganese biological chemistry. In: Graham RD, Hannam RJ, Uren NC (eds) Manganese in soils and plants. Kluwer, Dordrecht, pp 7–19

    Chapter  Google Scholar 

  • IEA (International Energy Agency) (2004) Biofuels for transport: an international perspective. OECD, Paris

    Google Scholar 

  • Igual JM, Rodríguez-Barrueco C (2007) Fertilizers, food and environment. In: Vélazquez E, Rodríguez-Barrueco C (eds) First international meeting on microbial phosphate solubilization, vol 102, Developments in Plant and Soil Sciences. Springer, Dordrecht, pp 199–202

    Chapter  Google Scholar 

  • Illmer P, Schinner F (1995) Solubilization of inorganic calcium phosphates-solubilization mechanisms. Soil Biol Biochem 27:257–263

    Article  CAS  Google Scholar 

  • Illmer P, Barbato A, Schinner F (1995) Solubilization of hardly-soluble AlPO4 with P-solubilizig microorganisms. Soil Biol Biochem 27:265–270

    Article  CAS  Google Scholar 

  • Ingham E (1998) Fungi, glue and risky soils. BioCycle 39:86–87

    Google Scholar 

  • Jalal MA, Love SK, van der Helm D (1986) Siderophore mediated iron(III) uptake in Gliocladium virens. 1. Properties of cis-fusarinine, trans-fusarinine, dimerum acid, and their ferric complexes. J Inorg Biochem 28:417–430

    Article  PubMed  CAS  Google Scholar 

  • Jalal MA, Love SK, van der Helm D (1987) Siderophore mediated iron(III) uptake in Gliocladium virens. 2. Role of ferric mono- and dihydroxamates as iron transport agents. J Inorg Biochem 29:259–267

    Article  PubMed  CAS  Google Scholar 

  • Jansa J, Mozafar A, Frossard E (2003) Long-distance transport of P and Zn through the hyphae of an arbuscular mycorrhizal fungus in symbiosis with maize. Agronomie 23:481–488

    Article  CAS  Google Scholar 

  • Javaid A (2009) Arbuscular mycorrhizal mediated nutrition in plants. J Plant Nutr 32:1595–1618

    Article  CAS  Google Scholar 

  • Jenkinson DA (2001) The impact of humans on the nitrogen cycle, with focus on temperate arable agriculture. Plant Soil 228:3–15

    Article  CAS  Google Scholar 

  • Johnson GV, Lopez A, La Valle FN (2002) Reduction and transport of Fe from siderophores: reduction of siderophores and chelates and uptake and transport of iron by cucumber seedlings. Plant Soil 241:27–33

    Article  CAS  Google Scholar 

  • Johnston AWB (2004) Mechanisms and regulation of iron uptake in the Rhizobia. In: Crosa JH, Mey AR, Payne SM (eds) Iron transport in bacteria. ASM Press, Washington, DC, pp 469–488

    Google Scholar 

  • Joner EJ (2000) The effect of long-term fertilization with organic or inorganic fertilizer on mycorrhiza mediated phosphorus uptake in subterranean clover. Biol Fertil Soils 32:435–440

    Article  Google Scholar 

  • Joner EJ, Briones R, Leyval C (2000) Metal-binding capacity of arbuscular mycorrhizal mycelium. Plant Soil 226:227–234

    Article  CAS  Google Scholar 

  • Jones DL, Darrah PR (1994) Role of root derived organic acids in the mobilization of nutrients from the rhizosphere. Plant Soil 166:247–257

    Article  CAS  Google Scholar 

  • Jones KM, Kobayashi H, Davies BW, Taga ME, Walker GC (2007) How rhizobial symbionts invade plants: the Sinorhizobium-Medicago model. Nat Rev Microbiol 5:619–633

    Article  PubMed  CAS  Google Scholar 

  • Jurkevitch E, Hadar Y, Chen Y, Libman J, Shanzer A (1992) Iron uptake and molecular recognition in Pseudomonas putida: receptor mapping with ferrichrome and its biomimetic analogs. J Bacteriol 174:78–83

    PubMed  CAS  Google Scholar 

  • Kahinidi JHP, Woomer P, George T, de Souza MFM, Karanja NK, Giller KE (1997) Agricultural intensification, soil biodiversity and ecosystem function in the tropics: the role of nitrogen-fixing bacteria. Appl Soil Ecol 6:55–76

    Article  Google Scholar 

  • Kaldorf M, Kuhn AJ, Schröder WH, Hildebrandt U, Bothe H (1999) Selective element deposits in maize colonized by a heavy metal tolerance conferring arbuscular mycorrhizal fungus. J Plant Physiol 154:718–728

    Article  CAS  Google Scholar 

  • Kaya C, Higgs D, Kirnak H, Tas I (2003) Mycorrhizal colonization improves fruit yield and water use efficiency in water melon (Citrullus lanatus Thunb) grown under well-watered and water-stressed conditions. Plant Soil 253:287–292

    Article  CAS  Google Scholar 

  • Keel C, Schnider U, Maurhofer M, Voisard C, Laville J, Burger U, Wirthner P, Haas D, Défago G (1992) Suppression of root diseases by Pseudomonas fluorescens CHAO10: importance of bacterial secondary metabolite 2,4-diacetylphloroglucinol. Mol Plant Microbe Interact 5:4–13

    Article  CAS  Google Scholar 

  • Kennedy AC (1999) Microbial diversity in agroecosystem quality. In: Collins WW, Qualset CO (eds) Biodiversity in agroecosystems. CRC Press, Boca Raton, pp 1–17

    Google Scholar 

  • Kennedy I, Choudhury A, Kecskés M (2004) Non-symbiotic bacterial diazotrophs in crop-farming systems: can their potential for plant growth promotion be better exploited? Soil Biol Biochem 36:1229–1244

    Article  CAS  Google Scholar 

  • Khan MS, Zaidi A, Wani PA (2007) Role of phosphate-solubilizing microorganisms in sustainable agriculture – A review. Agron Sustain Dev 27:29–43

    Article  Google Scholar 

  • Khush GS (1999) Green revolution: preparing for the 21st century. Genome 42:646–655

    Article  PubMed  CAS  Google Scholar 

  • Kim J, Rees DC (1992) Crystallographic structure and functional implications of the nitrogenase molybdenum-iron protein from Azotobacter vinelandii. Nature 360:553–560

    Article  CAS  Google Scholar 

  • Kim KY, Jordan D, McDonald GA (1998) Enterobacter agglomerans, phosphate solubilizing bacteria, and microbial activity in soil: effect of carbon sources. Soil Biol Biochem 30: 995–1003

    Article  CAS  Google Scholar 

  • Kloepper JW (1993) Plant growth-promoting rhizobacteria as biological control agents. In: Jr Metting FB (ed) Soil microbial ecology: applications in agricultural and environmental management. Marcel Dekker, New York, pp 255–274

    Google Scholar 

  • Kloepper JW, Schroth MN (1981a) Plant growth-promoting rhizobacteria and plant growth under gnotobiotic conditions. Phytopathology 71:642–644

    Article  Google Scholar 

  • Kloepper JW, Schroth MN (1981b) Relationship of in vitro antibiosis of plant growth-promoting rhizobacteria to plant growth and the displacement of root microflora. Phytopathology 71:1020–1024

    Article  Google Scholar 

  • Kloepper JW, Leong J, Teintze M, Schroth MN (1980) Enhanced plant growth by siderophores produced by plant growth-promoting rhizobacteria. Nature 286:883–884

    Article  Google Scholar 

  • Koide RT (1991) Nutrient supply, nutrient demand and plant response to mycorrhizae infection. New Phytol 117:365–386

    Article  CAS  Google Scholar 

  • Kothari SK, Marschner H, Römheld V (1990) Direct and indirect effects of VA mycorrhizal fungi and rhizosphere microorganisms on acquisition of mineral nutrients by maize (Zea mays L.) in a calcareous soil. New Phytol 116:637–646

    Article  CAS  Google Scholar 

  • Kothari SK, Marschner H, Römheld V (1991a) Effect of a vesicular-arbuscular mycorrhizal fungus and rhizosphere micro-organisms on manganese reduction in the rhizosphere and manganese concentrations in maize (Zea mays L.). New Phytol 117:649–655

    Article  CAS  Google Scholar 

  • Kothari SK, Marschner H, Römheld V (1991b) Contribution of the VA mycorrhizal hyphae in acquisition of phosphorus and zinc by maize grown in a calcareous soil. Plant Soil 131:177–185

    Article  CAS  Google Scholar 

  • Küçük Ç, Kivanç M, Kinaci E, Kinaci G (2008) Determination of the growth and solubilisation capabilities of Trichoderma harzianum T1. Biologia 63:167–170

    Article  CAS  Google Scholar 

  • Kuiper I, Kravchenko LV, Bloemberg GV, Lugtenberg BJJ (2002) Pseudomonas putida strain PCL1444, selected for efficient root colonization and naphtalene degradation, effectively utilizes root exudate components. Mol Plant Microbe Interact 15:734–741

    Article  PubMed  CAS  Google Scholar 

  • Kumar V, Singh K (2001) Enriching vermicompost by nitrogen fixing and phosphate solubilizing bacteria. Bioresour Technol 76:173–175

    Article  PubMed  CAS  Google Scholar 

  • Kumar V, Behl KR, Narula N (2001) Establishment of phosphate-solubilizing strains of Azotobacter chroococcum in the rhizosphere and their effect on wheat cultivars under green house conditions. Microbiol Res 156:87–93

    Article  PubMed  CAS  Google Scholar 

  • Kurita K, Sannan T, Iwakura Y (1979) Studies on chitin. VI. Binding of metal cations. J Appl Polym Sci 23:511–515

    Article  CAS  Google Scholar 

  • Lambert DH, Baker DE, Cole HJR (1979) The role of mycorrhizae in the interactions of phosphorus with zinc, copper, and other elements. Soil Sci Soc Am J 43:976–980

    Article  CAS  Google Scholar 

  • Leach LH, Morris JC, Lewis TA (2007) The role of the siderophore pyridine-2,6-bis (thiocarboxylic acid) (PDTC) in zinc utilization by Pseudomonas putida DSM 3601. Biometals 20:717–726

    Article  PubMed  CAS  Google Scholar 

  • Lee YJ, George E (2005) Contribution of mycorrhizal hyphae to the uptake of metal cations by cucumber plants at two levels of phosphorus supply. Plant Soil 278:361–370

    Article  CAS  Google Scholar 

  • Lemanceau P, Alabouvette C, Meyer JM (1985) Production of fusarinine and iron assimilation by pathogenic and non-pathogenic Fusarium. In: Swinburne TR (ed) Iron, siderophores and plant diseases. Plenum Press, London, pp 251–259

    Google Scholar 

  • Leong J (1986) Siderophores: their biochemistry and possible role in the biocontrol of plant pathogens. Annu Rev Phytopathol 24:187–209

    Article  CAS  Google Scholar 

  • Lian B, Wang B, Pan M, Liu C, Teng HH (2008) Microbial release of potassium from K-bearing minerals by thermophilic fungus Aspergillus fumigatus. Geochim Cosmochim Acta 72:87–98

    Article  CAS  Google Scholar 

  • Lin Q, Zhao X, Zhao Z, Li B (2002) Rock phosphate solubilization mechanisms of one fungus and one bacterium. Agric Sci China 1:1023–1028

    Google Scholar 

  • Lin T, Huang H, Shen F, Young C (2006) The protons of gluconic acid are the major factor responsible for the dissolution of tricalcium phosphate by Burkholderia cepacia CC-A174. Bioresour Technol 97:957–960

    Article  PubMed  CAS  Google Scholar 

  • Linderman RG (1988) Mycorrhizal interactions with the rhizosphere microflora: the mycorrhizosphere effect. Phytopathology 78:366–371

