Skip to main content

A Flavour of Constitutive Relations: The Linear Regime

  • Chapter

Part of the book series: NATO Science Series ((NAII,volume 89))

Abstract

Constitutive relations supplement the Maxwell equations to provide a selfconsistent and complete description of electromagnetic processes in materials. Some of the basic aspects relating to the characterization of different types of materials in terms of constitutive relations are reviewed in this contribution. Special emphasis is placed upon the different interpretations of time-domain and frequency-domain formulations. Some selected case studies show how nonlocality in time is equivalent to locality in frequency. The genesis of constitutive relations is exemplified through two mechanisms: a simple model for an electron plasma which leads to anisotropy and a homogenization technique from which a very general class of composite mediums, so-called Faraday chiral mediums, emerge. In the linear regime, the general bianisotropic medium, characterized by four constitutive dyadics (second-rank cartesian tensors) is the most general type of medium.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Weiglhofer, W.S., ed. (1997) Proceedings of Bianisotropics′97, International Conference and Workshop on Electromagnetics of Complex Media, Glasgow, UK.

    Google Scholar 

  2. Jacob, A.F. and Reinert, J., eds. (1998) Proceedings of Bianisotropics ′98, 7th International Conference on Complex Media, Braunschweig, Germany.

    Google Scholar 

  3. Barbosa, A.M. and Topa, A.L., eds. (2000) Proceedings of Bianisotropics 2000, 8th International Conference on Electromagnetics of Complex Media, Lisbon, Portugal.

    Google Scholar 

  4. Lakhtakia, A., Weiglhofer, W.S. and Messier, R., eds. (2000) Complex Mediums, Proc. SPIE Vol. 4097, Bellingham, WA.

    Google Scholar 

  5. Lakhtakia, A., Weiglhofer, W.S. and Hodgkinson, I.J., eds. (2001) Complex Mediums II: Beyond Linear Isotropie Dielectrics, Proc. SPIE Vol. 4467, Bellingham, WA.

    Google Scholar 

  6. Lakhtakia, A., Dewar, G. and McCall, M.W., eds. (2002) Complex Mediums III: Beyond Linear Isotropic Dielectrics, Proc. SPIE Vol. 4806, Bellingham, WA.

    Google Scholar 

  7. Priou, A., Sihvola, A., Tretyakov, S. and Vinogradov, A. (1997) Advances in Complex Electromagnetic Materials, Kluwer, Dordrecht.

    Book  Google Scholar 

  8. Singh, O.N. and Lakhtakia, A., eds. (2000) Electromagnetic Fields in Unconventional Materials and Structures, Wiley, New York.

    Google Scholar 

  9. Serdyukov, A., Semchenko, I., Tretyakov, S. and Sihvola, A. (2001) Electromagnetics of Bi-anisotropic Materials, Gordon and Breach, Amsterdam.

    Google Scholar 

  10. Weiglhofer, W.S. and Lakhtakia, A., eds. (2003) Introduction to Complex Mediums for Optics and Electromagnetics, SPIE Optical Engineering Press, Bellingham, WA.

    Google Scholar 

  11. Boyd, R.W. (1992) Nonlinear Optics, Academic Press, San Diego, CA.

    Google Scholar 

  12. Kobayashi, T. (1991) Introduction to nonlinear optical materials, Nonlinear Optics, 1, pp. 91–117.

    CAS  Google Scholar 

  13. Weiglhofer, W.S. (2002) Constitutive relations, in [6], pp. 67–80.

    Google Scholar 

  14. Post, E.J. (1997) Formal Structure of Electromagnetics, Dover Press, New York (Reprinted from North-Holland, Amsterdam, 1962).

    Google Scholar 

  15. Altman, C. and Suchy, K. (1991) Reciprocity, Spatial Mapping and Time Reversal in Electromagnetics, Kluwer, Dordrecht.

    Google Scholar 

  16. Lindell, I.V., Sihvola, A.H. and Suchy, K. (1995) Six-vector formalism in electromagnetics of bianisotropic media, J. Electrom. Waves Applic, 9, pp. 887–903.

    Article  Google Scholar 

  17. Lakhtakia, A. (1995) Covariances and invariances of the Maxwell postulates, in Barrett, T.W. and Grimes, D.M. (eds.), Advanced Electromagnetism: Foundations, Theory and Applications, World Scientific, Singapore, pp. 390–410.

    Chapter  Google Scholar 

  18. Jackson, J.D. (1975) Classical Electrodynamics, Wiley, New York.

    Google Scholar 

  19. Kong, J.A. (2000) Electromagnetic Wave Theory, EMW Publishing, Cambridge, MA.

    Google Scholar 

  20. Weiglhofer, W.S. and Lakhtakia, A. (1996) On causality requirements for material media, Arch. Elektron. Übertrag., 50, pp. 389–391.

