Skip to main content

Genetic Analyses in Health Laboratories: Current Status and Expectations

  • Chapter
  • First Online:
Detection of Non-Amplified Genomic DNA

Part of the book series: Soft and Biological Matter ((SOBIMA))

  • 1033 Accesses

Abstract

Genetic analyses performed in health laboratories involve adult patients, newborns, embryos/fetuses, pre-implanted pre-embryos, pre-fertilized oocytes and should meet the major medical needs of hospitals and pharmaceutical companies. Recent data support the concept that, in addition to diagnosis and prognosis, genetic analyses might lead to development of personalized therapy. Novel frontiers in genetic testing involve the development of single cell analyses and non-invasive assays, including those able to predict outcome of cancer pathologies by looking at circulating tumor cells, DNA, mRNA and microRNAs. In this respect, PCR-free diagnostics appears to be one of the most interesting and appealing approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ASO:

allele-specific oligonucleotide

EPO:

erythropoietin

ErPC:

erythroid precursor cells

HbA:

adult hemoglobin

HbF:

fetal hemoglobin

HPLC:

high performance liquid chromatography

IVF:

in vitro fertilization

miRNA:

microRNA

ODN:

oligodeoxyribonucleotide

PCR:

polymerase-chain reaction

RT-PCR :

reverse transcription PCR

SCA:

sickle-cell anemia

TOP:

termination of pregnancy

References

  1. Allingham-Hawkins, D.: Successful genetic tests are predicated on clinical utility. Genet. Eng. Biotechnol. News 28(14), 6–9 (2008)

    Google Scholar 

  2. Hunter, D.J., Khoury, M.J., Drazen, J.M.: Letting the genome out of the bottle. N. Engl. J. Med. 358(2), 105–107 (2008)

    Google Scholar 

  3. Gollust, S.E., Hull, S.C., Wilfond, B.S.: Limitations of direct-to-consumer advertising for clinical genetic testing. JAMA 288(14), 1762–1767 (2002)

    Google Scholar 

  4. Marić, P., Ozretić, P., Levanat, S., Oresković, S., Antunac, K., Beketić-Oresković, L.: Tumor markers in breast cancer–evaluation of their clinical usefulness. Coll. Antropol. 35(1), 241–247 (2011)

    Google Scholar 

  5. Eddy, J.A., Sung, J., Geman, D., Price, N.D.: Relative expression analysis for molecular cancer diagnosis and prognosis. Technol. Cancer Res. Treat. 9(2), 149–159 (2010)

    Google Scholar 

  6. Sahai, I., Marsden, D.: Newborn screening. Crit. Rev. Clin. Lab. Sci. 46(2), 55–82 (2009)

    Google Scholar 

  7. Lees, C.M., Davies, S., Dezateux, C.: Neonatal screening for sickle cell disease. Cochrane Database Syst. Rev. (2), CD001913 (2000)

    Google Scholar 

  8. Zhang, Y.H., McCabe, L.L., Wilborn, M., Therrell Jr., B.L., McCabe, E.R.: Application of molecular genetics in public health: improved follow-up in a neonatal hemoglobinopathy screening program. Biochem. Med. Metab. Biol. 52(1), 27–35 (1994)

    Google Scholar 

  9. Devaney, S.A., Palomaki, G.E., Scott, J.A., Bianchi, D.W.: Noninvasive fetal sex determination using cell-free fetal DNA: a systematic review and meta-analysis. JAMA 306(6), 627–636 (2011)

    Google Scholar 

  10. Izquierdo, L.A., Berkshire, S.: Access, quality and costs of prenatal diagnosis. Bol. Asoc. Med. P. R. 102(4), 25–29 (2010)

    Google Scholar 

  11. Ville, Y.: Fetal therapy: practical ethical considerations. Prenat. Diagn. 31(7), 621–627 (2011)

    Google Scholar 

  12. Hui, L., Bianchi, D.W.: Prenatal pharmacotherapy for fetal anomalies: a 2011 update. Prenat. Diagn. 31(7), 735–743 (2011)

    Google Scholar 

  13. Checa, M.A., Alonso-Coello, P., Solà, I., Robles, A., Carreras, R., Balasch, J.: IVF/ICSI with or without preimplantation genetic screening for aneuploidy in couples without genetic disorders: a systematic review and meta-analysis. J. Assist. Reprod. Genet. 26(5), 273–283 (2009)

    Google Scholar 

  14. Adiga, S.K., Kalthur, G., Kumar, P., Girisha, K.M.: Preimplantation diagnosis of genetic diseases. J. Postgrad. Med. 56(4), 317–320 (2010)

    Google Scholar 

  15. Geraedts, J.P., De Wert, G.M.: Preimplantation genetic diagnosis. Clin. Genet. 76(4), 315–325 (2009)

    Google Scholar 

  16. Pauli, S.A., Berga, S.L., Shang, W., Session, D.R.: Current status of the approach to assisted reproduction. Pediatr. Clin. North Am. 56(3), 467–488 (2009)

    Google Scholar 

  17. Bing, Y., Ouellette, R.J.: Fertilization in vitro. Methods Mol. Biol. 550, 251–266 (2009)

    Google Scholar 

  18. Gitlin, S.A., Gibbons, W.E., Gosden, R.G.: Oocyte biology and genetics revelations from polar bodies. Reprod. Biomed. Online 6(4), 403–409 (2003)