    Google Scholar 

  • Liu A, Hamel C, Hamilton RI, Ma BL, Smith DL (2000) Acquisition of Cu, Zn, Mn and Fe by mycorrhizal maize (Zea mays L.) growth in soil at different P and micronutrient levels. Mycorrhiza 9:331–336

    Article  CAS  Google Scholar 

  • Liu A, Hamel C, Elmi A, Costa C, Ma B, Smith DL (2002) Concentrations of K, Ca and Mg in maize colonized by arbuscular mycorrhizal fungi under field conditions. Can J Soil Sci 82:271–278

    Article  CAS  Google Scholar 

  • Loneragan JF, Grove TS, Robson AD, Snowball K (1979) Phosphorus toxicity as a factor in zinc-phosphorus interactions in plants. Soil Sci Soc Am J 43:966–972

    Article  CAS  Google Scholar 

  • Lucy M, Reed E, Glick BR (2004) Applications of free living plant growth-promoting rhizobacteria. Antonie Leeuwenhoek 86:1–25

    Article  PubMed  CAS  Google Scholar 

  • Lynch JM, Whipps JM (1990) Substrate flow in the Rhizosphere. Plant Soil 129:1–10

    Article  CAS  Google Scholar 

  • Mahendran PP, Chandramani P (1998) NPK uptake, yield and starch content of potato cv. Kufri Jyotis influenced by certain bio-fertilizers. J Indian Potato Assoc 25:50–52

    Google Scholar 

  • Mahendran PP, Kumar N (1998) Effect of biofertilizers on tuber yield and certain quality parameters of potato CV. Kufri Jyoti. S Indian Hortic 46:97–98

    Google Scholar 

  • Mahendran PP, Kumar N, Sraswathy S (1996) Studies of the effect of bio-fertilizers on potato (Solnum tuberosum L.). S Indian Hortic 44:79–82

    Google Scholar 

  • Malik KA, Bilal R, Mehnaz S, Rasul G, Mirza MS, Ali S (1997) Association of nitrogen-fixing, plant-growth-promoting rhizobacteria (PGPR) with kallar grass and rice. Plant Soil 194:37–44

    Article  CAS  Google Scholar 

  • Marschner H (1995) Mineral nutrition of higher plants, 2nd edn. Academic, London

    Google Scholar 

  • Marschner P, Ascher JS, Graham RD (1991) Effect of manganese-reducing rhizosphere bacteria on the growth of Gaeumannomyces graminis var. tritici and on manganese uptake by wheat (Triticum aestivum L.). Biol Fertil Soils 12:33–38

    Article  CAS  Google Scholar 

  • Martin C, Stutz J (2004) Interactive effects of temperature and arbuscular mycorrhizal fungi on growth, P uptake and root respiration of Capsicum annuum L. Mycorrhiza 14:241–244

    Article  PubMed  Google Scholar 

  • Mayak S, Tirosh T, Glick BR (2004) Plant growth-promoting bacteria confer resistance in tomato plants to salt stress. Plant Physiol Biochem 42:565–573

    Article  PubMed  CAS  Google Scholar 

  • Medina A, Probanza A, Gutierrez Mañero FJ, Azcón R (2003) Interactions of arbuscular-mycorrhizal fungi and Bacillus strains and their effects on plant growth, microbial rhizosphere activity (thymidine and leucine incorporation) and fungal biomass (ergosterol and chitin). Appl Soil Ecol 22:15–28

    Article  Google Scholar 

  • Megha YJ, Alagawadi AR, Krishnaraj PU (2007) Multiple beneficial functions of fluorescent pseudomonads of Western Ghats of Uttara Kannada District. Karnataka. J Agric Sci 20:305–309

    Google Scholar 

  • Mehravaran H, Mozafar A, Frossard E (2000) Uptake and partitioning of P-32 and Zn-65 by white clover as affected by eleven isolates of mycorrhizal fungi. J Plant Nutr 23:1385–1395

    Article  CAS  Google Scholar 

  • Mena-Violante HG, Ocampo-Jimenez O, Dendooven L, Martinez-Soto G, Gonzalez-Castaneda J, Davies FT, Olalde-Portugal V (2006) Arbuscular mycorrhizal fungi enhance fruit growth and quality of chile ancho (Capsicum annuum L. cv San Luis) plants exposed to drought. Mycorrhiza 16:261–267

    Article  PubMed  Google Scholar 

  • Menge JA, Jarrell WM, Labanauskas CK, Ojala JC, Huszar C, Johnson ELV, Sibert D (1982) Predicting mycorrhizal dependency of troyer citrange on Glomus fasciculatus in California citrus soils and nursery mixes. Soil Sci Soc Am J 46:762–768

    Article  Google Scholar 

  • Mengel K (2008) Nutrient potentials. In: Chesworth W (ed) Encyclopedia of soil science. Springer, Dordrecht, pp 494–500

    Chapter  Google Scholar 

  • Mercado-Blanco J, Bakker PAHM (2007) Interactions between plants and beneficial Pseudomonas spp.: exploiting bacterial traits for crop protection. Antonie Leeuwenhoek 92:367–389

    Article  PubMed  Google Scholar 

  • Mercado-Blanco J, van der Drift KMGM, Olsson PE, Thomas-Oates JE, van Loon LC, Bakker PAHM (2001) Analysis of the pmsCEAB gene cluster involved in biosynthesis of salicylic acid and the siderophore pseudomonine in the biocontrol strain Pseudomonas fluorescens WCS374. J Bacteriol 183:1909–1920

    Article  PubMed  CAS  Google Scholar 

  • Meunchang S, Panichsakpatana S, Weaver RW (2006) Tomato growth in soil amended with sugar mill by-products compost. Plant Soil 280:171–176

    Article  CAS  Google Scholar 

  • Miller GW, Hasegawa S, Shigematsu A, Welkie GW (1994) Mechanisms of iron uptake from rhodotorulate-iron by tomato. In: Manthey JA, Crowley DE, Luster DG (eds) Biochemistry of metal micronutrients in the rhizosphere. CRC Press, Boca Raton, pp 267–284

    Google Scholar 

  • Mrkovački N, Milic Y (2001) Use of Azotobacter chroococcum as potentially useful in agricultural application. Ann Microbiol 51:145–158

    Google Scholar 

  • Mrkovački N, Mezei S, Verešbaranji I, Popović M, Sarić Kovačev L (1997) Associations of sugar beet and nitrogen-fixing bacteria in vitro. Biol Plant 39:419–425

    Article  Google Scholar 

  • Muthukumarasamy R, Govindarajan M, Vadivelu M, Revathi G (2006) N-fertilizer saving by the inoculation of Gluconacetobacter diazotrophicus and Herbaspirillum sp. in micropropagated sugarcane plants. Microbiol Res 161:238–245

    Article  PubMed  CAS  Google Scholar 

  • Nagesh M, Parvatha-Reddy P (2004) Biochemical changes in Glomus fasciculatum colonized roots of Lycopersicon esculentum in presence of Meloidogyne incognita. Indian J Exp Biol 42:721–727

    PubMed  CAS  Google Scholar 

  • Narula N, Kumar V, Singh B, Bhatia R, Lakshminarayana K (2005) Impact of biofertilizers on grain yield in spring wheat under varying fertility conditions and wheat-cotton rotation. Arch Agr Soil Sci 51:79–89

    Article  Google Scholar 

  • Nautiyal CS, Bhadauria S, Kumar P, Lal H, Mondal R, Verma D (2000) Stress induced phosphate solubilization in bacteria isolated from alkaline soils. FEMS Microbiol Lett 182:291–296

    Article  PubMed  CAS  Google Scholar 

  • Neilands JB (1995) Siderophores: structure and function of microbial iron transport compounds. J Biol Chem 270:26723–26726

    PubMed  CAS  Google Scholar 

  • Ness R, Vlek P (2000) Mechanism of calcium and phosphate release from hydroxy- apatite by mycorrhizal hyphae. Soil Sci Soc Am J 64:949–955

    Article  CAS  Google Scholar 

  • Nogueira MA, Magalhães GC, Cardoso EJBN (2004) Manganese toxicity in mycorrhizal and phosphorus-fertilized soybean plants. J Plant Nutr 27:141–156

    Article  CAS  Google Scholar 

  • Nogueira MA, Nehls U, Hampp R, Poralla K, Cardoso EJBN (2007) Mycorrhiza and soil bacteria influence extractable iron and manganese in soil and uptake by soybean. Plant Soil 298:273–284

    Article  CAS  Google Scholar 

  • Nuruzzaman M, Ashrafuzzaman M, Zahurul IM, Rafiqul IM (2003) Field efficiency of biofertilizers on the growth of okra (Abelmoschus esculentus [(L.)Moench]). J Plant Nutr Soil Sci 166:764–770

    Article  CAS  Google Scholar 

  • OECD-FAO (2007) Agricultural outlook 2007–2016. OECD Publishing, Paris

    Google Scholar 

  • Öǧüt M, Er F (2006) Micronutrient composition of field-grown dry bean and wheat inoculated with Azospirillum and Trichoderma. J Plant Nutr Soil Sci 169:699–703

    Article  CAS  Google Scholar 

  • Öǧüt M, Akdaǧ C, Düzdemir O, Ali Sakin M (2005) Single and double inoculation with Azospirillum/Trichoderma: the effects on dry bean and wheat. Biol Fertil Soils 41:262–272

    Article  Google Scholar 

  • Okon Y, Itzigsohn R (1995) The development of Azospirillum as a commercial inoculant for improving crop yields. Biotechnol Adv 13:415–424

    Article  PubMed  CAS  Google Scholar 

  • Oliveira ALM, Urquiaga S, Döbereiner J, Baldani JI (2002) The effect of inoculating endophytic N2-fixing bacteria on micropropagated sugarcane plants. Plant Soil 242:205–215

    Article  CAS  Google Scholar 

  • Olsson P, van Aarle I, Allaway W, Ashford A, Rouhier H (2002) Phosphorus effects on metabolic processes in monoxenic arbuscular mycorrhiza cultures. Plant Physiol 130:1162–1171

    Article  PubMed  CAS  Google Scholar 

  • Orhan E, Esitken A, Ercisli S, Turan M, Sahin F (2006) Effects of plant growth promoting rhizobacteria (PGPR) on yield, growth and nutrient contents in organically growing raspberry. Sci Hortic 111:38–43

    Article  CAS  Google Scholar 

  • Ortas I, Ortakei D, Kaya Z, Çinar A, Önelge N (2002) Mycorrhizal dependency of sour orange in relation to phosphorus and zinc nutrition. J Plant Nutr 26:1263–1279

    Article  Google Scholar 

  • Ozturk A, Caglar O, Sahin F (2003) Yield response of wheat and barley to inoculation of plant growth promoting bacteria at various levels of nitrogen fertilization. J Plant Nutr Soil Sci 166:262–266

    Article  CAS  Google Scholar 

  • Pacovsky RS (1986) Micronutrient uptake and distribution in mycorrhizal or phosphorus-fertilized soybeans. Plant Soil 95:379–388

    Article  CAS  Google Scholar 

  • Pacovsky RS (1988) Influence of inoculation with Azospirillum brasilense and Glomus fasciculatum on sorghum nutrition. Plant Soil 110:283–287

    Article  CAS  Google Scholar 

  • Pacovsky RS (1990) Development and growth effects in the Sorghum-Azospirillum association. J Appl Bacteriol 68:555–563

    Article  Google Scholar 

  • Pacovsky RS, Fuller G (1988) Mineral and lipid composition of Glycine-Glomus-Bradyrhizobium symbioses. Physiol Plant 72:733–746

