Skip to main content

Patterns of Diatom Distribution in Relation to Salinity

  • Chapter
  • First Online:
The Diatom World

Part of the book series: Cellular Origin, Life in Extreme Habitats and Astrobiology ((COLE,volume 19))

Abstract

The total concentration of dissolved salts and the ionic composition of water are known to be important ecological factors influencing diatom distribution. The difference in salt content between marine and inland waters has been regarded as a major boundary that only a few diatom lineages managed to cross and in only one direction, from marine to freshwater habitat. Certain concentrations of salts far below typical marine salinity (0.2–0.5 g/l) were also thought to represent important ecophysiological thresholds. Quantitative analyses of large diatom datasets collected from estuaries, coastal areas, lakes, and rivers reveal, however, a continuous turnover of diatom species and genera along salinity gradients. No portion of the salinity spectrum, except for the extremes, is characterized by a depauperate diatom flora. Recent advances in reconstructing the evolutionary history of diatoms indicate that salinity affinities shifted in many diatom lineages and more often than was thought previously. The relatively high number of diatom species and genera confined to the marine environment can be explained not by the existence of physiological salinity thresholds common to all diatoms, but by the spatial dominance and greater temporal stability of marine habitats in comparison to relatively ephemeral fresh and brackish water bodies. At present, there is no compelling evidence of any salinity thresholds acting as insurmountable obstacles in diatom evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alverson, A.J., Cannone, J.J., Gutell, R.R. and Theriot, E.C. (2006) The evolution of elongate shape in diatoms. J. Phycol. 42: 655–668.

    Article  CAS  Google Scholar 

  • Alverson, A.J., Jansen, R.K. and Theriot, E.C. (2007) Bridging the Rubicon: Phylogenetic analysis reveals repeated colonizations of marine and fresh waters by thalassiosiroid diatoms. Mol. Phylogenet. Evol. 45: 193–210.

    Article  PubMed  CAS  Google Scholar 

  • Bloom, A.M., Moser, K.A., Porinchu, D.F. and MacDonald. G.M. (2003) Diatom-inference models for surface-water temperature and salinity developed from a 57-lake calibration set from the Sierra Nevada, California, USA. J. Paleolimn. 29: 235–255.

    Article  Google Scholar 

  • Bruder, K. and Medlin, L.K. (2008) Morphological and molecular investigations of naviculoid diatoms. II. Selected genera and families. Diatom Res. 23: 283–329.

    Google Scholar 

  • Busse S. and Snoeijs P. (2002) Gradient responses of epilithic diatom communities in the Bothnian Bay northern Baltic Sea. Nova Hedwig 74: 501–525.

    Article  Google Scholar 

  • Busse S. and Snoeijs P. (2003) Gradient responses of diatom communities in the Bothnian Sea (northern Baltic Sea) with emphasis on responses to water movement. Phycologia 42: 451–464.

    Article  Google Scholar 

  • Campeau S., Pienitz R. and Hequette A. (1999) Diatoms as quantitative paleodepth indicators in coastal area of the southern Beaufort Sea, Arctic Ocean. Palaeogeogr. Palaeoclimatol. Palaeoecol. 146: 67–97.

    Article  Google Scholar 

  • Clavero, E., Hernández-Marin, M., Grimal, J.O. and Garcia-Pichel, F. (2000) Salinity tolerance of diatoms from thalassic hypersaline environments. J. Phycol. 36: 1021–1034.

    Article  Google Scholar 

  • Cleve, P.T. (1899) Postglaciala bildningarnas klassification pa grund af deras fossila diatomaceer. Sveriges Geologiska Undersökningar C 180: 59–128.

    Google Scholar 

  • Crawford, R.M. and Sims, P.A. (2006) The diatoms Radialiplicata sol (Ehrenberg) Glezer and R. clavigera (Grunow) Glezer and their transfer to Ellerbeckia, Crawford, thus a genus with freshwater and marine representatives. Nova Hedwig. Beih. 130: 137–162.

    Google Scholar 

  • Cumming, B.F., Wilson, S.E., , R.I. and Smol, J.P. (1995) Diatoms from British Columbia (Canada) lakes and their relationship to salinity, nutrients and other limnological variables. Bibl. Diatomol. 31: 1–207.