    Google Scholar 

  19. Rienzi, L., Vajta, G., Ubaldi, F.: Predictive value of oocyte morphology in human IVF: a systematic review of the literature. Hum. Reprod. Update 17(1), 34–45 (2011)

    Google Scholar 

  20. Basille, C., Frydman, R., El Aly, A., Hesters, L., Fanchin, R., Tachdjian, G., Steffann, J., LeLorc’h, M., Achour-Frydman, N.: Preimplantation genetic diagnosis: state of the art. Eur. J. Obstet. Gynecol. Reprod. Biol. 145(1), 9–13 (2009)

    Google Scholar 

  21. Dawson, A., Griesinger, G., Diedrich, K.: Screening oocytes by polar body biopsy. Reprod. Biomed. Online 13(1), 104–109 (2006)

    Google Scholar 

  22. Kamat, A.M., Mathew, P.: Bladder cancer: imperatives for personalized medicine. Oncology (Williston Park) 25(10), 951–958, 960 (2011)

    Google Scholar 

  23. Picker, A., Jackson, D.B.: Genetic determinants of anticancer drug activity: towards a global approach to personalized cancer medicine. Expert Rev. Mol. Diagn. 11(6), 567–577 (2011)

    Google Scholar 

  24. Mestroni, L., Taylor, M.R.: Pharmacogenomics, personalized medicine, and heart failure. Discov. Med. 11(61), 551–561 (2011)

    Google Scholar 

  25. Offit, K.: Personalized medicine: new genomics, old lessons. Hum. Genet. 130(1), 3–14 (2011)

    Google Scholar 

  26. Gonem, S., Desai, D., Siddiqui, S., Brightling, C.C.: Evidence for phenotype-driven treatment in asthmatic patients. Curr. Opin. Allergy Clin. Immunol. 11(4), 381–385 (2011)

    Google Scholar 

  27. Mehta, R., Jain, R.K., Badve, S.: Personalized medicine: the road ahead. Clin. Breast Cancer 11(1), 20–26 (2011)

    Google Scholar 

  28. Patrinos, G.P., Kollia, P., Papadakis, M.N.: Molecular diagnosis of inherited disorders: lessons from hemoglobinopathies. Hum. Mutat. 26, 399–412 (2005)

    Google Scholar 

  29. Old, J.M.: Screening and genetic diagnosis of haemoglobin disorders. Blood Rev. 17(1), 43–53 (2003)

    Google Scholar 

  30. Galanello, R., Origa, R.: Beta-thalassemia. Orphanet J. Rare Dis. 5, 11 (2010)

    Google Scholar 

  31. Colah, R., Gorakshakar, A., Nadkarni, A.: Global burden, distribution and prevention of β-thalassemias and hemoglobin E disorders. Expert Rev. Hematol. 3(1), 103–117 (2010)

    Google Scholar 

  32. Quek, L., Thein, S.L.: Molecular therapies in beta-thalassaemia. Br. J. Haematol. 136(3), 353–365 (2007)

    Google Scholar 

  33. Lederer, C.W., Basak, A.N., Aydinok, Y., et al.: An electronic infrastructure for research and treatment of the thalassemias and other hemoglobinopathies: the Euro-mediterranean ITHANET project. Hemoglobin 33, 163–176 (2009)

    Google Scholar 

  34. Gambari, R., Fibach, E.: Medicinal chemistry of fetal hemoglobin inducers for treatment of beta-thalassemia. Curr. Med. Chem. 14, 199–212 (2007)

    Google Scholar 

  35. Thein, S.L., Menzel, S.: Discovering the genetics underlying foetal haemoglobin production in adults. Br. J. Haematol. 145(4), 455–467 (2009)

    Google Scholar 

  36. Sankaran, V.G., Menne, T.F., Xu, J., Akie, T.E., Lettre, G., Van Handel, B., Mikkola, H.K., Hirschhorn, J.N., Cantor, A.B., Orkin, S.H.: Human fetal hemoglobin expression is regulated by the developmental stage-specific repressor BCL11A. Science 322(5909), 1839–1842 (2008)

    ADS  Google Scholar 

  37. Sankaran, V.G., Xu, J., Orkin, S.H.: Transcriptional silencing of fetal hemoglobin by BCL11A. Ann. N. Y. Acad. Sci. 1202, 64–68 (2010)

    ADS  Google Scholar 

  38. Nguyen, T.K., Joly, P., Bardel, C., Moulsma, M., Bonello-Palot, N., Francina, A.: The XmnI (G)gamma polymorphism influences hemoglobin F synthesis contrary to BCL11A and HBS1L-MYB SNPs in a cohort of 57 beta-thalassemia intermedia patients. Blood Cells Mol. Dis. 45(2), 124–127 (2010)

    Google Scholar 

  39. Jiang, J., Best, S., Menzel, S., Silver, N., Lai, M.I., Surdulescu, G.L., Spector, T.D., Thein, S.L.: cMYB is involved in the regulation of fetal hemoglobin production in adults. Blood 108(3), 1077–1083 (2006)

    Google Scholar 

  40. Svasti, S., Suwanmanee, T., Fucharoen, S., Moulton, H.M., Nelson, M.H., Maeda, N., Smithies, O., Kole, R.: RNA repair restores hemoglobin expression in IVS2-654 thalassemic mice. Proc. Natl. Acad. Sci. USA 106(4), 1205–1210 (2009)

    ADS  Google Scholar 

  41. Suwanmanee, T., Sierakowska, H., Fucharoen, S., Kole, R.: Repair of a splicing defect in erythroid cells from patients with beta-thalassemia/HbE disorder. Mol. Ther. 6(6), 718–726 (2002)

    Google Scholar 

  42. Zeng, Y., Gu, X., Chen, Y., Gong, L., Ren, Z., Huang, S.: Reversal of aberrant splicing of beta-thalassemia allele by antisense RNA in vitro and in vivo. Chin. Med. J. (Engl). 112(2), 107–111 (1999)

    Google Scholar 

  43. El-Andaloussi, S., Johansson, H.J., Lundberg, P., Langel, U.: Induction of splice correction by cell-penetrating peptide nucleic acids. J. Gene Med. 8(10), 1262–1273 (2006)

    Google Scholar 

  44. Neu-Yilik, G., Amthor, B., Gehring, N.H., Bahri, S., Paidassi, H., Hentze, M.W., Kulozik, A.E.: Mechanism of escape from nonsense-mediated mRNA decay of human beta-globin transcripts with nonsense mutations in the first exon. RNA 17(5), 843–854 (2011)

    Google Scholar 

  45. Salvatori, F., Breveglieri, G., Zuccato, C., Finotti, A., Bianchi, N., Borgatti, M., Feriotto, G., Destro, F., Canella, A., Brognara, E., Lampronti, I., Breda, L., Rivella, S., Gambari, R.: Production of beta-globin and adult hemoglobin following G418 treatment of erythroid precursor cells from homozygous beta(0)39 thalassemia patients. Am. J. Hematol. 84(11), 720–728 (2009)

    Google Scholar 

  46. Salvatori, F., Cantale, V., Breveglieri, G., Zuccato, C., Finotti, A., Bianchi, N., Borgatti, M., Feriotto, G., Destro, F., Canella, A., Breda, L., Rivella, S., Gambari, R.: Development of K562 cell clones expressing beta-globin mRNA carrying the beta039 thalassaemia mutation for the screening of correctors of stop-codon mutations. Biotechnol. Appl. Biochem. 54(1), 41–52 (2009)

    Google Scholar 

  47. Linde, L., Kerem, B.: Nonsense-mediated mRNA decay and cystic fibrosis. Methods Mol. Biol. 741, 137–154 (2011)

    Google Scholar 

  48. Malik, V., Rodino-Klapac, L.R., Viollet, L., Mendell, J.R.: Aminoglycoside-induced mutation suppression (stop codon readthrough) as a therapeutic strategy for Duchenne muscular dystrophy. Ther. Adv. Neurol. Disord. 3(6), 379–389 (2010)

    Google Scholar 

  49. Hannemann, J., Meyer-Staeckling, S., Kemming, D., Alpers, I., Joosse, S.A., Pospisil, H., Kurtz, S., Görndt, J., Püschel, K., Riethdorf, S., Pantel, K., Brandt, B.: Quantitative high-resolution genomic analysis of single cancer cells. PLoS One 6(11), e26362 (2011)

    ADS  Google Scholar 

  50. Ståhlberg, A., Kubista, M., Aman, P.: Single-cell gene-expression profiling and its potential diagnostic applications. Expert Rev. Mol. Diagn. 11(7), 735–740 (2011)

    Google Scholar 

  51. Hennig, G., Gehrmann, M., Stropp, U., Brauch, H., Fritz, P., Eichelbaum, M., Schwab, M., Schroth, W.: Automated extraction of DNA and RNA from a single formalin-fixed paraffin-embedded tissue section for analysis of both single-nucleotide polymorphisms and mRNA expression. Clin. Chem. 56(12), 1845–1853 (2010)

    Google Scholar 

  52. Sun, J., Masterman-Smith, M.D., Graham, N.A., Jiao, J., et al.: A microfluidic platform for systems pathology: multiparameter single-cell signaling measurements of clinical brain tumor specimens. Cancer Res. 70(15), 6128–6138 (2010)

    Google Scholar 

  53. Kim, J.B., Stein, R., O’Hare, M.J.: Three-dimensional in vitro tissue culture models of breast cancer – a review. Breast Cancer Res. Treat. 85(3), 281–291 (2004)

    Google Scholar 

  54. Knudsen, K.A., Soler, A.P.: Cadherin-mediated cell-cell interactions. Methods Mol. Biol. 137, 409–440 (2000)

    Google Scholar 

  55. Bischoff, F.Z., Sinacori, M.K., Dang, D.D., Marquez-Do, D., Horne, C., Lewis, D.E., Simpson, J.L.: Cell-free fetal DNA and intact fetal cells in maternal blood circulation: implications for first and second trimester non-invasive prenatal diagnosis. Hum. Reprod. Update 8(6), 493–500 (2002)

    Google Scholar 

  56. Kamme, F., Zhu, J., Luo, L., Yu, J., Tran, D.T., Meurers, B., Bittner, A., Westlund, K., Carlton, S., Wan, J.: Single-cell laser-capture microdissection and RNA amplification. Methods Mol. Med. 99, 215–223 (2004)

    Google Scholar 

  57. Burgemeister, R.: New aspects of laser microdissection in research and routine. J. Histochem. Cytochem. 53(3), 409–412 (2005)

    Google Scholar 

  58. Kamihira, M., Kumar, A.: Development of separation technique for stem cells. Adv. Biochem. Eng. Biotechnol. 106, 173–193 (2007)

    Google Scholar 

  59. Pohl, H.A., Crane, J.S.: Dielectrophoretic force. J. Theor. Biol. 37(1), 1–13 (1972)

    Google Scholar 

  60. Crane, J.S., Pohl, H.A.: Theoretical models of cellular dielectrophoresis. J. Theor. Biol. 37(1), 15–41 (1972)

    Google Scholar 

  61. Gascoyne, P.R., Vykoukal, J.: Particle separation by dielectrophoresis. Electrophoresis 23(13), 1973–1983 (2002)

    Google Scholar 

  62. Gambari, R., Borgatti, M., Altomare, L., Manaresi, N., Medoro, G., Romani, A., Tartagni, M., Guerrieri, R.: Applications to cancer research of “lab-on-a-chip” devices based on dielectrophoresis (DEP). Technol. Cancer Res. Treat. 2(1), 31–40 (2003)

    Google Scholar 

  63. Gambari, R., Borgatti, M., Fabbri, E., Gavioli, R., Fortini, C., Nastruzzi, C., Altomare, L., Abbonnec, M., Manaresi, N., Medoro, G., Romani, A., Tartagni, M., Guerrieri, R.: “Lab-on-a-chip” devices for cellular arrays based on dielectrophoresis. In: Appasani, K. (ed.) Bioarrays – From Basics to Diagnostics, pp. 231–243. Humana Press Inc, Totowa (2007)

    Google Scholar 

  64. Medoro, G., Guerrieri, R., Manaresi, N., Nastruzzi, C., Gambari, R.: Lab-on-a-chip for live cell manipulation. Des. Test Comput. IEEE 24(1), 26–36 (2007)

    Google Scholar 

  65. Altomare, L., Borgatti, M., Medoro, G., Manaresi, N., Tartagni, M., Guerrieri, R., Gambari, R.: Levitation and movement of human tumor cells using a printed circuit board device based on software-controlled dielectrophoresis. Biotechnol. Bioeng. 82, 474–479 (2003)

    Google Scholar 

  66. Borgatti, M., Altomare, L., Abonnenc, M., Fabbri, E., Manaresi, N., Medoro, G., Romani, A., Tartagni, M., Nastruzzi, C., Di Croce, S., Tosi, A., Mancini, I., Guerrieri, R., Gambari, R.: Dielectrophoresis (DEP) based ‘lab-on-a-chip’ devices for efficient and programmable binding of microspheres to target cells. Int. J. Oncol. 27, 1559–1566 (2005)

    Google Scholar 

  67. Jackson, L., Wapner, R.J.: Chorionic villus sampling. In: Simpson, J.L., Elias, S. (eds.) Essentials of Prenatal Diagnosis, pp. 45–61. Churchill Livingstone, New York (1993)

    Google Scholar 

  68. Walknowska, J., Conte, F.A., Grumbach, M.M.: Practical and theoretical implication of fetal: maternal lymphocyte transfer. Lancet 1, 1119–1122 (1969)

    Google Scholar 

  69. Herzenberg, L.A., Bianchi, D.W., Schroder, J., Cann, H.M., Iverson, G.M.: Fetal cells in the blood of pregnant women: detection and enrichment by fluorescence-activated cell sorting. Proc. Natl. Acad. Sci. USA 76, 1453–1455 (1979)

    ADS  Google Scholar 

  70. Schmorl, G.: Pathologisch-Anatomische Untersuchungen uber Puerperal Eklampsie. Vogel, Leipzig (1893)

    Google Scholar 

  71. Hahnemann, J.M., Vejerslev, L.O.: Accuracy of cytogenetic findings on chorionic villus sampling (CVS)-diagnostic consequences of CVS mosaicism and non-mosaic discrepancy in centres contributing to EUCROMIC 1986-1992. Prenat. Diagn. 17, 801–820 (1997)

    Google Scholar 

  72. Bianchi, D.W., Flint, A.F., Pizzimenti, M.F., Knoll, J.H.M., Latt, S.A.: Isolation of fetal DNA from nucleated erythrocytes in maternal blood. Proc. Natl. Acad. Sci. USA 87, 3279–3283 (1990)

    ADS  Google Scholar 

  73. Price, J.O., Elias, S., Wachtel, S.S., Klinger, K., Dockter, M., Tharapel, A., Shulman, L.P., Phillips, O.P., Meyers, C.M., Shook, D., et al.: Prenatal diagnosis with fetal cells isolated prenatal diagnosis with fetal cells isolated from maternal blood by multiparameter flow cytometry. Am. J. Obstet. Gynecol. 165, 1731–1737 (1991)

    Google Scholar 

  74. Ganshirt, D., Smeets, F.W., Dohr, A., Walde, C., Steen, I., Lapucci, C., Falcinelli, C., Sant, R., Velasco, M., Garritsen, H.S., Holzgreve, W.: Enrichment of fetal nucleated red blood cells from the maternal circulation for prenatal diagnosis: experiences with triple density gradient and MACS based on more than 600 cases. Fetal Diagn. Ther. 13, 276–286 (1998)