    Article  CAS  Google Scholar 

  • Pandey A, Trivedi P, Kumar B, Palni LMS (2006) Characterization of a phosphate solubilizing and antagonistic strain of Pseudomonas putida (b0) isolated from a sub-alpine location in the Indian Central Himalaya. Curr Microbiol 53:102–107

    Article  PubMed  CAS  Google Scholar 

  • Pawlowska TE, Charvat I (2004) Heavy-metal stress developmental patterns of arbuscular mycorrhizal fungi. Appl Environ Microbiol 70:6643–6649

    Article  PubMed  CAS  Google Scholar 

  • Pedraza R (2008) Recent advances in nitrogen-fixing acetic acid bacteria. Int J Food Microbiol 125:25–35

    Article  PubMed  CAS  Google Scholar 

  • Pepper D (2008) The toxic consequences of the Green Revolution. US News & World Report, July 7 (http://www.usnews.com/articles/news/world/2008/07/07/the-toxic-consequences-of-the-green-revolution.html)

  • Peters S, Habte M (2001) Optimizing solution P concentration in a peat-based medium for producing mycorrhizal seedlings in containers. Arid Land Res Manage 15:359–371

    Article  CAS  Google Scholar 

  • Piotrowski JS, Denich T, Klironomos JN, Graham JM, Rillig MC (2004) The effects of arbuscular mycorrhizas on soil aggregation depend on the interaction between plant and fungal species. New Phytol 164:365–373

    Article  Google Scholar 

  • Plante AF (2007) Soil biochemical cycling of inorganic nutrients and metals. In: Paul EA (ed) Soil microbiology, ecology, and biochemistry, 3rd edn. Academic, Oxford, pp 389–432

    Chapter  Google Scholar 

  • Porcel R, Ruiz-Lozano JM (2004) Arbuscular mycorrhizal influence on leaf water potential, solute accumulation, and oxidative stress in soybean plants subjected to drought stress. J Exp Bot 55:1743–1750

    Article  PubMed  CAS  Google Scholar 

  • Posta K, Marschner H, Römheld V (1994) Manganese reduction in the rhizosphere of mycorrhizal and nonmycorrhizal maize. Mycorrhiza 5:119–124

    Article  CAS  Google Scholar 

  • Poulton JL, Bryla D, Koide RT, Stephenson AG (2002) Mycorrhizal infection and high soil phosphorus improve vegetative growth and the female and male functions in tomato. New Phytol 154:255–264

    Article  CAS  Google Scholar 

  • Powlson D, Hirsch P, Brookes P (2001) The role of soil microorganisms in soil organic matter conservation in the tropics. Nut Cycl Agroecosyst 61:41–51

    Article  Google Scholar 

  • Preston GM (2004) Plant perceptions of plant growth-promoting Pseudomonas. Phil Trans R Soc Lond B 359:907–918

    Article  CAS  Google Scholar 

  • Raju PS, Clark RB, Ellis JR, Maranville JW (1990) Effects of species of VA-mycorrhizal fungi on growth and mineral uptake of sorghum at different temperatures. Plant Soil 121:165–170

    Article  CAS  Google Scholar 

  • Ratti N, Kumar S, Verma HN, Gautam SP (2001) Improvement in bioavailability of tricalcium phosphate to Cymbopogon martinii var. motia by rhizobacteria, AMF and Azospirillum inoculation. Microbiol Res 156:145–149

    Article  PubMed  CAS  Google Scholar 

  • Renshaw JC, Robson GD, Trinci APJ, Wiebe MG, Livens FR, Collison D, Taylor RJ (2002) Fungal siderophores: structures, functions and applications. Mycol Res 106:1123–1142

    Article  CAS  Google Scholar 

  • Reyes I, Bernier L, Simard RR, Antoun H (1999a) Effect of nitrogen source on the solubilization of different inorganic phosphates by an isolate of Penicillium rugulosum and two UV-induced mutants. FEMS Microbiol Ecol 28:281–290

    Article  CAS  Google Scholar 

  • Reyes I, Bernier L, Simard RR, Tanguay P, Antoun H (1999b) Characteristics of phosphate solubilization by an isolate of a tropical Penicillium rugulosum and two UV-induced mutants. FEMS Microbiol Ecol 28:291–295

    Article  CAS  Google Scholar 

  • Reyes I, Baziramakenda R, Bernier L, Antoun H (2001) Solubilization of phosphate rocks and minerals by wild-type strain and two UV-induced mutants of Penicillium rugulosum. Soil Biol Biochem 33:1741–1747

    Article  CAS  Google Scholar 

  • Reyes I, Valery A, Valduz Z (2006) Phosphate-solubilizing microorganisms isolated from rhizospheric and bulk soils of colonizer plants at an abandoned rock phosphate mine. Plant Soil 287:69–75

    Article  CAS  Google Scholar 

  • Ribaudo CM, Rondanini DP, Curá JA, Fraschina AA (2001) Response of Zea mays to the inoculation with Azospirillum on nitrogen metabolism under greenhouse conditions. Biol Plant 44:631–634

    Article  Google Scholar 

  • Rillig MC, Mummey DL (2006) Mycorrhizas and soil structure. New Phytol 171:41–53

    Article  PubMed  CAS  Google Scholar 

  • Rodrigues EP, Rodrigues LS, Martinez de Oliveira AL, Baldani VLD, dos Santos TKR, Urquiaga S, Reis VM (2008) Azospirillum amazonense inoculation: effects on growth, yield and N2 fixation of rice (Oryza sativa L.). Plant Soil 302:249–261

    Article  CAS  Google Scholar 

  • Rodríguez H, Fraga R (1999) Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnol Adv 17:319–339

    Article  PubMed  Google Scholar 

  • Rubio LM, Ludden PW (2008) Biosynthesis of the iron-molybdenum cofactor of nitrogenase. Annu Rev Microbiol 62:93–111

    Article  PubMed  CAS  Google Scholar 

  • Rudresh DL, Shivaprakash MK, Prasad RD (2005a) Effect of combined application of Rhizobium, phosphate solubilizing bacterium and Trichoderma spp. on growth, nutrient uptake and yield of chickpea (Cicer aritenium L.). Appl Soil Ecol 28:139–146

    Article  Google Scholar 

  • Rudresh DL, Shivaprakash MK, Prasad RD (2005b) Tricalcium phosphate solubilizing abilities of Trichoderma spp. in relation to P uptake and growth and yield parameters of chickpea (Cicer arietinum L.). Can J Microbiol 51:217–222

    Article  PubMed  CAS  Google Scholar 

  • Ruiz-Lozano JM, Azon R, Gomez M (1995) Effects of arbuscular-mycorrhizal Glomus species on drought tolerance: physiological and nutritional plant responses. Appl Environ Microbiol 61:456–460

    PubMed  CAS  Google Scholar 

  • Ruiz-Lozano JM, Azcon R, Gomez M (1996) Alleviation of salt stress by arbuscular mycorrhizal Glomus species in Lactuca sativa plants. Physiol Plant 98:767–772

    Article  CAS  Google Scholar 

  • Saad MS, Sabuddin ASA, Yunus AG, Shamsuddin ZH (1999) Effects of Azospirillum inoculation on sweet potato on sandy tin-tailing soil. Commu Soil Sci Plant Anal 30:1583–1592

    Article  CAS  Google Scholar 

  • Safir GR, Boyer JS, Gerdemann JW (1971) Mycorrhizal enhancement of water transport in soybean. Science 172:581–583

    Article  PubMed  CAS  Google Scholar 

  • Şahin F, Çakmakçi R, Kantar F (2004) Sugar beet and barley yields in relation to inoculation with N2-fixing and phosphate solubilizing bacteria. Plant Soil 265:123–129

    Article  Google Scholar 

  • Sanchez CA (2007) Phosphorus. In: Barker AV, Pilbeam DJ (eds) Handbook of plant nutrition. Taylor & Francis, Boca Raton, pp 51–91

    Google Scholar 

  • Saubidet M, Fatta N, Barneixet A (2002) The effect of inoculation with Azospirillum brasilense on growth and nitrogen utilization by wheat plants. Plant Soil 245:215–222

    Article  CAS  Google Scholar 

  • Schnepf R (2006) European union biofuels policy and agriculture: an overview. The Library of Congres, Washington, DC

    Google Scholar 

  • Schroeder MS, Janos DP (2004) Phosphorus and intraspecific density alter plant responses to arbuscular mycorrhizas. Plant Soil 264:335–348

    Article  CAS  Google Scholar 

  • Seres A, Bakonyi G, Posta K (2006) Zn uptake by maize under the influence of AM-fungi and Collembola Folsomia candida. Ecol Res 21:692–697

    Article  CAS  Google Scholar 

  • Shahab S, Ahmed N (2008) Effect of various parameters on the efficiency of zinc phosphate solubilization by indigenous bacterial isolates. Afr J Biotechnol 7:1543–1549

    Google Scholar 

  • Shaharoona B, Arshad M, Zahir AZ, Khalid A (2006) Performance of Pseudomonas spp. containing ACC-deaminase for improving growth and yield of maize (Zea mays L.) in the presence of nitrogenous fertilizer. Soil Biol Biochem 38:2971–2975

    Article  CAS  Google Scholar 

  • Shaharoona B, Naveed M, Arshad M, Zahir ZA (2008) Fertilizer-dependent efficiency of Pseudomonads for improving growth, yield, and nutrient use efficiency of wheat (Triticum aestivum L.). Appl Microbiol Biotechnol 79:147–155

    Article  PubMed  CAS  Google Scholar 

  • Shanahan P, O’Sullivan DJ, Simpson P, Glennon JD, O’Gara F (1992) Isolation of 2,4-diacetylphloroglucinol from a fluorescent pseudomonad and investigation of physiological parameters influencing its production. Appl Environ Microbiol 58:353–358

    PubMed  CAS  Google Scholar 

  • Shantharam S, Mattoo AK (1997) Enhancing biological nitrogen fixation: an appraisal of current and alternative technologies for N input into plants. Plant Soil 194:205–216

    Article  CAS  Google Scholar 

  • Sharma AK, Srivastiva PC, Johri BN (1994) Contribution of the VA mycorrhiza to zinc uptake in plants. In: Manthey JA, Crowley DE, Luster DG (eds) The biochemistry of micronutrients in the rhizosphere. CRC Press, Boca Raton, pp 111–123

    Google Scholar 

  • Shekhar NC, Bhadauria S, Kumar P, Lal H, Mondal R, Verma D (2000) Stress induced phosphate solubilization in bacteria isolated from alkaline soils. FEMS Microbiol Lett 182:291–296

    Article  Google Scholar 

  • Shenker M, Oliver I, Helmann M, Hadar Y (1992) Utilization by tomatoes of iron mediated by a siderophore produced by Rhizopus arrhizus. J Plant Nutr 15:2173–2182

    Article  CAS  Google Scholar 

  • Shenker M, Hadar Y, Chen Y (1996) Stability constants of the fungal siderophore rhizoferrin with various microelements and calcium. Soil Sci Soc Am J 60:1140–1144

    Article  CAS  Google Scholar 

  • Shiva V (1991) The Green Revolution in the Punjab. Ecologist 21:57–60

    Google Scholar 

  • Shokri S, Maadi B (2009) Effects of arbuscular mycorrhizal fungus on the mineral nutrition and yield of Trifolium alexandrinum plants under salinity stress. J Agron 8:79–83

    Article  CAS  Google Scholar 

  • Siddiqui IA, Shaukat SS (2004) Trichoderma harzianum enchances the production of nematicidal compounds in vitro and improves biocontrol of Meloidogyne javanica by Pseudomonas fluoresces in tomato. Lett Appl Microbiol 38:169–176

    Article  PubMed  CAS  Google Scholar 

  • Singh S, Kapoor KK (1998) Effects of inoculation of phosphate-solubilizing microorganisms and an arbuscular mycorrhizal fungus on mungbean grown under natural soil conditions. Mycorrhiza 7:249–253

    Article  CAS  Google Scholar 

  • Smith MJ, Shoolery JN, Schwyn B, Holden I, Neilands JB (1985) Rhizobactin, a structurally novel siderophore from Rhizobium meliloti. J Am Chem Soc 107:1739–1743

    Article  CAS  Google Scholar 

  • Soon YK (2008) Phosphorus cycle. In: Chesworth W (ed) Encyclopedia of soil science. Springer, Dordrecht, pp 547–555

    Chapter  Google Scholar 

  • Spaink HP (2000) Root nodulation and infection factors produced by rhizobial bacteria. Annu Rev Microbiol 54:257–288

    Article  PubMed  CAS  Google Scholar 

  • Steenhoudt O, Vanderleyden J (2000) Azospirillum, a free-living nitrogen-fixing bacterium closely associated with grasses: genetic, biochemical and ecological aspects. FEMS Microbiol Rev 24:487–506

    Article  PubMed  CAS  Google Scholar 

  • Stein T, Hayen-Schneg N, Frendrik I (1997) Contribution of BNF by Azoarcus sp. BH72 in Sorghum vulgare. Soil Biol Biochem 29:969–971

    Google Scholar 

  • Storey EP, Boghozian R, Little JL, Lowman DW, Chakraborty R (2006) Characterization of ‘Schizokinen’; a dihydroxamate-type siderophore produced by Rhizobium leguminosarum IARI 917. Biometals 19:637–649

    Article  PubMed  CAS  Google Scholar 

  • Subramanian KS, Charest C (1997) Nutritional, growth, and reproductive responses of maize (Zea mays L.) to arbuscular mycorrhizal inoculation during and after drought stress at tasselling. Mycorrhiza 7:25–32

    Article  Google Scholar 

  • Subramanian KS, Charest C (1999) Acquisition of N by external hyphae of an arbuscular mycorrhizal fungus and its impact on physiological responses in maize under drought-stressed and well-watered conditions. Mycorrhiza 9:69–75

    CAS  Google Scholar 

  • Subramanian KS, Santhanakrishnan P, Balasubramanian P (2006) Responses of field grown tomato plants to arbuscular mycorrhizal fungal colonization under varying intensities of drought stress. Sci Hortic 107:245–253

    Article  Google Scholar 

  • Sundara B, Natarajan V, Hari K (2002) Influence of phosphorus solubilizing bacteria on the changes in soil available phosphorus and sugarcane and sugar yields. Field Crops Res 77:43–49

    Article  Google Scholar 

  • Supanjani HSH, Jung JS, Lee KD (2006) Rock phosphate-potassium and rock-solubilising bacteria as alternative, sustainable fertilizers. Agron Sustain Dev 26:233–240

    Article  CAS  Google Scholar 

  • Tawaraya K, Watanabe S, Yoshida E, Wagatsuma T (1996) Effect of onion (Allium cepa) root exudates on the hyphal growth of Gigaspora margarita. Mycorrhiza 6:57–59

    Article  Google Scholar 

  • Tejera N, Lluch C, Martínez-Toledo MV, González-López J (2005) Isolation and characterization of Azotobacter and Azospirillum strains from the sugarcane rhizosphere. Plant Soil 270:223–232

    Article  CAS  Google Scholar 

  • Tian CY, Feng G, Li XL, Zhang FS (2004) Different effects of arbuscular mycorrhizal fungal isolates from saline or non-saline soil on salinity tolerance of plants. Appl Soil Ecol 26:143–148

    Article  Google Scholar 

  • Toussaint JP, Smith FA, Smith SE (2007) Arbuscular mycorrhizal fungi can induce the production of phytochemicals in sweet basil irrespective of phosphorus nutrition. Mycorrhiza 17:291–297

    Article  PubMed  CAS  Google Scholar 

  • Trehan SP, Sekhon GS (1977) Effect of clay, organic matter and CaCO3 content on zinc adsorption by soils. Plant Soil 46:329–336

    Article  CAS  Google Scholar 

  • UN (2004) World population to 2300. United Nations, New York

    Google Scholar 

  • Valverde A, Burgos A, Fiscella T, Rivas R, Velázquez E, Rodríguez-Barrueco C, Cervantes E, Chamber M, Igual JM (2006) Differential effects of coinoculations with Pseudomonas jessenii PS06 (a phosphate-solubilizing bacterium) and Mesorhizobium ciceri C-2/2 strains on the growth and seed yield of chickpea under greenhouse and field conditions. Plant Soil 287:43–50

    Article  CAS  Google Scholar 

  • van der Helm D, Winkelmann G (1994) Hydroxamates and polycarboxylates as iron transport agents (siderophores) in fungi. In: Winkelmann G, Winge D (eds) Metal ions in fungi. Marcel Dekker, New York, pp 39–98

    Google Scholar 

  • Vandenabeele J, De Beer D, Germonpré R, Van De Sande R, Verstraete W (1995) Influence of nitrate on manganese removing microbial consortia from sand filters. Water Res 29:579–587

    Article  CAS  Google Scholar 

  • Vassilev N, Medina A, Azcon R, Vassileva M (2006a) Microbial solubilization of rock phosphate on media containing agro-industrial wastes and effect of the resulting products on plant growth and P uptake. Plant Soil 287:77–84

    Article  CAS  Google Scholar 

  • Vassilev N, Vassileva M, Nikolaeva I (2006b) Simultaneous P-solubilizing and biocontrol activity of microorganisms: potentials and future trends. Appl Microbiol Biotechnol 71:137–144

    Article  PubMed  CAS  Google Scholar 

  • Verma TS, Thakur PC, Ajeet S (1997) Effect of biofertilizers on vegetable and seed yield of cabbage. Vegetable Sci 24:1–3

    Google Scholar 

  • Vessey K (2003) Plant growth promoting rhizobacteria as biofertilizers. Plant Soil 255:571–586

    Article  CAS  Google Scholar 

  • Viets FG (1961) Chemistry and availability of micronutrients in soils. J Agric Food Chem 10:174–178

    Article  Google Scholar 

  • Villegas J, Fortin JA (2001) Phosphorus solubilization and pH changes as a result of the interactions between soil bacteria and arbuscular mycorrhizal fungi on a medium containing NH4 + as nitrogen source. Can J Bot 79:865–870

    CAS  Google Scholar 

  • Vivas A, Marulanda A, Ruiz-Lozano J, Barea J, Azcón R (2003) Influence of a Bacillus sp. on physiological activities of two arbuscular mycorrhizal fungi and on plant responses to PEG-induced drought stress. Mycorrhiza 13:249–256

    Article  PubMed  Google Scholar 

  • Vosátka M, Albrechtová J (2009) Benefits of arbuscular mycorrhizal fungi to sustainable crop production. In: Khan MS, Zaidi A, Musarrat J (eds) Microbial strategies for crop improvement. Springer, Berlin/Heidelberg, pp 205–225

    Chapter  Google Scholar 

  • Wakelin SA, Warren RA, Harvey PR, Ryder MH (2004) Phosphate solubilization by Penicillium spp. closely associated with wheat roots. Biol Fertil Soils 40:36–43

    Article  CAS  Google Scholar 

  • Walter A, Römheld V, Marschner H, Crowley DE (1994) Iron nutrition of cucumber and maize: effect of Pseudomonas putida YC3 and its siderophore. Soil Biol Biochem 26:1023–1031

    Article  CAS  Google Scholar 

  • Wang Y, Brown HN, Crowley DE, Szaniszlo PJ (1993) Evidence for direct utilization of a siderophore, ferrioxamine B, in axenically grown cucumber. Plant Cell Environ 16:579–585

    Article  CAS  Google Scholar 

  • Wange S (1996) Effect of biofertilizers under graded nitrogen levels on carrot. Ann Plant Physiol 10:96–98

    Google Scholar 

  • Wani P, Khan MS, Zaidi A (2007) Synergistic effects of the inoculation with nitrogen-fixing and phosphate-solubilizing rhizobacteria on the performance of field-grown chichpea. J Plant Nutr Soil Sci 170:283–287

    Article  CAS  Google Scholar 

  • Welch SA, Taunton AE, Banfield JF (2002) Effect of microorganisms and microbial metabolites on apatite dissolution. Geomicrobiol J 19:343–367

    Article  CAS  Google Scholar 

  • Weller DM, Cook RJ (1983) Suppression of take-all of wheat by seed treatments with fluorescent pseudomonads. Phytopathology 73:463–469

    Article  Google Scholar 

  • White PJ, Hammond JP (2008) Phosphorus nutrition of terrestrial plants. In: White PJ, Hammond JP (eds) The ecophysiology of plant-phosphorus interactions. Springer, Dordrecht, pp 51–82

    Chapter  Google Scholar 

  • Windham MT, Elad Y, Baker R (1986) A mechanism for increased plant growth induced by Trichoderma spp. Phytopathology 76:518–521

    Article  Google Scholar 

  • Winkelmann G (2007) Ecology of siderophores with special reference to the fungi. Biometals 20:379–392

    Article  PubMed  CAS  Google Scholar 

  • Wu SC, Caob ZH, Li ZG, Cheunga KC, Wong MH (2005) Effects of biofertilizer containing N-fixer, P and K solubilizers and AM fungi on maize growth: a greenhouse trial. Geoderma 125:155–166

    Article  Google Scholar 

  • Xiao CQ, Chi RA, Huang XH, Zhang WX, Qiu GZ, Wang DZ (2008) Optimization of rock phosphate solubilization by phosphate-solubilizing fungi isolated from phosphate mines. Ecol Eng 33:187–193

    Article  CAS  Google Scholar 

  • Yano K, Takaki M (2005) Mycorrhizal alleviation of acid soil stress in sweet potato (Ipomoea batatas). Soil Biol Biochem 37:1569–1572

    Article  CAS  Google Scholar 

  • Yasmin F, Othman R, Sijam K, Saad MS (2007) Effect of PGPR inoculation on growth and yield of sweetpotato. J Biol Sci 7:421–424

    Article  CAS  Google Scholar 

  • Yedidia I, Srivastva AK, Kapulnik Y, Chet I (2001) Effect of Trichoderma harzianum on microelement concentrations and increased growth of cucumber plants. Plant Soil 235:235–242

    Article  CAS  Google Scholar 

  • Yehuda Z, Shenker M, Römheld V, Marschner H, Hadar Y, Chen Y (1996) The role of ligand exchange in the uptake of iron from microbial siderophores by gramineous plants. Plant Physiol 112:1273–1280

    PubMed  CAS  Google Scholar 

  • Youard ZA, Mislin GLA, Majcherczyk PA, Schalk IJ, Reimmann C (2007) Pseudomonas fluorescens CHA0 produces enantio-pyochelin, the optical antipode of the Pseudomonas aeruginosa siderophore pyochelin. J Biol Chem 282:35546–35553

    Article  PubMed  CAS  Google Scholar 

  • Zaidi A, Khan MS, Amil M (2003) Interactive effect of rhizotrophic microorganisms on yield and nutrient uptake of chickpea (Cicer arietinum L.). Eur J Agron 19:15–21

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the three anonymous referees for critical reading of the manuscript and constructive suggestions. Dr. I. Tringovska acknowledges the financial support of Human Resources Development Operational Programme, co-financed by the European Union through European Social Fund under grant no. BGPO001/07/3.3-02/30.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudio Altomare .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Altomare, C., Tringovska, I. (2011). Beneficial Soil Microorganisms, an Ecological Alternative for Soil Fertility Management. In: Lichtfouse, E. (eds) Genetics, Biofuels and Local Farming Systems. Sustainable Agriculture Reviews, vol 7. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1521-9_6

Download citation

Publish with us

Policies and ethics