    Google Scholar 

  • Denys, L. and De Wolf, H. (1999) Diatoms as indicators of coastal paleoenvironments and relative sea-level change, In: E.F. Stoermer and J.P. Smol (eds.) The Diatoms: Applications for the Environmental and Earth Sciences. Cambridge University Press, Cambridge, pp. 277–297.

    Google Scholar 

  • Ehrenberg, C.G. (1836) Vorläufige Mittheilungen über das wirkliche Vorkommen fossiler Infusorien und ihre grosse Verbreitung. Pogendorff’s Annal. Phys. Chem. Ser. 2, 38: 213–227

    Article  Google Scholar 

  • Ehrlich, A. and Dor, I. (1985) Photosynthetic microorganisms of the Gavish Sabkha, In: G. M. Friedman and W. E. Krumbein (eds.) Hypersaline Ecosystems. The Gavish Sabkha. Springer, Berlin, pp. 296–321.

    Google Scholar 

  • Eppley, R. W. (1977) The growth and culture of diatoms, In: D. Werner (ed.) The Biology of Diatoms. University of California Press, Berkeley, pp. 24–64.

    Google Scholar 

  • Fritz, S.C., Juggins, S., Battarbee, R.W. and Engstrom, D. R. (1991) Reconstruction of past changes in salinity and climate using a diatom-based transfer function. Nature 352: 55–57.

    Article  Google Scholar 

  • Fritz, S.C., Juggins, S. and Battarbee, R.W. (1993) Diatom assemblages and ionic characterization of lakes of the northern Great Plains, N.A.: a tool for reconstructing past salinity and climate fluctuations. Can. J. Fish. Aquat. Sci. 50: 1844–1856.

    Article  CAS  Google Scholar 

  • Gaiser, E., Wachnicka, A., Ruiz, P., Tobias, F. and Ross, M. (2005) Diatom indicators of ecosystem change in subtropical coastal wetlands, In: S.A. Bortone (ed.) Estuarine Indicators. CRC Press, Boca Raton, pp. 127–144.

    Google Scholar 

  • Hällfors, G. (2004) Checklist of Baltic Sea phytoplankton species (including some heterotrophic protistan groups). Baltic Sea Environ. Proc. 95: 1–210.

    Google Scholar 

  • Harwood, D.M., Chang, K.H. and Nikolaev, V.A. (2004) Late Jurassic to earliest Cretaceous diatoms from Jasong Synthem, Southern Korea: evidence for a terrestrial origin, In: A. Witkowski, T. Radziejewska, B. Wawrzyniak-Wydrowska, G. Daniszewska-Kowalczyk and M. Bak (eds.) Abstracts, 18th International Diatom Symposium, Miedzyzdroje, Poland, p. 81.

    Google Scholar 

  • Hay, W.W., Migdisov, A., Balukhovsky, A. N., Wold, C. N., Flögel, S. and Söding, E. (2006) Evaporites and the salinity of the ocean during the Phanerozoic: Implications for climate, ocean circulation and life. Palaeogeogr., Palaeoclimatol., Palaeoecol. 240: 346.

    Article  Google Scholar 

  • Herbst, D. B. and Blinn, D. W. (1998) Experimental mesocosm studies of salinity effects on the benthic algal community of a saline lake. J. Phycol. 34: 772–778.

    Article  Google Scholar 

  • Holst, N.O. (1899) Bidrag till kännedomen om Östersjöns och Bottniska vikens postglaciala geologi. Sveriges Geologiska Undersökningar C 180: 1–58.

    Google Scholar 

  • Horton, B.P., Corbett, R., Culver, S.J., Edwards, R.J. and Hillier, C. (2006) Modern saltmarsh diatom distributions of the Outer Banks, North Carolina, and the development of a transfer function for high resolution reconstructions of sea level. Estuar. Coast. Shelf Sci. 69: 381–394.

    Article  Google Scholar 

  • Hustedt, F. (1957) Die Diatomeenflora des Fluss-systems der Weser im Gebiet der Hansestadt Bremen. Abh. Naturw. Ver. Brem. 34: 181–440.

    Google Scholar 

  • Huvane, J.K. (2002) Modern diatom distributions in Florida Bay: a preliminary analysis, In: J.W. Porter and K.G. Porter (eds.) The Everglades, Florida Bay, and Coral Reefs of the Florida Keys: An Ecosystem Sourcebook. CRC Press, Boca Raton, pp. 479–496.

    Google Scholar 

  • Juggins, S. (1992) Diatoms in the Thames estuary, England. Ecology, paleoecology, and salinity transfer function. Bibl. Diatomol. 25:1–216.

    Google Scholar 

  • Kaczmarska, I., Beaton, M., Benoit, A.C. and Medlin, L.K. (2005) Molecular phylogeny of selected members of the order Thalassiosirales (Bacillariophyta) and evolution of the fultoportula. J. Phycol. 42: 121–138.

    Article  Google Scholar 

  • Karayeva, N.I. and Makarova, I.V. (1973) Specific features and origin of the Caspian Sea diatom flora. Mar. Biol. 21: 269–275.

    Article  Google Scholar 

  • Kolbe, R.W. (1927) Zur ökologie, morphologie und systematik der brackwasser-diatomeen. die kieselalgen des sperenberger salzgebiets. Pflanzenforschung 7: 1–146.

    Google Scholar 

  • Koleff, O., Gaston, K.J. and Lennon, J.J. (2003) Measuring beta diversity for presence-absence data. J. Animal Ecol. 72: 367–382.

    Article  Google Scholar 

  • Litchman, E., Klausmeier, C.A., and Yoshiyama, K. (2009) Contrasting size evolution in marine and freshwater diatoms. PNAS 106: 2665–2670.

    Article  PubMed  CAS  Google Scholar 

  • MacArthur, J.W. (1970) Species packing and competitive equilibrium for many species. Theor. Popul. Biol. 1: 1–11.

    Article  PubMed  CAS  Google Scholar 

  • Mann, D.G. (1999) Crossing the Rubicon: the effectiveness of the marine/freshwater interface as a barrier to the migration of diatom germplasm, In: S. Mayama, M. Idei, I. Koizumi (eds.) Proceedings of the 14th International Diatom Symposium. Koeltz Scientific Books, Koenigstein, pp. 1–21.

    Google Scholar 

  • Medlin, L. and Kaczmarska, I. (2004) Evolution of the diatoms: V. Morphological and cytological support for the major clades and a taxonomic revision. Phycologia 43: 245–270.

    Article  Google Scholar 

  • Mizuno, M. (1992) Influence of salinity on the growth of marine and estuarine benthic diatoms. Jpn. J. Phycol. (Sôrui) 40:33–37.

    CAS  Google Scholar 

  • Muylaert, K., Sabbe, K. and Vyverman, W. (2009) Changes in phytoplankton diversity and community composition along the salinity gradient of the Schelde estuary (Belgium/The Netherlands). Estuar. Coast. Shelf Sci. 82: 335–340.

    Article  CAS  Google Scholar 

  • Nikolaev, V.A. and Harwood, D.M. (2000) Diversity and system of classification in centric diatoms, In: A. Witkowski and J. Siemimska (eds.) The Origin and Early Evolution of the Diatoms: Fossil, Molecular and Biogeographical Approaches. W. Szafer Institute of Botany, Polish Academy of Sciences, Cracow, pp. 37–53.

    Google Scholar 

  • Plater, A. J., Horton, B. P., Haworth, E. Y., Rutherford, M. M., Zong, Y., Wright, M. R. and Appleby, P. G. (2000) Holocene tidal levels and sedimentation rates using a diatom-based palaeoenvironmental reconstruction: the Tees estuary, northeastern England. Holocene 10: 441–552.

    Article  Google Scholar 

  • Potapova, M. and Charles, D.F. (2003) Distribution of benthic diatoms in U.S. rivers in relation to conductivity and ionic composition. Freshw. Biol. 48: 1311–1328.

    Article  CAS  Google Scholar 

  • Proshkina-Lavrenko, A.I. (1953) Diatoms as indicators of the salinity of water, In: A.I. Proshkina-Lavrenko and V.S. Sheshukova (eds.) Diatomovy Sbornik. University Press, Leningrad, pp. 186–205.

    Google Scholar 

  • Proshkina-Lavrenko, A.I. (1955) Plankton Diatoms of the Black Sea. USSR AS, Moscow-Leningrad.

    Google Scholar 

  • Proshkina-Lavrenko A.I. (1963a) Benthic Diatom Algae of the Black Sea. USSR AS, Moscow-Leningrad.

    Google Scholar 

  • Proshkina-Lavrenko, A.I. (1963b) Plankton Diatoms of the Sea of Azov. USSR AS, Moscow-Leningrad.

    Google Scholar 

  • Proshkina-Lavrenko, A.I. and Makarova, I.V. (1968) Plankton Algae of the Caspian Sea. Nauka, Leningrad.

    Google Scholar 

  • Quinlan, E.L. and Phlips, E.J. (2007) Phytoplankton assemblages across the marine to low-salinity transition zone in a blackwater dominated estuary. J. Plankton Res. 29: 401–416.

    Article  CAS  Google Scholar 

  • Reed, J.M. (1998) A diatom-conductivity transfer function for Spanish salt lakes. J. Paleolimn. 19: 399–416.

    Article  Google Scholar 

  • Remane, A. (1934) Die Brackwasserfauna. Zool. Anz. (Suppl.) 36 : 34–74.

    Google Scholar 

  • Remane, A. (1971) Ecology of brackish water, In: A. Remane and C. Schlieper (eds.) Biology of Brackish Water. Schweizerbart’sche, Stuttgart, pp. 1–210

    Google Scholar 

  • Roberts, D. and McMinn, A. (1998) A weighted-averaging regression and calibration model for inferring lakewater salinity from fossil diatom assemblages in saline lakes of Westfold Hills: a new tool for interpreting Holocene lake histories in Antractica. J. Paleolimn. 19: 99–113.

    Article  Google Scholar 

  • Round, F.E. and Crawford, R.M. (1981) The lines of evolution of the Bacillariophyta I. Origin. Proc. R. Soc. Lond. B 211: 237–260.

    Article  Google Scholar 

  • Round, F.E. and Sims, P.A. (1981) The distribution of diatom genera in marine and freshwater environments and some evolutionary considerations, In: R. Ross (ed.) Proceedings of the Sixth Symposium on Recent and Fossil Diatoms. Otto Koeltz Science Publishers, Hirschberg, pp. 301–320.

    Google Scholar 

  • Sato, S., Kooistra, W.H.C.F., Watanabe, T., Matsumoto, S. and Medlin, L.K. (2008a) A new araphid diatom genus Psammoneis gen. nov. (Plagiogrammaceae, Bacillariophyta) with three new species based on SSU and LSU rDNA sequence data and morphology. Phycologia 47: 510–528.

    Article  CAS  Google Scholar 

  • Sato, S., Mann, D.G., Matsumoto, S. and Medlin, L. K. (2008b) Pseudostriatella (Bacillariophyta); a description of a new araphid diatom genus based on observations of frustule and auxospore structure and 18S rDNA phylogeny. Phycologia 47: 371–391.

    Article  CAS  Google Scholar 

  • Sato, S., Matsumoto, S. and Medlin, L.K. (2009) Fine structure and 18S rDNA phylogeny of a marine araphid pennate diatom Plagiostriata goreensis gen. et sp. nov. (Bacillariophyta). Phycol. Res. 57: 25–35.

    Article  Google Scholar 

  • Sawai, Y., Nagumo, T. and Horton, B. P. (2004) Diatom-based elevation transfer function along the Pacific coast of eastern Hokkadio, northern Japan - an aid in paleo-seismic study along the coasts near Kurile subduction zone. J. Quat. Sci. 23: 2467–2484.

    Article  Google Scholar 

  • Simonsen, R. (1962) Untersuchungen zur Systematik und Ökologie der Bodendiatomeen der westlichen Ostsee. Int. Rev. ges. Hydrobiol., Syst. Beih. 1: 1–144.

    Google Scholar 

  • Sims, P., Mann, D.G. and Medlin, L.K. (2006) Evolution of the diatoms: insights from fossil, biological and molecular data Phycologia 45: 361–402.

    Article  Google Scholar 

  • Snoeijs, P.J.M. (1994) Distribution of epiphytic diatom species composition, diversity and biomass on different macroalgal hosts along seasonal and salinity gradients in the Baltic Sea. Diatom Res. 9: 189–211.

    Google Scholar 

  • Snoeijs, P. (1995) Effects of salinity on epiphytic communities on Pilayella littoralis (Phaeophyceae) in the Baltic Sea. Ecoscience 2: 382394.

    Google Scholar 

  • Snoeijs, P. (1999) Diatoms and environmental change in brackish waters, In: E.F. Stoermer and J.P. Smol (eds.) The Diatoms. Applications for the Environmental and Earth Science. Cambridge University Press, Cambridge, pp. 298–333

    Google Scholar 

  • Sylvestre, F., Servant-Vildary, S. and Roux, M. (2001) Diatom-based ionic concentration and salinity models from the south Bolivian Altiplano (15–23° S). J. Paleolimn. 25: 279–295.

    Article  Google Scholar 

  • ter Braak, C. J F. and Barendregt, L.G. (1986) Weighted averaging of species indicator values: its efficiency in environmental calibration. Math. Biosci. 78: 57–72.

    Article  Google Scholar 

  • ter Braak, C.J.F. and Looman, C.W.N. (1986) Weighted averaging, logistic regression and the Gaussian response model. Vegetatio 65: 3–11.

    Article  Google Scholar 

  • Ulanova A. and Snoeijs P. (2006) Gradient responses of epilithic diatom communities in the Baltic Sea proper. Estuar. Coast. Shelf Sci. 68: 661–674.

    Article  Google Scholar 

  • Ulanova A., Busse, S. and Snoeijs P. (2009) Coastal diatom-environment relationships in the brackish Baltic sea. J. Phycol. 45: 54–68.

    Article  Google Scholar 

  • Van der Werff, A. and Huls, H. (1957–1974) Diatomeeënflora van Nederland. Sprey Abcoude, Den Haag.

    Google Scholar 

  • Venice system (1959) The final resolution of the symposium on the classification of brackish waters. Arch. Oceanogr. Limnol. (Suppl) 11: 243–248.

    Google Scholar 

  • Wilderman, C.C. (1984) The floristic composition and distribution patterns of diatom assemblages in the Severn River estuary, Maryland. Ph.D. Thesis, John Hopkins University, Baltimore.

    Google Scholar 

  • Wilderman, C.C. (1987) Patterns of distribution of diatom assemblages along environmental gradients in the Severn River estuary, Chesapeake Bay, Maryland. J. Phycol. 23: 209–217

    Google Scholar 

  • Wilson, S.E., Cumming, B.F., and Smol, J.P. (1994) Diatom–salinity relationships in 111 lakes from the Interior Plateau of British Columbia, Canada: the development of diatom-based models for paleosalinity reconstructions. J. Paleolimn. 12: 197–221.

    Article  Google Scholar 

  • Wilson, S.E., Cumming, B.F., and Smol, J.P. (1996) Assessing the reliability of salinity inference models from diatom assemblages: an examination of a 219-lake data set from western North America. Can. J. Fish. Aquat. Sci. 53: 1580–1594.

    Google Scholar 

  • Wolfe, A. and Siver, P. (2009) Three extant genera of freshwater thalassiosiroid diatoms from Middle Eocene sediments in northern Canada. Am. J. Bot. 96: 487–497.

    Article  PubMed  Google Scholar 

  • Ziemann, H. (1971) Die Wirkung des Salzgehaltes auf die Diatomeenflora als Grundlage für eine biologische Analyse und Klassifikation der Binnengewässer. Limnologica 8: 505–525.

    CAS  Google Scholar 

  • Zong, Y. and Horton, B. P. (1999) Diatom-based tidal-level transfer functions as an aid in reconstructing Quaternary history of sea-level movements in Britain. J. Quat. Sci. 14: 153–167.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marina Potapova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V

About this chapter

Cite this chapter

Potapova, M. (2011). Patterns of Diatom Distribution in Relation to Salinity. In: Seckbach, J., Kociolek, P. (eds) The Diatom World. Cellular Origin, Life in Extreme Habitats and Astrobiology, vol 19. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1327-7_14

Download citation

Publish with us

Policies and ethics