    Google Scholar 

  75. Bischoff, F.Z., Marquez-Do, D.A., Martinez, D.I., Dang, D., Horne, C., Lewis, D., Simpson, J.L.: Intact fetal cell isolation from maternal blood: improved isolation using a simple whole blood progenitor cell enrichment approach (RosetteSep). Clin. Genet. 63, 483–489 (2003)

    Google Scholar 

  76. Ho, S.S., O’Donoghue, K., Choolani, M.: Fetal cells in maternal blood: state of the art for non-invasive prenatal diagnosis. Ann. Acad. Med. Singapore 32, 597–603 (2003)

    Google Scholar 

  77. Wachtel, S.S., Sammons, D., Manley, M., Wachtel, G., Twitty, G., Utermohlen, J., Phillips, O.P., Shulman, L.P., Taron, D.J., Muller, U.R., Koeppen, P., Ruffalo, T.M., Addis, K., Porreco, R., Murata-Collins, J., Parker, N.B., McGavran, L.: Fetal cells in maternal blood: recovery by charge flow separation. Hum. Genet. 98, 162–166 (1996)

    Google Scholar 

  78. von Eggeling, F., Michel, S., Gunther, M., Schimmel, B., Claussen, U.: Determination of the origin of single nucleated cells in maternal circulation by means of random PCR and a set of length polymorphisms. Hum. Genet. 99, 266–270 (1997)

    Google Scholar 

  79. Samura, O., Sohda, S., Johnson, K.L., Pertl, B., Ralston, S., Delli-Bovi, L.C., Bianchi, D.W.: Diagnosis of trisomy 21 in fetal nucleated erythrocytes from maternal blood by use of short tandem repeat sequences. Clin. Chem. 47(9), 1622–1626 (2001)

    Google Scholar 

  80. Cheung, M.C., Goldberg, J.D., Kan, Y.W.: Prenatal diagnosis of sickle cell anaemia and thalassaemia by analysis of fetal cells in maternal blood. Nat. Genet. 14(3), 264–268 (1996)

    Google Scholar 

  81. Suzumori, K., Adachi, R., Okada, S., Narukawa, T., Yagami, Y., Sonta, S.: Fetal cells in the maternal circulation: detection of Y-sequence by gene amplification. Obstet. Gynecol. 80(1), 150–154 (1992)

    Google Scholar 

  82. Sekizawa, A., Kimura, T., Sasaki, M., Nakamura, S., Kobayashi, R., Sato, T.: Prenatal diagnosis of Duchenne muscular dystrophy using a single fetal nucleated erythrocyte in maternal blood. Neurology 46(5), 1350–1353 (1996)

    Google Scholar 

  83. Ganshirt-Ahlert, D., Borjesson-Stoll, R., Burschyk, M., Dohr, A., Garritsen, H.S., Helmer, E., Miny, P., Velasco, M., Walde, C., Patterson, D., et al.: Detection of fetal trisomies 21 and 18 from maternal blood using triple gradient and magnetic cell sorting. Am. J. Reprod. Immunol. 30(2–3), 194–201 (1993)

    Google Scholar 

  84. Cacheux, V., Milesi-Fluet, C., Tachdjian, G., Druart, L., Bruch, J.F., Hsi, B.L., et al.: Detection of 47,XYY trophoblast fetal cells in maternal blood by fluorescence in situ hybridization after using immunomagnetic lymphocyte depletion and flow cytometry sorting. Fetal Diagn. Ther. 7, 190–194 (1992)

    Google Scholar 

  85. Pezzolo, A., Santi, F., Pistoia, V., De Biasio, P.: Prenatal diagnosis of triploidy using fetal cells in the maternal circulation. Prenat. Diagn. 17(4), 389 (1997)

    Google Scholar 

  86. Geifman-Holtzman, O., Bernstein, I.M., Berry, S.M., Holtzman, E.J., Vadnais, T.J., DeMaria, M.A., Bianchi, D.W.: Fetal Rh genotyping in fetal cells flow sorted from maternal blood. Am. J. Obstet. Gynecol. 174(3), 818–822 (1996)

    Google Scholar 

  87. Oosterwijk, J.C., Mesker, W.E., Ouwerkerk-Van Velzen, M.C., Knepflé, C.F., Wiesmeijer, K.C., Beverstock, G.C., Van Ommen, G.J., Tanke, H.J., Kanhai, H.H.: Prenatal diagnosis of trisomy 13 on fetal cells obtained from maternal blood after minor enrichment. Prenat. Diagn. 18(10), 1082–1085 (1998)

    Google Scholar 

  88. de Graaf, I.M., van Bezouw, S.M., Jakobs, M.E., Leschot, N.J., Zondervan, H.A., Bilardo, C.M., Hoovers, J.M.: First trimester non-invasive prenatal diagnosis of triploidy. Prenat. Diagn. 19(2), 175–177 (1999)

    Google Scholar 

  89. Choolani, M., O’Donnell, H., Campagnoli, C., Kumar, S., Roberts, I., Bennett, P.R., Fisk, N.M.: Simultaneous fetal cell identification and diagnosis by epsilon globin chain immunophenotyping and chromosomal fluorescence in situ hybridization. Blood 98(3), 554–557 (2001)

    Google Scholar 

  90. Yu, J.Q., Cristofanilli, M.: Circulating tumor cells and PET. J. Nucl. Med. 52(10), 1501–1504 (2011)

    Google Scholar 

  91. Lianidou, E.S., Markou, A.: Circulating tumor cells in breast cancer: detection systems, molecular characterization, and future challenges. Clin. Chem. 57(9), 1242–1255 (2011)

    Google Scholar 

  92. Paterlini-Bréchot, P.: Organ-specific markers in circulating tumor cell screening: an early indicator of metastasis-capable malignancy. Future Oncol. 7(7), 849–871 (2011)

    Google Scholar 

  93. Schwarz-Cruz-y-Celis, A., Meléndez-Zajgla, J.: Cancer stem cells. Rev. Invest. Clin. 63(2), 179–186 (2011)

    Google Scholar 

  94. Schwarzenbach, H., Hoon, D.S., Pantel, K.: Cell-free nucleic acids as biomarkers in cancer patients. Nat. Rev. Cancer 11(6), 426–437 (2011)

    Google Scholar 

  95. Jung, K., Fleischhacker, M., Rabien, A.: Cell-free DNA in the blood as a solid tumor biomarker – a critical appraisal of the literature. Clin. Chim. Acta 411(21–22), 1611–1624 (2010)

    Google Scholar 

  96. Vlassov, V.V., Laktionov, P.P., Rykova, E.Y.: Circulating nucleic acids as a potential source for cancer biomarkers. Curr. Mol. Med. 10(2), 142–165 (2010)

    Google Scholar 

  97. Ellinger, J., Müller, S.C., Stadler, T.C., Jung, A., von Ruecker, A., Bastian, P.J.: The role of cell-free circulating DNA in the diagnosis and prognosis of prostate cancer. Urol. Oncol. 29(2), 124–129 (2011)

    Google Scholar 

  98. Gahan, P.B.: Circulating nucleic acids in plasma and serum: roles in diagnosis and prognosis in diabetes and cancer. Infect. Disord. Drug Targets 8(2), 100–108 (2008)

    Google Scholar 

  99. Qiu, M.Z., Li, Z.H., Zhou, Z.W., Li, Y.H., Wang, Z.Q., Wang, F.H., Huang, P., Aziz, F., Wang, D.Y., Xu, R.H.: Detection of carcinoembryonic antigen messenger RNA in blood using quantitative real-time reverse transcriptase-polymerase chain reaction to predict recurrence of gastric adenocarcinoma. J. Transl. Med. 8, 107 (2010)

    Google Scholar 

  100. Casciano, I., Vinci, A.D., Banelli, B., Brigati, C., Forlani, A., Allemanni, G., Romani, M.: Circulating tumor nucleic acids: perspective in breast cancer. Breast Care (Basel) 5(2), 75–80 (2010)

    Google Scholar 

  101. Deligezer, U., Yaman, F., Darendeliler, E., Dizdar, Y., Holdenrieder, S., Kovancilar, M., Dalay, N.: Post-treatment circulating plasma BMP6 mRNA and H3K27 methylation levels discriminate metastatic prostate cancer from localized disease. Clin. Chim. Acta 411(19–20), 1452–1456 (2010)

    Google Scholar 

  102. Garcia, V., Garcia, J.M., Silva, J., Martin, P., Peña, C., Dominguez, G., Diaz, R., Herrera, M., Maximiano, C., Sabin, P., Rueda, A., Cruz, M.A., Rodriguez, J., Canales, M.A., Bonilla, F., Provencio, M.: Extracellular tumor-related mRNA in plasma of lymphoma patients and survival implications. PLoS One 4(12), e8173 (2009)

    ADS  Google Scholar 

  103. Silva, J., García, V., García, J.M., Peña, C., Domínguez, G., Díaz, R., Lorenzo, Y., Hurtado, A., Sánchez, A., Bonilla, F.: Circulating Bmi-1 mRNA as a possible prognostic factor for advanced breast cancer patients. Breast Cancer Res. 9(4), R55 (2007)

    Google Scholar 

  104. Apostolaki, S., Perraki, M., Pallis, A., Bozionelou, V., Agelaki, S., Kanellou, P., Kotsakis, A., Politaki, E., Kalbakis, K., Kalykaki, A., Vamvakas, L., Georgoulias, V., Mavroudis, D.: Circulating HER2 mRNA-positive cells in the peripheral blood of patients with stage I and II breast cancer after the administration of adjuvant chemotherapy: evaluation of their clinical relevance. Ann. Oncol. 18(5), 851–858 (2007)

    Google Scholar 

  105. He, L., Hannon, G.J.: MicroRNAs: small RNAs with a big role in gene regulation. Nat. Rev. Genet. 5, 522–531 (2010)

    Google Scholar 

  106. Krol, J., Loedige, I., Filipowicz, W.: The widespread regulation of microRNA biogenesis, function and decay. Nat. Rev. Genet. 11, 597–610 (2010)

    Google Scholar 

  107. Sontheimer, E.J., Carthew, R.W.: Silence from within: endogenous siRNAs and miRNAs. Cell 122, 9–12 (2005)

    Google Scholar 

  108. Alvarez-Garcia, I., Miska, E.A.: MicroRNA functions in animal development and human disease. Development 132, 4653–4662 (2005)

    Google Scholar 

  109. Kroh, E.M., Parkin, R.K., Mitchell, P.S., Tewari, M.: Analysis of circulating microRNA biomarkers in plasma and serum using quantitative reverse transcription-PCR (qRT-PCR). Methods 50(4), 298–301 (2010)

    Google Scholar 

  110. Heneghan, H.M., Miller, N., Lowery, A.J., Sweeney, K.J., Newell, J., Kerin, M.J.: Circulating microRNAs as novel minimally invasive biomarkers for breast cancer. Ann. Surg. 251(3), 499–505 (2010)

    Google Scholar 

  111. Brase, J.C., Johannes, M., Schlomm, T., Fälth, M., Haese, A., Steuber, T., Beissbarth, T., Kuner, R., Sültmann, H.: Circulating miRNAs are correlated with tumor progression in prostate cancer. Int. J. Cancer 128(3), 608–616 (2011)

    Google Scholar 

  112. Silva, J., García, V., Zaballos, Á., Provencio, M., Lombardía, L., Almonacid, L., García, J.M., Domínguez, G., Peña, C., Diaz, R., Herrera, M., Varela, A., Bonilla, F.: Vesicle-related microRNAs in plasma of nonsmall cell lung cancer patients and correlation with survival. Eur. Respir. J. 37(3), 617–623 (2011)

    Google Scholar 

  113. Zuo, Z., Calin, G.A., de Paula, H.M., Medeiros, L.J., Fernandez, M.H., Shimizu, M., Garcia-Manero, G., Bueso-Ramos, C.E.: Circulating microRNAs let-7a and miR-16 predict progression-free survival and overall survival in patients with myelodysplastic syndrome. Blood 118(2), 13–15 (2011)

    Google Scholar 

  114. Mostert, B., Sieuwerts, A.M., Martens, J.W., Sleijfer, S.: Diagnostic applications of cell-free and circulating tumor cell-associated miRNAs in cancer patients. Expert Rev. Mol. Diagn. 11(3), 259–275 (2011)

    Google Scholar 

  115. Duttagupta, R., Jiang, R., Gollub, J., Getts, R.C., Jones, K.W.: Impact of cellular miRNAs on circulating miRNA biomarker signatures. PLoS One 6(6), e20769 (2011)

    Google Scholar 

  116. Wei, J., Gao, W., Zhu, C.J., Liu, Y.Q., Mei, Z., Cheng, T., Shu, Y.Q.: Identification of plasma microRNA-21 as a biomarker for early detection and chemosensitivity of non-small cell lung cancer. Chin. J. Cancer 30(6), 407–414 (2011)

    Google Scholar 

  117. Xie, L., Chen, X., Wang, L., Qian, X., Wang, T., Wei, J., Yu, L., Ding, Y., Zhang, C., Liu, B.: Cell-free miRNAs may indicate diagnosis and docetaxel sensitivity of tumor cells in malignant effusions. BMC Cancer 10, 591 (2010)

    Google Scholar 

  118. Criscitiello, C., Sotiriou, C., Ignatiadis, M.: Circulating tumor cells and emerging blood biomarkers in breast cancer. Curr. Opin. Oncol. 22(6), 552–558 (2010)

    Google Scholar 

  119. Weigel, M.T., Dowsett, M.: Current and emerging biomarkers in breast cancer: prognosis and prediction. Endocr. Relat. Cancer 17(4), R245–R262 (2010)

    Google Scholar 

  120. Gilad, S., Meiri, E., Yogev, Y., Benjamin, S., Lebanony, D., Yerushalmi, N., Benjamin, H., Kushnir, M., Cholakh, H., Melamed, N., Bentwich, Z., Hod, M., Goren, Y., Chajut, A.: Serum microRNAs are promising novel biomarkers. PLoS One 3(9), e3148 (2008)

    ADS  Google Scholar 

  121. Fuzzi, B., Rizzo, R., Criscuoli, L., Noci, I., Melchiorri, L., Scarselli, B., Bencini, E., Menicucci, A., Baricordi, O.R.: HLA-G expression in early embryos is a fundamental prerequisite for the obtainment of pregnancy. Eur. J. Immunol. 32(2), 311–315 (2002)

    Google Scholar 

  122. Sher, G., Keskintepe, L., Nouriani, M., Roussev, R., Batzofin, J.: Expression of sHLA-G in supernatants of individually cultured 46-h embryos: a potentially valuable indicator of ‘embryo competency’ and IVF outcome. Reprod. Biomed. Online 9(1), 74–78 (2004)

    Google Scholar 

  123. Sher, G., Keskintepe, L., Batzofin, J., Fisch, J., Acacio, B., Ahlering, P., Ginsburg, M.: Influence of early ICSI-derived embryo sHLA-G expression on pregnancy and implantation rates: a prospective study. Hum. Reprod. 20(5), 1359–1363 (2005)

    Google Scholar 

  124. Pazmany, L., Mandelboim, O., Valés-Gómez, M., Davis, D.M., Reyburn, H.T., Strominger, J.L.: Protection from natural killer cell-mediated lysis by HLA-G expression on target cells. Science 274(5288), 792–795 (1996)

    ADS  Google Scholar 

  125. Fournel, S., Aguerre-Girr, M., Huc, X., Lenfant, F., Alam, A., Toubert, A., Bensussan, A., Le Bouteiller, P.: Cutting edge: soluble HLA-G1 triggers CD95/CD95 ligand-mediated apoptosis in activated CD8+ cells by interacting with CD8. J. Immunol. 164(12), 6100–6104 (2000)

    Google Scholar 

  126. Bainbridge, D.R., Ellis, S.A., Sargent, I.L.: HLA-G suppresses proliferation of CD4(+) T-lymphocytes. J. Reprod. Immunol. 48, 17–26 (2000)

    Google Scholar 

  127. Gasca, S., Pellestor, F., Assou, S., Loup, V., Anahory, T., Dechaud, H., De Vos, J., Hamamah, S.: Identifying new human oocyte marker genes: a microarray approach. Reprod. Biomed. Online 14(2), 175–183 (2007)

    Google Scholar 

  128. Balaban, B., Urman, B.: Effect of oocyte morphology on embryo development and implantation. Reprod. Biomed. Online 12(5), 608–615 (2006)

    Google Scholar 

  129. Tesarík, J., Kopecný, V., Plachot, M., Mandelbaum, J., Da Lage, C., Fléchon, J.E.: Nucleologenesis in the human embryo developing in vitro: ultrastructural and autoradiographic analysis. Dev. Biol. 115(1), 193–203 (1986)

    Google Scholar 

  130. von Otte, S.: In vitro maturation is an attractive new approach to human assisted reproduction. Expert Rev. Obstet. Gynecol. 2(4), 407–408 (2007)

    Google Scholar 

  131. Rizzo, R., Dal Canto, M.B., Stignani, M., Fadini, R., Fumagalli, D., Renzini, M.M., Borgatti, M., Gambari, R., Baricordi, O.R.: Production of sHLA-G molecules by in vitro matured cumulus-oocyte complex. Int. J. Mol. Med. 24(4), 523–530 (2009)

    Google Scholar 

  132. Hatemi, P.K., Dawes, C.T., Frost-Keller, A., Settle, J.E., Verhulst, B.: Integrating social science and genetics: news from the political front. Biodemography Soc. Biol. 57(1), 67–87 (2011)

    Google Scholar 

  133. D’Agata, R., Breveglieri, G., Zanoli, L.M., Borgatti, M., Spoto, G., Gambari, R.: Direct detection of point mutations in nonamplified human genomic DNA. Anal. Chem. 83(22), 8711–8717 (2011)

    Google Scholar 

  134. Girigoswami, A., Jung, C., Mun, H.Y., Park, H.G.: PCR-free mutation detection of BRCA1 on a zip-code microarray using ligase chain reaction. J. Biochem. Biophys. Methods 70(6), 897–902 (2008)

    Google Scholar 

  135. Dubus, S., Gravel, J.F., Le Drogoff, B., Nobert, P., Veres, T., Boudreau, D.: PCR-free DNA detection using a magnetic bead-supported polymeric transducer and microelectromagnetic traps. Anal. Chem. 78(13), 4457–4464 (2006)

    Google Scholar 

  136. Ho, H.A., Doré, K., Boissinot, M., Bergeron, M.G., Tanguay, R.M., Boudreau, D., Leclerc, M.: Direct molecular detection of nucleic acids by fluorescence signal amplification. J. Am. Chem. Soc. 127(36), 12673–12676 (2005); Gao, Z., Tansil, N.C.: An ultrasensitive photoelectrochemical nucleic acid biosensor. Nucleic Acids Res. 33(13), e123 (2005)

    Google Scholar 

  137. Minunni, M., Tombelli, S., Fonti, J., Spiriti, M.M., Mascini, M., Bogani, P., Buiatti, M.: Detection of fragmented genomic DNA by PCR-free piezoelectric sensing using a denaturation approach. J. Am. Chem. Soc. 127(22), 7966–7967 (2005)

    Google Scholar 

  138. Uslu, F., Ingebrandt, S., Mayer, D., Böcker-Meffert, S., Odenthal, M., Offenhäusser, A.: Labelfree fully electronic nucleic acid detection system based on a field-effect transistor device. Biosens. Bioelectron. 19(12), 1723–1731 (2004)

    Google Scholar 

  139. Wang, J., Liu, G., Jan, M.R.: Ultrasensitive electrical biosensing of proteins and DNA: carbon-nanotube derived amplification of the recognition and transduction events. J. Am. Chem. Soc. 126(10), 3010–3011 (2004)

    Google Scholar 

  140. Senapati, S., Basuray, S., Slouka, Z., Cheng, L.J., Chang, H.C.: A nanomembrane-based nucleic acid sensing platform for portable diagnostics. Top. Curr. Chem. 304, 153–169 (2011)

    Google Scholar 

Download references

Acknowledgments

R.G. is granted by Fondazione Cariparo (Cassa di Risparmio di Padova e Rovigo), CIB, by UE ITHANET Project (Infrastructure for the Thalassaemia Research Network), by Telethon (contract GGP07257) and by COFIN-2007. This research is also supported by Associazione Veneta per la Lotta alla Talassemia (AVLT), Rovigo, and by FIRB (The impact of biotechnological innovations on fundamental rights: an interdisciplinary and comparative survey).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto Gambari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Finotti, A., Breveglieri, G., Borgatti, M., Gambari, R. (2012). Genetic Analyses in Health Laboratories: Current Status and Expectations. In: Spoto, G., Corradini, R. (eds) Detection of Non-Amplified Genomic DNA. Soft and Biological Matter. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1226-3_1

Download citation

Publish with us

Policies and ethics