    Google Scholar 

  21. Van Bladel, J. (1985) Electromagnetic Fields, Hemisphere, New York.

    Google Scholar 

  22. Hillion, P. (1993) Electromagnetism in a moving chiral medium, Phys. Rev. E, 48, pp. 3060–3065.

    Article  Google Scholar 

  23. Ragusa, S. (1994) Electromagnetic first-order conservation laws in a chiral medium, J. Phys. A: Math. Gen., 27, pp. 2887–2890.

    Article  Google Scholar 

  24. Flood, K.M. and Jaggard, D.L. (1995) Effective charge densities and current densities in isotropic chiral media, J. Opt. Soc. Am. A, 12, pp. 177–183.

    Article  CAS  Google Scholar 

  25. Hillion, P. (1995) Electromagnetic waves in linear media, J. Phys. A: Math. Gen., 28, pp. 2647–2659.

    Article  Google Scholar 

  26. Weiglhofer, W.S. and Lakhtakia, A. (2001) Comment on ‘Rigorous solution for transient propagation of electromagnetic waves through a medium: causality plus diffraction in time’, Opt. Lett., 26, pp. 1218–1219.

    Article  CAS  Google Scholar 

  27. Chew, W.C. (1990) Waves and Fields in Inhomogeneous Media, Van Nostrand-Reinhold, New York.

    Google Scholar 

  28. Karlsson, A. and Kristensson, G. (1992) Constitutive relations, dissipation, and reciprocity for the Maxwell equations in the time domain, J. Electrom. Waves Applic, 6, pp. 1517–1535.

    Article  Google Scholar 

  29. Weiglhofer, W.S. and Lakhtakia, A. (1996) Causality and natural optical activity (chirality), J. Opt. Soc. Am. A., 13, pp. 385–386.

    Article  Google Scholar 

  30. Felsen, L.B. and Marcuvitz, N. (1994) Radiation and Scattering of Waves, IEEE Press, Piscataway, NJ.

    Book  Google Scholar 

  31. Chen, H.C. (1983) Theory of Electromagnetic Waves, McGraw-Hill, New York.

    Google Scholar 

  32. Chandrasekhar, S. (1977) Liquid Crystals, Cambridge University Press, Cambridge.

    Google Scholar 

  33. Lakhtakia, A. and Weiglhofer, W.S. (1995) On light propagation in hélicoidal bianisotropic mediums, Proc. Roy. Soc. Lon. A, 448, pp. 419–437; erratum (1998), 454, p. 3275.

    Article  Google Scholar 

  34. Weiglhofer, W.S. and Lakhtakia, A. (1998) The Post constraint revisited, Arch. Elektron. Übertrag., 52, pp. 276–279.

    Google Scholar 

  35. Kong, J.A. (1972) Theorems of bianisotropic media, Proc. IEEE, 60, pp. 1036–1046.

    Article  Google Scholar 

  36. Lakhtakia, A. (2002) Sculptured thin films: accomplishments and emerging uses, Mater. Sci. Engg. C, 19, pp. 424–434.

    Google Scholar 

  37. Venugopal V.C. and Lakhtakia, A. (2000) Sculptured thin films: Conception, optical properties, and applications, in [8], pp. 151–216.

    Google Scholar 

  38. Lakhtakia, A. (1998) Batman presents: Applications of sculptured thin films with chiropterous flavor, in [2], pp. 297–300.

    Google Scholar 

  39. Lakhtakia, A. (2000) Filamentary, my dear Watson!, in [3], pp. 169–174.

    Google Scholar 

  40. Lakhtakia, A. and Messier, R., eds. (1999) Engineered Nanostructural Films and Materials, Proc. SPIE Vol. 3790, Bellingham, WA.

    Google Scholar 

  41. Lakhtakia, A. and Weiglhofer, W.S. (1996) Lorentz covariance, Occam’s razor, and a constraint on linear constitutive relations, Phys. Lett. A, 213, pp. 107–111; erratum (1996), 222, p. 459.

    Article  CAS  Google Scholar 

  42. Weiglhofer, W.S. (1998) A perspective on bianisotropy and Bianisotropics′;97, Int. J. Appl. Electromagn. Mech., 9, pp. 93–101.

    Google Scholar 

  43. Weiglhofer, W.S. (1999) Electromagnetic theory of complex materials, in [40], pp. 66–76.

    Google Scholar 

  44. Krowne, CM. (1984) Electromagnetic theorems for complex anisotropic media, IEEE Trans. Antennas Propagat, AP-32, pp. 1224–1230.

    Article  Google Scholar 

  45. Weiglhofer, W.S. and Lakhtakia, A. (1999) On electromagnetic waves in biaxial bianisotropic media, Electromagnetics, 19, pp. 351–362.

    Article  Google Scholar 

  46. Mackay, T.G. and Weiglhofer, W.S. (2001) Homogenization of biaxial composite materials: Nondissipative dielectric properties, Electromagnetics, 21, pp. 15–26.

    Article  Google Scholar 

  47. Mackay, T.G. and Weiglhofer, W.S. (2000) Homogenization of biaxial composite materials: Dissipative anisotropic properties, J. Opt. A: Pure Appl. Opt., 2, pp. 426–432.

    Article  Google Scholar 

  48. Mackay, T.G. and Weiglhofer, W.S. (2001) Homogenization of biaxial composite materials: Bianisotropic properties, J. Opt. A: Pure Appl. Opt., 3, pp. 45–52.

    Article  CAS  Google Scholar 

  49. Mackay, T.G. and Weiglhofer, W.S. (2002) A review of homogenization studies for biaxial bianisotropic materials, in Zouhdi, S., Sihvola, A., and Arsalane, M. (eds.), Advances in Electromagnetics of Complex Media and Metamaterials, Kluwer, Dordrecht, pp. 211–228.

    Chapter  Google Scholar 

  50. Weiglhofer, W.S., Lakhtakia, A. and Michel, B. (1997) Maxwell Garnett and Bruggeman formalisms for a participate composite with bianisotropic host medium, Microw. Opt. Technol. Lett., 15, pp. 263–266; erratum (1999), 22, p. 221.

    Article  Google Scholar 

  51. Michel, B., Lakhtakia, A., Weiglhofer, W.S. and Mackay, T.G. (2001) Incremental and differential Maxwell Garnett formalisms for bi-anisotropic composites, Comp. Sci. Technol., 61, pp. 13–18.

    Article  Google Scholar 

  52. Lakhtakia, A., ed. (1996) Selected Papers on Linear Optical Composite Materials, SPIE Optical Engineering Press, Bellihgham, WA.

    Google Scholar 

  53. Michel, B. (2000) Recent developments in the homogenization of linear bianisotropic composite materials, in [8], pp. 39–82.

    Google Scholar 

  54. Weiglhofer, W.S. (2000) Homogenization of particulate materials, in [4], pp. 146–154.

    Google Scholar 

  55. Mackay, T.G., Lakhtakia, A. and Weiglhofer, W.S. (2000) Strong-property-fluctuation theory for homogenization of bianisotropic composites: Formulation, Phys. Rev. E, 62, pp. 6052–6064; erratum (2001), 63, 049901.

    Article  CAS  Google Scholar 

  56. Mackay, T.G., Lakhtakia, A. and Weiglhofer, W.S. (2000) Third-order implementation and convergence of the strong-property-fluctuation theory in electromagnetic homogenization, Phys. Rev. E, 64, 066616.

    Article  Google Scholar 

  57. Mackay, T.G., Lakhtakia, A. and Weiglhofer, W.S. (2001) The strong-propertyfluctuation theory applied to the homogenisation of linear bianisotropic composites, in [5], pp. 243–255.

    Google Scholar 

  58. Lakhtakia, A. (1994) Beltrami Fields in Chiral Media, World Scientific, Singapore.

    Google Scholar 

  59. Weiglhofer, W.S., Lakhtakia, A. and Michel, B. (1998) On the constitutive parameters of a chiroferrite composite medium, Microw. Opt. Technol. Lett., 18, pp. 342–345.

    Article  Google Scholar 

  60. Weiglhofer, W.S. and Lakhtakia, A. (1998) The correct constitutive relations of chiroplasmas and chiroferrites, Microw. Opt. Technol. Lett., 17, pp. 405–408.

    Article  Google Scholar 

  61. Weiglhofer, W.S. and Mackay, T.G. (2000) Numerical studies on the constitutive parameters of a chiroplasma composite medium, Arch. Elektron. Übertrag., 54, pp. 259–264.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Weiglhofer, W.S. (2002). A Flavour of Constitutive Relations: The Linear Regime. In: Zouhdi, S., Sihvola, A., Arsalane, M. (eds) Advances in Electromagnetics of Complex Media and Metamaterials. NATO Science Series, vol 89. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1067-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-1067-2_4

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-1102-3

  • Online ISBN: 978-94-007-1067-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics