Skip to main content

Management of renal anemia

  • Chapter
Book cover Pediatric Dialysis

Abstract

Nearly all children who require renal replacement therapy develop anemia because endogenous renal erythropoietin (EPO) production is inadequate to sustain a normal number of circulating erythrocytes. Anemic children may have compensatory changes in heart rate and respiration, impaired cognition, fatigue with exertion, left ventricular hypertrophy, anorexia, and a lower satisfaction with life when compared to non-anemic children. Prior to the availability of recombinant human erythropoietin (rHuEPO) therapy, children with end-stage renal disease (ESRD) were dependent on red blood cell transfusions to ameliorate the effects of severe anemia. Erythropoietin therapy has dramatically improved outcomes in children with ESRD by avoiding the morbidity associated with red blood cell transfusions, including iron overload, viral infections, and human leukocyte antigen (HLA) sensitization. Despite the improvement in outcomes, there is still room for improvement as anemia is still under-recognized and under-treated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Rothstein G. Origin and development of the blood and blood-forming tissues. In: Cann C, editor. Wintrobe’s Clinical Hematology Vol 1, 9th edn. Malvern, PA: Lea & Febiger, 1993;41–78.

    Google Scholar 

  2. Steinberg M, Benz E. Pathobiology of the Human Erythrocyte and Its Hemoglobins. In: Hoffman N, editor. Hematology: Basic Principles and Practice, 3rd edn. Edinburgh, UK: Churchill Livingstone, 2000.

    Google Scholar 

  3. Telen M. The mature erythrocyte. In: Cann C, editor. Wintrobe’s Clinical Hematology Vol 1. Malvern, PA: Lea & Febiger, 1993:101–33.

    Google Scholar 

  4. Wu SG, Jeng FR, Wei SY, Su CZ, Chung TC, Chang WJ, Chang HW. Red blood cell osmotic fragility in chronically hemodialyzed patients. Nephron. 1998;78(1):28–32.

    Article  PubMed  CAS  Google Scholar 

  5. Fondu P, Mozes N, Neve P, Sohet-Robazza L, Mandelbaum I. The erythrocyte membrane disturbances in protein-energy malnutrition: nature and mechanisms. Br J Haematol. 1980;44(4):605–18.

    Article  PubMed  CAS  Google Scholar 

  6. Icardi A, Paoletti E, Traverso GB, Sarchi C, Cappelli G, Molinelli G. Red cell membrane during erythropoietin therapy in hemodialysis and in hemodiafiltration. Int J Artif Organs. 1991; 14(3): 147–9.

    PubMed  CAS  Google Scholar 

  7. Rodriguez-Commes JL, Tabernero JM, Martin-Vasallo P, De Castro S, Battaner E. Metabolism of red blood cells in chronic renal failure. I. Glycolytic enzyme levels. Nephron. 1979;24(1):21–4.

    Article  PubMed  CAS  Google Scholar 

  8. Bohler T, Leo A, Stadler A, Linderkamp O. Mechanical fragility of erythrocyte membrane in neonates and adults. Pediatr Res. 1992;32(1):92–6.

    Article  PubMed  CAS  Google Scholar 

  9. Muller-Wiefel DE, Sinn H, Gilli G, Scharer K. Hemolysis and blood loss in children with chronic renal failure. Clin Nephrol. 1977;8(5):481–6.

    PubMed  CAS  Google Scholar 

  10. Nishio M, Oda A, Koizumi K, Satoh I, Sato Y, Endoh T, Tsutsumi A, Fujihara M, Ikebuchi K, Ikeda H, Koike T, Sawada KI. Stem cell factor prevents Fas-mediated apoptosis of human ery-throid precursor cells with Src-family kinase dependency. Exp Hematol. 2000;29(1): 19–29.

    Article  Google Scholar 

  11. Abboud M, Xu F, LaVia M, Laver J. Study of early hematopoietic precursors in human cord blood. Exp Hematol. 1992;20(9):1043–7.

    PubMed  CAS  Google Scholar 

  12. Bastion Y, Campos L, Roubi N, Bienvenu J, Felman P, Dumontet C, Coiffier B. IL-3 increases marrow and peripheral erythroid precursors in chronic pure red cell aplasia presenting in childhood. Br J Haematol. 1995;89(2):413–6.

    Article  PubMed  CAS  Google Scholar 

  13. Negrin RS, Stein R, Vardiman J, Doherty K, Cornwell J, Krantz S, Greenberg PL. Treatment of the anemia of myelodysplastic syndromes using recombinant human granulocyte colony-stimulating factor in combination with erythropoietin. Blood. 1993;82(3):737–43.

    PubMed  CAS  Google Scholar 

  14. Bessho M, Hirashima K, Asano S, Ikeda Y, Ogawa N, Tomonaga M, Toyama K, Nakahata T, Nomura T, Mizoguchi H, Yoshida Y, Niitsu Y, Kohgo Y. Treatment of the anemia of aplastic anemia patients with recombinant human erythropoietin in combination with granulocyte colony-stimulating factor: a multicenter randomized controlled study. Multicenter Study Group. Eur J Haematol. 1997;58(4):265–72.

    Article  PubMed  CAS  Google Scholar 

  15. Migliaccio G, Migliaccio AR, Adamson JW. In vitro differentiation of human granulocyte/macrophage and erythroid progenitors: comparative analysis of the influence of recombinant human erythropoietin, G-CSF, GM-CSF, and IL-3 in serum-supplemented and serum-deprived cultures. Blood. 1988;72(1):248–56.

    PubMed  CAS  Google Scholar 

  16. Claustres M, Sultan C. Stimulatory effects of androgens on normal children’s bone marrow in culture: effects on BFU-E, CFU-E, and uroporphyrinogen I synthase activity. Horm Res. 1986;23(2):91–8.

    Article  PubMed  CAS  Google Scholar 

  17. Moriyama Y, Fisher JW. Effects of testosterone and erythropoietin on erythroid colony formation in human bone marrow cultures. Blood. 1975;45(5):665–70.

    PubMed  CAS  Google Scholar 

  18. Fandrey J, Pagel H, Frede S, Wolff M, Jelkmann W. Thyroid hormones enhance hypoxia-induced erythropoietin production in vitro. Exp Hematol. 1994;22(3):272–7.

    PubMed  CAS  Google Scholar 

  19. Dainiak N, Hoffman R, Maffei LA, Forget BG. Potentiation of human erythropoiesis in vitro by thyroid hormone. Nature. 1978;272(5650):260–2.

    Article  PubMed  CAS  Google Scholar 

  20. Aoki I, Taniyama M, Toyama K, Homori M, Ishikawa K. Stimulatory effect of human insulin on erythroid progenitors (CFU-E and BFU-E) in human CD34+ separated bone marrow cells and the relationship between insulin and erythropoietin. Stem Cells. 1994;12(3):329–38.

    Article  PubMed  CAS  Google Scholar 

  21. Okajima Y, Matsumura I, Nishiura T, Hashimoto K, Yoshida H, Ishikawa J, Wakao H, Yoshimura A, Kanakura Y, Tomiyama Y, Matsuzawa Y. Insulin-like growth factor-I augments erythropoietin-induced proliferation through enhanced tyrosine phosphorylation of STAT 5. J Biol Chem. 1998;273(36):22877–83.

    Article  PubMed  CAS  Google Scholar 

  22. Freudenthaler SM, Schenck T, Lucht I, Gleiter CH. Fenoterol stimulates human erythropoietin production via activation of the renin angiotensin system. Br J Clin Pharmacol. 1999;48(4):631–4.

    Article  PubMed  CAS  Google Scholar 

  23. Gleiter CH, Becker T, Schreeb KH, Freudenthaler S, Gundert-Remy U. Fenoterol but not dobutamine increases erythropoietin production in humans. Clin Pharmacol Ther. 1997; 61(6):669–76.

    Article  PubMed  CAS  Google Scholar 

  24. Means RT Jr. Krantz SB. Inhibition of human erythroid colony-forming units by tumor necrosis factor requires beta interferon. J Clin Invest. 1993;91(2):416–19.

    Article  PubMed  CAS  Google Scholar 

  25. Zamai L, Secchiero P, Pierpaoli S, Bassini A, Papa S, Alnemri ES, Guidotti L, Vitale M, Zauli G. TNF-related apoptosis-inducing ligand (TRAIL) as a negative regulator of normal human erythropoiesis. Blood. 2000;95(12):3716–24.

    PubMed  CAS  Google Scholar 

  26. Rüsten LS, Jacobsen SE. Tumor necrosis factor (TNF)-alpha directly inhibits human erythropoiesis in vitro: role of p55 and p75 TNF receptors. Blood. 1995;85(4):989–96.

    PubMed  Google Scholar 

  27. Tarumi T, Sawada K, Sato N, Kobayashi S, Takano H, Yasukouchi T, Takashashi T, Sekiguchi S, Koike T. Interferon-alpha-induced apoptosis in human erythroid progenitors. Exp Hematol. 1995;23(12):1310–18.

    PubMed  CAS  Google Scholar 

  28. Zermati Y, Fichelson S, Valensi F, Freyssinier JM, Rouyer-Fessard P, Cramer E, Guichard J, Varet B, Hermine O. Transforming growth factor inhibits erythropoiesis by blocking proliferation and accelerating differentiation of erythroid progenitors. Exp Hematol. 2000;28(8):885–94.

    Article  PubMed  CAS  Google Scholar 

  29. Dybedal I, Jacobsen SE. Transforming growth factor beta (TGF-beta), a potent inhibitor of erythropoiesis: neutralizing TGF-beta antibodies show erythropoietin as a potent stimulator of murine burst-forming unit erythroid colony formation in the absence of a burst-promoting activity. Blood. 1995;86(3):949–57.

    PubMed  CAS  Google Scholar 

  30. Sato T, Maekawa T, Watanabe S, Tsuji K, Nakahata T. Erythroid progenitors differentiate and mature in response to endogenous erythropoietin. J Clin Invest. 2000;106(2):263–70.

    Article  PubMed  CAS  Google Scholar 

  31. Wu H, Klingmuller U, Besmer P, Lodish HE. Interaction of the erythropoietin and stem-cell-factor receptors. Nature. 1995;377(6546):242–6.

    Article  PubMed  CAS  Google Scholar 

  32. Jacobs K, Shoemaker C, Rudersdorf R, Neill SD, Kaufman RJ, Mufson A, Seehra J, Jones SS, Hewick R, Fritsch EF. Isolation and characterization of genomic and cDNA clones of human erythropoietin. Nature. 1985;313(6005):806–10.

    Article  PubMed  CAS  Google Scholar 

  33. Watkins PC, Eddy R, Hoffman N, Stanislovitis P, Beck AK, Galli J, Vellucci V, Gusella JF, Shows TB. Regional assignment of the erythropoietin gene to human chromosome region 7pter-q22. Cytogenet Cell Genet. 1986;42(4):214–18.

    Article  PubMed  CAS  Google Scholar 

  34. Law ML, Cai GY, Lin FK, Wei Q, Huang SZ, Hartz JH, Morse H, Lin CH, Jones C, Kao FT. Chromosomal assignment of the human erythropoietin gene and its DNA polymorphism. Proc Natl Acad Sci USA. 1986;83(18):6920–4.

    CAS  Google Scholar 

  35. Powell JS, Berkner KL, Lebo RV, Adamson JW. Human erythropoietin gene: high level expression in stably transfected mammalian cells and chromosome localization. Proc Natl Aca Sci USA. 1986;83(17):6465–9.

    CAS  Google Scholar 

  36. Lin FK, Suggs S, Lin CH, Browne JK, Smalling R, Egrie JC, Chen KK, Fox GM, Martin F, Stabinsky Z. Cloning and expression of the human erythropoietin gene. Proc Natl Aca Sci USA. 1985;82(22):7580–4.

    CAS  Google Scholar 

  37. Miyake T, Kung CK, Goldwasser E. Purification of human erythropoietin. J Bio Chem. 1977;252(15):5558–64.

    CAS  Google Scholar 

  38. Lai PH, Everett R, Wang FF, Arakawa T, Goldwasser E. Structural characterization of human erythropoietin. J Biol Chem. 1986;261(7):3116–21.

    PubMed  CAS  Google Scholar 

  39. Cheetham JC, Smith DM, Aoki KH, Stevenson JL, Hoeffel TJ, Syed RS, Egrie J, Harvey TS. NMR structure of human erythropoietin and a comparison with its receptor bound conformation. Nat Struct Biol. 1998;5(10):861–6.

    Article  PubMed  CAS  Google Scholar 

  40. Wang GL, Semenza GL. General involvement of hypoxia-inducible factor 1 in transcriptional response to hypoxia. Proc Natl Aca Sci USA. 1993;90(9):4304–8.

    CAS  Google Scholar 

  41. Gleadle JM, Ratcliffe PJ. Induction of hypoxia-inducible factor-1, erythropoietin, vascular endothelial growth factor, and glucose transporter-1 by hypoxia: evidence against a regulatory role for Src kinase. Blood. 1997;89(2):503–9.

    PubMed  CAS  Google Scholar 

  42. Caro J, Erslev AJ, Silver R, Miller O, Birgegard G. Erythropoietin production in response to anemia or hypoxia in the newborn rat. Blood. 1982;60(4):984–8.

    PubMed  CAS  Google Scholar 

  43. Bachmann S, Le Hir M, Eckardt KU. Co-localization of erythropoietin mRNA and ecto-5’-nucleotidase immunoreactivity in peritubular cells of rat renal cortex indicates that fibroblasts produce erythropoietin. J Histochem Cytochem. 1993;41(3):335–41.

    Article  PubMed  CAS  Google Scholar 

  44. Maxwell PH, Osmond MK, Pugh CW, Heryet A, Nicholls LG, Tan CC, Doe BG, Ferguson DJ, Johnson MH, Ratcliffe PJ. Identification of the renal erythropoietin-producing cells using transgenic mice. Kidney Int. 1993;44(5): 1149–62.

    Article  PubMed  CAS  Google Scholar 

  45. Juul SE, Yachnis AT, Christensen RD. Tissue distribution of erythropoietin and erythropoietin receptor in the developing human fetus. Early Hum Dev. 1998;52(3):235–49.

    Article  PubMed  CAS  Google Scholar 

  46. Schuster SJ, Wilson JH, Erslev AJ, Caro J. Physiologic regulation and tissue localization of renal erythropoietin messenger RNA. Blood. 1987;70(1):316–18.

    PubMed  CAS  Google Scholar 

  47. Koury ST, Bondurant MC, Koury MJ, Semenza GL. Localization of cells producing erythropoietin in murine liver by in situ hybridization. Blood. 1991;77(11):2497–503.

    PubMed  CAS  Google Scholar 

  48. Chandra M, Clemons G, Sahdev I, McVicar M, Bluestone P. Intraperitoneal production of erythropoietin with continuous ambulatory peritoneal dialysis. Pediatr Nephrol. 1993;7(3):281–3.

    Article  PubMed  CAS  Google Scholar 

  49. Juul SE, Joyce AE, Zhao Y, Ledbetter DJ. Why is erythropoietin present in human milk? Studies of erythropoietin receptors on enterocytes of human and rat neonates. Pediatr Res. 1999;46(3):263–8.

    Article  PubMed  CAS  Google Scholar 

  50. Erslev AJ, Caro J, Miller O, Silver R. Plasma erythropoietin in health and disease. Ann Clin Lab Sci. 1980;10(3):250–7.

    PubMed  CAS  Google Scholar 

  51. Takenaka K, Nagafuji K, Harada M, Mizuno S, Miyamoto T, Makino S, Gondo H, Okamura T, Niho Y. In vitro expansion of hematopoietic progenitor cells induces functional expression of Fas antigen (CD95). Blood. 1996;88(8):2871–7.

    PubMed  CAS  Google Scholar 

  52. Quang CT, Wessely O, Pironin M, Beug H, Ghysdael J. Cooperation of Spi-1/PU.l with an activated erythropoietin receptor inhibits apoptosis and Epo-dependent differentiation in primary erythroblasts and induces their Kit ligand-dependent proliferation. EMBO J. 1997;16(18):5639–53.

    Article  PubMed  CAS  Google Scholar 

  53. Silva M, Grillot D, Benito A, Richard C, Nunez G, Fernandez-Luna JL. Erythropoietin can promote erythroid progenitor survival by repressing apoptosis through Bcl-XL and Bcl-2. Blood. 1996;88(5):1576–82.

    PubMed  CAS  Google Scholar 

  54. Muta K, Krantz SB. Apoptosis of human erythroid colony-forming cells is decreased by stem cell factor and insulin-like growth factor I as well as erythropoietin. J Cell Physiol. 1993;156(2):264–71.

    Article  PubMed  CAS  Google Scholar 

  55. Muta K, Krantz SB, Bondurant MC, Wickrema A. Distinct roles of erythropoietin, insulin-like growth factor I, and stem cell factor in the development of erythroid progenitor cells. J Clin Invest. 1994;94(1):34–43.

    Article  PubMed  CAS  Google Scholar 

  56. Gregoli PA, Bondurant MC. The roles of Bcl-X(L) and apopain in the control of erythropoiesis by erythropoietin. Blood. 1997;90(2):630–40.

    PubMed  CAS  Google Scholar 

  57. Fraser JK, Lin FK, Berridge MV. Expression of high affinity receptors for erythropoietin on human bone marrow cells and on the human erythroleukemic cell line, HEL. Exp Hematol. 1988;16(10):836–42.

    CAS  Google Scholar 

  58. Kirito K, Nakajima K, Watanabe T, Uchida M, Tanaka M, Ozawa K, Komatsu N. Identification of the human erythropoietin receptor region required for Stat 1 and Stat 3 activation. Blood. 2002;99(1):102–10.

    Article  PubMed  CAS  Google Scholar 

  59. Nosaka Y, Arai A, Miyasaka N, Miura O. CrkL mediates Ras-dependent activation of the Raf/ERK pathway through the guanine nucleotide exchange factor C3G in hematopoietic cells stimulated with erythropoietin or interleukin-3. J Biol Chem. 1999;274(42):30154–62.

    Article  PubMed  CAS  Google Scholar 

  60. Arai A, Kanda E, Miura O. Rac is activated by erythropoietin or interleukin-3 and is involved in activation of the Erk signaling pathway. Oncogene. 2002;21(17):2641–51.

    Article  PubMed  CAS  Google Scholar 

  61. Chen C, Sytkowski AJ. Erythropoietin activates two distinct signaling pathways required for the initiation and the elongation of c-myc. J Biol Chem. 2001;276(42):38518–26.

    Article  PubMed  CAS  Google Scholar 

  62. Sui X, Krantz SB, You M, Zhao Z. Synergistic activation of MAP kinase (ERK1/2) by erythropoietin and stem cell factor is essential for expanded erythropoiesis. Blood. 1998;92(4):1142–9.

    PubMed  CAS  Google Scholar 

  63. Neri LM, Bortul R, Tabellini G, Borgatti P, Baldini G, Celeghini C, Capitani S, Martelli AM. Erythropoietin-induced erythroid differentiation of K562 cells is accompanied by the nuclear translocation of phosphatidylinositol 3-kinase and intranuclear generation of phosphatidylinositol (3,4,5) trisphosphate. Cell Signal. 2002;14(1):21–9.

    Article  PubMed  CAS  Google Scholar 

  64. Ponka P, Beaumont C, Richardson DR. Function and regulation of transferrin and ferritin. Semin Hematol. 1998;35(1):35–54.

    PubMed  CAS  Google Scholar 

  65. Ponka P. Tissue-specific regulation of iron metabolism and heme synthesis: distinct control mechanisms in erythroid cells. Blood. 1997;89(1):1–25.

    PubMed  CAS  Google Scholar 

  66. Conrad ME, Parmley RT, Osterloh K. Small intestinal regulation of iron absorption in the rat. J Lab Clin Med. 1987;110(4):418–26.

    PubMed  CAS  Google Scholar 

  67. Roughead ZK, Hunt JR. Adaptation in iron absorption: iron supplementation reduces nonhemeiron but not heme-iron absorption from food. Am J Clin Nutr. 2000;72(4):982–9.

    PubMed  CAS  Google Scholar 

  68. Conrad ME, Umbreit JN, Moore EG, Rodning CR. Newly identified iron-binding protein in human duodenal mucosa. Blood. 1992;79(1):244–7.

    PubMed  CAS  Google Scholar 

  69. Teichmann R, Stremmel W. Iron uptake by human upper small intestine microvillous membrane vesicles. Indication for a facilitated transport mechanism mediated by a membrane iron-binding protein. J Clin Invest. 1990;86(6):2145–53.

    Article  PubMed  CAS  Google Scholar 

  70. Bomford AB, Munro HN. Ferritin gene expression in health and malignancy. Pathobiology. 1992;60(1):10–18.

    Article  PubMed  CAS  Google Scholar 

  71. Skikne BS, Ahluwalia N, Fergusson B, Chonko A, Cook JD. Effects of erythropoietin therapy on iron absorption in chronic renal failure. J Lab Clin Med. 2000;135(6):452–8.

    Article  PubMed  CAS  Google Scholar 

  72. McCord JM. Human disease, free radicals, and the oxidant/antioxidant balance. Clin Biochem. 1993;26(5):351–7.

    Article  PubMed  CAS  Google Scholar 

  73. McCord JM. Iron, free radicals, and oxidative injury. Semin Hematol. 1998;35(1):5–12.

    PubMed  CAS  Google Scholar 

  74. Ponka P, Lok CN. The transferrin receptor: role in health and disease. Int J Biochem Cell Biol. 1999;31(10):1111–37.

    Article  PubMed  CAS  Google Scholar 

  75. Bali PK, Zak O, Aisen P. A new role for the transferrin receptor in the release of iron from transferrin. BioChem. 1991;30(2):324–8.

    Article  CAS  Google Scholar 

  76. Irie S, Tavassoli M. Transferrin-mediated cellular iron uptake. Am J Med Sci. 1987;293(2):103–11.

    Article  PubMed  CAS  Google Scholar 

  77. Jin W, Takagi H, Pancorbo B, Theil EC. “Opening” the ferritin pore for iron release by mutation of conserved amino acids at interhelix and loop sites. Biochem. 2001;40(25):7525–32.

    Article  CAS  Google Scholar 

  78. Boyd D, Vecoli C, Belcher DM, Jain SK, Drysdale JW. Structural and functional relationships of human ferritin H and L chains deduced from cDNA clones. J Biol Chem. 1985;260(21):11755–61.

    PubMed  CAS  Google Scholar 

  79. Santambrogio P, Levi S, Arosio P, Palagi L, Vecchio G, Lawson DM, Yewdall SJ, Artymiuk PJ, Harrison PM, Jappelli R. Evidence that a salt bridge in the light chain contributes to the physical stability difference between heavy and light human ferritins. J Biol Chem. 1992;267(20): 14077–83.

    PubMed  CAS  Google Scholar 

  80. Hudson JQ, Comstock TJ. Considerations for optimal iron use for anemia due to chronic kidney disease. Clin Ther. 2001;23(10): 1637–71.

    Article  PubMed  CAS  Google Scholar 

  81. Besarab A, Frinak S, Ye J. An indistinct balance: the safety and eficacy of parenteral irontherapy. J Am Soc Nephrol. 1999;10(9):2029–43.

    PubMed  CAS  Google Scholar 

  82. Yip R, Johnson C, Dallman PR. Age-related changes in laboratory values used in the diagnosis of anemia and iron deficiency. Am J Clin Nutr. 1984;39(3):427–36.

    PubMed  CAS  Google Scholar 

  83. Yip R, Schwartz S, Deinard AS. Hematocrit values in white, black, and American Indian children with comparable iron status. Evidence to support uniform diagnostic criteria for anemia among all races. Am J Dis Child. 1984;138(9):824–7.

    PubMed  CAS  Google Scholar 

  84. Siberry G, Iannone R. The Harriet Lane Handbook. In: Ebel B and Raffini L, editors. A manual for pediatric houseofficers, 15th edn. St. Louis, MO: Mosby, 2000: pp. 1041.

    Google Scholar 

  85. Nathan DG, Orkin SH, Oski FA. Disorders of erythrocyte production. In: Nathan and Oski’s Hematology of Infancy and Childhood, 5th edn. Philadelphia: W.B. Saunders, 1998: 376.

    Google Scholar 

  86. Lee GR. In: Wintrobe’s Clinical Hematology, 9th edn. Philadelphia: Lea & Febiger, 1981: 2303.

    Google Scholar 

  87. Anonymous. IV. NKF-K/DOQI clinical practice guidelines for anemia of chronic kidney disease: update 2000. Am J Kidney Dis [Online]. 2001;37(1 Suppl 1):S182–238.

    Article  Google Scholar 

  88. Henry J. Clinical diagnosis and management by laboratory methods. In: Methods Hematology: Basic Methodology, 19th edn. Philadelphia, PA: WB Saunders, 1996: pp. 578–625.

    Google Scholar 

  89. Holt JT, DeWandler MJ, Arvan DA. Spurious elevation of the electronically determined mean corpuscular volume and hematocrit caused by hyperglycemia. Am J Clin Pathol. 1982; 77(5):561–7.

    PubMed  CAS  Google Scholar 

  90. Paterakis G, Loutaris N, Alexia S, Siourounis P, Stamulakatou A, Premetis E, Sakollariou CH, Terzoglou G, Papassotiriou I, Loukopoulos D. The effect of red cell shape on the measurement of red cell volume. A proposed method for the comparison assessment of this effect amoung various haematology analysers. Clin Lab Haematol. 1994; 16:235–45.

    Article  PubMed  CAS  Google Scholar 

  91. Chandra M, Clemons GK, McVicar MI. Relation of serum erythropoietin levels to renal excretory function: evidence for lowered set point for erythropoietin production in chronic renal failure. J Pediatr. 1988;113(6):1015–21.

    Article  PubMed  CAS  Google Scholar 

  92. Anonymous. Clinical practice guidelines. For chronic kidney disease, evaluation, classification and stratification. Am J Kidney Dis. 2002;39(S1):1–266.

    Google Scholar 

  93. von Lilien T, Salusky IB, Boechat I, Ettenger RB, Fine RN. Five years’ experience with continuous ambulatory or continuous cycling peritoneal dialysis in children. J Pediatr. 1987; 111(4):513–18.

    Article  Google Scholar 

  94. Nissenson AR. National cooperative rHu erythropoietin study in patients with chronic renal failure: a phase IV multicenter study. Report of National Cooperative rHu Erythropoietin Study Group. Am J Kidney Dis. 1991;18(4 Suppl 1):24–33.

    PubMed  CAS  Google Scholar 

  95. Taccone-Gallucci M, Di Nucci G, Meloni C, Mariani G, Valeri M, Piazza A, Elia L, Torromeo C, Mandelli F, Casciani CU. Risk of iron overload and “hemochromatosis allele(s)” in patients on maintenance hemodialysis. Am J Nephrol. 1987;7(1):28–32.

    Article  PubMed  CAS  Google Scholar 

  96. Chavers BM, Sullivan EK, Tejani A, Harmon WE. Pre-transplant blood transfusion and renal allograft outcome: a report of the North American Pediatric Renal Transplant Cooperative Study. Pediatr Transplant. 1997;1(1):22–8.

    PubMed  CAS  Google Scholar 

  97. Kambova L. Recombinant erythropoietin improves cognitive function in chronic haemodialysis patients [letter]. Nephrol Dial Transplant. 1998;13(1):229–30.

    Article  PubMed  CAS  Google Scholar 

  98. Nelson M. Anaemia in adolescent girls: effects on cognitive function and activity. Proc Nutr Soc. 1996;55(1B):359–67.

    CAS  Google Scholar 

  99. Temple RM, Langan SJ, Deary IJ, Winney RJ. Recombinant erythropoietin improves cognitive function in chronic haemodialysis patients. Nephrol Dial Transplant. 1992;7(3):240–5.

    PubMed  CAS  Google Scholar 

  100. Weiskopf RB, Kramer JH, Viele M, Neumann M, Feiner JR, Watson JJ, Hopf HW, Toy P. Acute severe isovolemic anemia impairs cognitive function and memory in humans. Anes-thesiology. 2000;92(6):1646–52.

    Article  CAS  Google Scholar 

  101. Lozoff B, Jimenez E, Hagen J, Mollen E, Wolf AW. Poorer behavioral and developmental outcome more than 10 years after treatment for iron deficiency in infancy. Pediatrics. 2000;105(4):E51.

    Article  PubMed  CAS  Google Scholar 

  102. Guthrie M, Cardenas D, Eschbach JW, Haley NR, Robertson HT, Evans RW. Effects of erythropoietin on strength and functional status of patients on hemodialysis. Clin Nephrol. 1993;39(2):97–102.

    PubMed  CAS  Google Scholar 

  103. Warady BA, Sabath RJ, Smith CA, Alon U, Hellerstein S. Recombinant human erythropoietin therapy in pediatric patients receiving long-term peritoneal dialysis. Pediatr Nephrol. 1991; 5(6):718–23.

    Article  PubMed  CAS  Google Scholar 

  104. Campos A, Garin EH. Therapy of renal anemia in children and adolescents with recombinant human erythropoietin (rHuEPO). Clin Pediatr (Phila). 1992;31(2):94–9.

    Article  CAS  Google Scholar 

  105. Xia H, Ebben J, Ma JZ, Collins AJ. Hematocrit levels and hospitalization risks in hemodialysis patients. J Am Soc Nephrol. 1999; 10(6): 1309–16.

    PubMed  CAS  Google Scholar 

  106. Nelson M, Bakaliou F, Trivedi A. Iron-deficiency anaemia and physical performance in adolescent girls from different ethnic backgrounds. Br J Nutr. 1994;72(3):427–33.

    Article  PubMed  CAS  Google Scholar 

  107. Kapoor RK, Kumar A, Chandra M, Misra PK, Sharma B, Awasthi S. Cardiovascular responses to treadmill exercise testing in anemia. Indian Pediatr. 1997;34(7):607–12.

    PubMed  CAS  Google Scholar 

  108. Martin GR, Ongkingo JR, Turner ME, Skurow ES, Ruley EJ. Recombinant erythropoietin (Epogen) improves cardiac exercise performance in children with end-stage renal disease. Pediatr Nephrol. 1993;7(3):276–80.

    Article  PubMed  CAS  Google Scholar 

  109. Morris KP, Sharp J, Watson S, Coulthard MG. Non-cardiac benefits of human recombinant erythropoietin in end stage renal failure and anaemia. Arch Dis Child. 1993;69(5):580–6.

    Article  PubMed  CAS  Google Scholar 

  110. Navarro M, Alonso A, Avilla JM, Espinosa L. Anemia of chronic renal failure: treatment with erythropoietin. Child Nephrol & Urol. 1991;11(3):146–51.

    CAS  Google Scholar 

  111. Jabs K. The effects of recombinant human erythropoietin on growth and nutritional status. Pediatr Nephrol. 1996;10(3):324–7.

    PubMed  CAS  Google Scholar 

  112. Steinhauer HB, Lubrich-Birkner I, Dreyling KW, Horl WH, Schollmeyer P. Increased ultrafiltration after erythropoietin-induced correction of renal anemia in patients on continuous ambulatory peritoneal dialysis. Nephron. 1989;53(1):91–2.

    Article  PubMed  CAS  Google Scholar 

  113. Schollmeyer P, Lubrich-Birkner I, Steinhauer HB. Effect of recombinant human erythropoietin on anemia and dialysis: efficiency in patients undergoing CAPD. Contrib Nephrol. 1990;87:95–104.

    PubMed  CAS  Google Scholar 

  114. Lubrich-Birkner I, Schollmeyer P, Steinhauer HB. One year experience with subcutaneous human erythropoietin in CAPD: correction of renal anemia and increased ultrafiltration. Adv Perit Dial. 1990;6:(302–7).

    PubMed  CAS  Google Scholar 

  115. Bessman J, Gilmer P, Jr., Gardner F. Improved classification of anemias by MCV and RDW. Am J Clin Pathol. 1983;80(3):322–6.

    PubMed  CAS  Google Scholar 

  116. Fialon P, Leaute AG, Sassier P, Vallot C, Wone C. Use of red blood cell indices (MCV, MCH, RDW) in monitoring chronic hemodialysis patients treated with recombinant erythropoietin. Pathologie et Biologic 1993;41(10):931–5.

    CAS  Google Scholar 

  117. Feinstein S, Becker-Cohen R, Algur N, Raveh D, Shalev H, Shvil Y, Frishberg Y. Erythropoietin deficiency causes anemia in nephrotic children with normal kidney function. Am J Kidney Dis [Online]. 2001;37(4):736–42.

    Article  CAS  Google Scholar 

  118. Besarab A, Caro J, Jarrell BE, Francos G, Erslev AJ. Dynamics of erythropoiesis following renal transplantation. Kidney Int. 1987;32(4):526–36.

    Article  PubMed  CAS  Google Scholar 

  119. Aljama P, Ward MK, Piérides AM, Eastham EJ, Ellis HA, Feest TG, Conceicao S, Kerr DN. Serum ferritin concentration: a reliable guide to iron overload in uremic and hemodialyzed patients. Clin Nephrol. 1978;10(3):101–4.

    PubMed  CAS  Google Scholar 

  120. Fernandez-Rodriguez AM, Guindeo-Casasus MC, Molero-Labarta T, Dominguez-Cabrera C, Hortal-Cascn L, Perez-Borges P, Vega-Diaz N, Saavedra-Santana P, Palop-Cubillo L. Diagnosis of iron deficiency in chronic renal failure. Am J Kidney Dis [Online]. 1999;34(3):508–13.

    Article  CAS  Google Scholar 

  121. Anonymous. NKF-DOQI clinical practice guidelines for the treatment of anemia of chronic renal failure. National Kidney Foundation-Dialysis Outcomes Quality Initiative [see comments]. Am J Kidney Dis. 1997;30(4 Suppl 3):S192–240.

    Google Scholar 

  122. Mast AE, Blinder MA, Lu Q, Flax S, Dietzen DJ. Clinical utility of the reticulocyte hemoglobin content in the diagnosis of iron deficiency. Blood. 2002;99(4):1489–91.

    Article  PubMed  CAS  Google Scholar 

  123. Mittman N, Sreedhara R, Mushnick R, Chattopadhyay J, Zelmanovic D, Vaseghi M, Avram MM. Reticulocyte hemoglobin content predicts functional iron deficiency in hemodialysis patients receiving rHuEPO. Am J Kidney Dis. 1997;30(6):912–22.

    Article  PubMed  CAS  Google Scholar 

  124. Cullen P, Soffker J, Hopfl M, Bremer C, Schlaghecken R, Mehrens T, Assmann G, Schaefer RM. Hypochromic red cells and reticulocyte haemglobin content as markers of iron-deficient erythropoiesis in patients undergoing chronic haemodialysis. Nephrol Dial Transplant. 1999; 14(3):659–65.

    Article  PubMed  CAS  Google Scholar 

  125. Thomas C, Thomas L. Biochemical markers and hematologic indices in the diagnosis of functional iron deficiency. Clin Chem. 2002;48(7):1066–76.

    PubMed  CAS  Google Scholar 

  126. Macdougall IC. What is the most appropriate strategy to monitor functional iron deficiency in the dialysed patient on rhEPO therapy? Merits of percentage hypochromic red cells as a marker of functional iron deficiency. Nephrol Dial Transplant. 1998; 13(4):847–9.

    Article  PubMed  CAS  Google Scholar 

  127. Schaefer RM, Schaefer L. Hypochromic red blood cells and reticulocytes. Kidney Int Suppl. 1999;69:S44–8.

    Article  PubMed  CAS  Google Scholar 

  128. Fishbane S, Galgano C, Langley RC, Jr., Canfield W, Maesaka JK. Reticulocyte hemoglobin content in the evaluation of iron status of hemodialysis patients. Kidney Int. 1997;52(1): 217–22.

    Article  PubMed  CAS  Google Scholar 

  129. Tarng DC, Chen TW, Huang TP. Iron metabolism indices for early prediction of the response and resistance to erythropoietin therapy in maintenance hemodialysis patients. Am J Nephrol. 1995;15(3): 230–7.

    Article  PubMed  CAS  Google Scholar 

  130. Goodnough LT, Skikne B, Brugnara C. Erythropoietin, iron, and erythropoiesis. Blood. 2000;96(3):823–33.

    PubMed  CAS  Google Scholar 

  131. Suominen P, Punnonen K, Rajamaki A, Irjala K. Serum transferrin receptor and transferrin receptor-ferritin index identify healthy subjects with subclinical iron deficits.Blood.1998;92(8):2934–9.

    PubMed  CAS  Google Scholar 

  132. Punnonen K, Irjala K, Rajamaki A. Serum transferrin receptor and its ratio to serum ferritin in the diagnosis of iron deficiency. Blood. 1997;89(3):1052–7.

    PubMed  CAS  Google Scholar 

  133. Brem AS, Lambert C, Hill C, Kitsen J, Shemin DG. Outcome data on pediatric dialysis patients from the end-stage renal disease clinical indicators project. Am J Kidney Dis [Online]. 2000;36(2):310–17.

    Article  CAS  Google Scholar 

  134. Alexander S, Benfield M, Fine RN, McDonald R, Warady B. North American Pediatric Renal Transplant Cooperative Study (NAPRTCS) 2002 Annual Report; 2002.

    Google Scholar 

  135. Jabs K, Alexander S, McCabe D, Lerner G, Harmon WE. Primary results from the U.S. multi-center pediatric recombinant erythropoietin study. J Am Soc Nephrol. 1994;5(3):456 (abstract 484P).

    Google Scholar 

  136. Seeherunvong W, Rubio L, Abitbol CL, Montane B, Strauss J, Diaz R, Zilleruelo G. Identification of poor responders to erythropoietin among children undergoing hemodialysis. J Pediatr. 2001;138(5):710–4.

    Article  PubMed  CAS  Google Scholar 

  137. Brandt JR, Avner ED, Hickman RO, Watkins SL. Safety and efficacy of erythropoietin in children with chronic renal failure [see comments]. Pediatr Nephrol. 1999; 13(2): 143–7.

    Article  PubMed  CAS  Google Scholar 

  138. Yalcinkaya F, Turner N, Cakar N, Ozkaya N. Low-dose erythropoietin is effective and safe in children on continuous ambulatory peritoneal dialysis. Pediatr Nephrol. 1997; 11(3): 350–2.

    Article  PubMed  CAS  Google Scholar 

  139. Pollak A, Hayde M, Hayn M, Herkner K, Lombard KA, Lubec G, Weninger M, Widness JA. Effect of intravenous iron supplementation on erythropoiesis in erythropoietin-treated premature infants. Pediatrics. 2001;107(1):78–85.

    Article  PubMed  CAS  Google Scholar 

  140. Maier RF, Obladen M, Kattner E, Natzschka J, Messer J, Regazzoni BM, Speer CP, Fellman V, Grauel EL, Groneck P, Wagner M, Moriette G, Salle BL, Verellen G, Scigalla P. High-versus low-dose erythropoietin in extremely low birth weight infants. The European Multicenter rhEPO Study Group. J Pediatr. 1998;132(5):866–70.

    Article  PubMed  CAS  Google Scholar 

  141. Brown MS, Jones MA, Ohls RK, Christensen RD. Single-dose pharmacokinetics of recombinant human erythropoietin in preterm infants after intravenous and subcutaneous administration. J Pediatr. 1993;122(4):655–7.

    Article  PubMed  CAS  Google Scholar 

  142. Scigalla P, Bonzel KE, Bulla M, Burghard R, Dippel J, Geisert J, Leumann E, von Lilien T, Muller-Wiefel DE, Offner G et al. Therapy of renal anemia with recombinant human erythropoietin in children with end-stage renal disease. Contrib Nephrol. 1989;76:227–240.

    PubMed  CAS  Google Scholar 

  143. Sinai-Trieman L, Salusky IB, Fine RN. Use of subcutaneous recombinant human erythropoietin in children undergoing continuous cycling peritoneal dialysis. J Pediatr. 1989;114(4 Pt 1):550–4.

    Article  PubMed  CAS  Google Scholar 

  144. Cotes PM, Pippard MJ, Reid CD, Winearls CG, Oliver DO, Royston JR. Characterization of the anaemia of chronic renal failure and the mode of its correction by a preparation of human erythropoietin (r-HuEPO). An investigation of the pharmacokinetics of intravenous erythropoietin and its effects on erythrokinetics. Quart J Med. 1989;70(262): 113–7.

    PubMed  CAS  Google Scholar 

  145. Hutchinson FN, Jones WJ. A cost-effectiveness analysis of anemia screening before erythropoietin in patients with end-stage renal disease. Am J Kidney Dis. 1997;29(5):651–7.

    Article  PubMed  CAS  Google Scholar 

  146. Kaufman JS. Subcutaneous erythropoietin therapy: efficacy and economic implications. Am J Kidney Dis. 1998;32(6 Suppl 4):S147–51.

    Article  PubMed  CAS  Google Scholar 

  147. Collins AJ, Li S, Ebben J, Ma JZ, Manning W. Hematocrit levels and associated Medicare expenditures. Am J Kidney Dis. 2000;36(2):282–93.

    Article  PubMed  CAS  Google Scholar 

  148. Rusthoven E, van de Kar NC, Monnens LA, Schroder CH. Long-term effectiveness of intraperitoneal erythropoietin in children on NIPD by administration in small bags. Perit Dial Int. 2001;21(2):196–7.

    PubMed  CAS  Google Scholar 

  149. Frenken LA, Struijk DG, Coppens PJ, Tiggeler RG, Krediet RT, Koene RA. Intraperitoneal administration of recombinant human erythropoietin. Perit Dial Int. 1992;12(4):378–83.

    PubMed  CAS  Google Scholar 

  150. Egrie JC, Browne JK. Development and characterization of novel erythropoiesis stimulating protein (NESP). Br J Cancer. 2001;84(Suppl 1):3–10.

    Article  PubMed  CAS  Google Scholar 

  151. Macdougall IC, Chandler G, Elston O, Harchowal J. Beneficial effects of adopting an aggressive intravenous iron policy in a hemodialysis unit. Am J Kidney Dis. 1999;34(4 Suppl 2):S40–6.

    Article  PubMed  CAS  Google Scholar 

  152. Lerner G, Kale AS, Warady BA, Jabs K, Bunchman TE, Heatherington A, Olson K, Messer-Mann L, Maroni BJ. Pharmacokinetics of darbepoetin alfa in pediatric patients with chronic kidney disease. Pediatr Nephrol. 2002;17(11):933–7.

    Article  PubMed  Google Scholar 

  153. Aljama P, Bommer J, Canaud B, Carrera F, Eckardt KU, Horl WH, Krediet RT, Locatelli F, Macdougall IC, Wikstrom B, Group NUG. Practical guidelines for the use of NESP in treating renal anaemia. Nephrol Dial Transpl. 2001;16(Suppl 3):22–8.

    Article  CAS  Google Scholar 

  154. Macdougall IC. An overview of the efficacy and safety of novel erythropoiesis stimulating protein (NESP). Nephrol Dial Transpl. 2001;16(Suppl 3):14–21.

    Article  CAS  Google Scholar 

  155. Abraham PA, Macres MG. Blood pressure in hemodialysis patients during amelioration of anemia with erythropoietin. J Am Soc Nephrol. 1991;2(4):927–36.

    PubMed  CAS  Google Scholar 

  156. Cody J, Daly C, Campbell M, Donaldson C, Grant A, Khan I, Pennington S, Vale L, Wallace S, MacLeod A. Frequency of administration of recombinant human erythropoietin for anaemia of end stage renal disease in dialysis patients. Cochrane Database of Systematic Reviews. 2004; 1.

    Google Scholar 

  157. Van Geet C, Van Damme-Lombaerts R, Vanrusselt M, de Mol A, Proesmans W, Vermylen J. Recombinant human erythropoietin increases blood pressure, platelet aggregability and platelet free calcium mobilisation in uraemic children: a possible link? Thromb Haemostasis. 1990;64(1):7–10.

    Google Scholar 

  158. Scharer K, Klare B, Braun A, Dressel P, Gretz N. Treatment of renal anemia by subcutaneous erythropoietin in children with preterminal chronic renal failure. Acta Paediatr. 1993; 82(11):953–8.

    Article  PubMed  CAS  Google Scholar 

  159. Raine AE. Hypertension, blood viscosity, and cardiovascular morbidity in renal failure: implications of erythropoietin therapy. Lancet 1988;1(8577):97–100.

    Article  PubMed  CAS  Google Scholar 

  160. Ni Z, Wang XQ, Vaziri ND. Nitric oxide metabolism in erythropoietin-induced hypertension: effect of calcium channel blockade. Hypertension. 1998;32(4):724–9.

    Article  PubMed  CAS  Google Scholar 

  161. Vaziri ND, Zhou XJ, Naqvi F, Smith J, Oveisi F, Wang ZQ, Purdy RE. Role of nitric oxide resistance in erythropoietin-induced hypertension in rats with chronic renal failure. Am J Physiol. 1996;271(1 Pt 1):E113–22.

    PubMed  CAS  Google Scholar 

  162. Schiffl H, Lang SM. Hypertension induced by recombinant human erythropoietin (rHU-EPO) can be prevented by indomethacin. Pathogenetic role of cytosolic calcium. Eur J Med Res. 1997;2(3):97–100.

    PubMed  CAS  Google Scholar 

  163. Allegra A, Galasso A, Siracusano L, Aloisi C, Corica F, Lagana A, Frisina N, Buemi M. Administration of recombinant erythropoietin determines increase of peripheral resistances in patients with hypovolemic shock. Nephron. 1996;74(2):431–2.

    Article  PubMed  CAS  Google Scholar 

  164. Ksiazek A, Zaluska WT, Ksiazek P. Effect of recombinant human erythropoietin on adrenergic activity in normotensive hemodialysis patients. Clin Nephrol. 2001;56(2):104–10.

    PubMed  CAS  Google Scholar 

  165. Hand MF, Haynes WG, Johnstone HA, Anderton JL, Webb DJ. Erythropoietin enhances vascular responsiveness to norepinephrine in renal failure. Kidney Int. 1995;48(3):806–13.

    Article  PubMed  CAS  Google Scholar 

  166. Raine AE, Roger SD. Effects of erythropoietin on blood pressure. Am J Kidney Dis. 1991; 18(4 Suppl 1):76–83.

    PubMed  CAS  Google Scholar 

  167. Vaziri ND. Mechanism of erythropoietin-induced hypertension. Am J Kidney Dis. 1999;33(5):821–8.

    Article  PubMed  CAS  Google Scholar 

  168. Buckner FS, Eschbach JW, Haley NR, Davidson RC, Adamson JW. Hypertension following erythropoietin therapy in anemic hemodialysis patients. Am J Hypertens. 1990;3(12 Pt 1):947–55.

    PubMed  CAS  Google Scholar 

  169. Jabs K, Harmon WE. Recombinant human erythropoietin therapy in children on dialysis. Adv Ren Replace Ther. 1996;3(1):24–36.

    PubMed  CAS  Google Scholar 

  170. Vaziri ND. Cardiovascular effects of erythropoietin and anemia correction. Curr Opin Nephrol & Hypertens. 2001;10(5):633–7.

    Article  CAS  Google Scholar 

  171. Berns JS, Rudnick MR, Cohen RM, Bower JD, Wood BC. Effects of normal hematocrit on ambulatory blood pressure in epoetin-treated hemodialysis patients with cardiac disease. Kidney Int. 1999;56(1):253–60.

    Article  PubMed  CAS  Google Scholar 

  172. Kaupke CJ, Kim S, Vaziri ND. Effect of erythrocyte mass on arterial blood pressure in dialysis patients receiving maintenance erythropoietin therapy. J Am Soc Nephrol. 1994;4(11):1874–8.

    PubMed  CAS  Google Scholar 

  173. Ishimitsu T, Tsukada H, Ogawa Y, Numabe A, Yagi S. Genetic predisposition to hypertension facilitates blood pressure elevation in hemodialysis patients treated with erythropoietin. Am J Med. 1993;94(4):401–6.

    Article  PubMed  CAS  Google Scholar 

  174. Luft FC. Erythropoietin and arterial hypertension. Clin Nephrol. 2000;53(1Suppl):S61–4.

    PubMed  CAS  Google Scholar 

  175. Wirtz JJ, van Esser JW, Hamulyak K, Leunissen KM, van Hooff JR. The effects of recombinant human erythropoietin on hemostasis and fibrinolysis in hemodialysis patients. Clin Nephrol. 1992;38(5):277–82.

    PubMed  CAS  Google Scholar 

  176. Eschbach JW, Abdulhadi MH, Browne JK, Delano BG, Downing MR, Egrie JC, Evans RW, Friedman EA, Graber SE, Haley NR. Recombinant human erythropoietin in anemic patients with end-stage renal disease. Results of a phase III multicenter clinical trial. Ann Int Med. 1989;111(12):992–1000.

    PubMed  CAS  Google Scholar 

  177. Metry G, Wikstrom B, Valind S, Sandhagen B, Linde T, Beshara S, Langstrom B, Danielson BG. Effect of normalization of hematocrit on brain circulation and metabolism in hemodialysis patients. J Am Soc Nephrol. 1999;10(4):854–63.

    PubMed  CAS  Google Scholar 

  178. Tassies D, Reverter JC, Cases A, Calls J, Escolar G, Ordinas A. Effect of recombinant human erythropoietin treatment on circulating reticulated platelets in uremic patients: association with early improvement in platelet function. Am J Hematol. 1998;59(2):105–9.

    Article  PubMed  CAS  Google Scholar 

  179. el-Shahawy MA, Francis R, Akmal M, Massry SG. Recombinant human erythropoietin shortens the bleeding time and corrects the abnormal platelet aggregation in hemodialysis patients. Clin Nephrol. 1994;41(5):308–13.

    PubMed  CAS  Google Scholar 

  180. Tang IY, Vrahnos D, Valaitis D, Lau AH. Vascular access thrombosis during recombinant human erythropoietin therapy. ASAIO J. 1992;38(3):M528–31.

    Article  PubMed  CAS  Google Scholar 

  181. Standage BA, Schuman ES, Ackerman D, Gross GF, Ragsdale JW. Does the use of erythropoietin in hemodialysis patients increase dialysis graft thrombosis rates? Am J Surg. 1993; 165(5):650–4.

    Article  PubMed  CAS  Google Scholar 

  182. Churchill DN, Muirhead N, Goldstein M, Posen G, Fay W, Beecroft ML, Gorman J, Taylor DW. Probability of thrombosis of vascular access among hemodialysis patients treated with recombinant human erythropoietin [published erratum appears in J Am Soc Nephrol. 1994;5(1):121]. J Am Soc Nephrol. 1994;4(10):1809–13.

    PubMed  CAS  Google Scholar 

  183. De Marchi S, Cecchin E, Falleti E, Giacomello R, Stel G, Sepiacci G, Bortolotti N, Zanello F, Gonano F, Bartoli E. Long-term effects of erythropoietin therapy on fistula stenosis and plasma concentrations of PDGF and MCP-1 in hemodialysis patients. J Am Soc Nephrol. 1997;8(7):1147–56.

    PubMed  Google Scholar 

  184. Kooistra MP, van Es A, Marx JJ, Hertsig ML, Struyvenberg A. Low-dose aspirin does not prevent thrombovascular accidents in low-risk haemodialysis patients during treatment with recombinant human erythropoietin. Nephrol Dial Transplant. 1994;9(8): 1115–20.

    PubMed  CAS  Google Scholar 

  185. Lewis NP, Macdougall IC, Willis N, Coles GA, Williams JD, Henderson AH. Effects of the correction of renal anaemia by erythropoietin on physiological changes during exercise. Eur J Clin Invest. 1993;23(7):423–27.

    Article  PubMed  CAS  Google Scholar 

  186. Granolleras C, Leskopf W, Shaldon S, Fourcade J. Experience of pain after subcutaneous administration of different preparations of recombinant human erythropoietin: a randomized, double-blind crossover study. Clin Nephrol. 1991;36(6):294–8.

    PubMed  CAS  Google Scholar 

  187. Frenken LA, van Lier HJ, Jordans JG, Leunissen KM, van Leusen R, Verstappen VM, Koene RA. Identification of the component part in an epoetin alfa preparation that causes pain after subcutaneous injection. Am J Kidney Dis. 1993;22(4):553–6.

    PubMed  CAS  Google Scholar 

  188. Frenken LA, van Lier HJ, Koene RA. Analysis of the efficacy of measures to reduce pain after subcutaneous administration of epoetin alfa. Nephrol Dial Transpl. 1994;9(9):1295–8.

    CAS  Google Scholar 

  189. Takemasa A, Yorioka N, Yamakido M. Investigation of the influenza-like symptoms associated with recombinant human erythropoietin therapy. J Int Med Res. 1997;25(3):127–34.

    PubMed  CAS  Google Scholar 

  190. Eschbach JW, Egrie JC, Downing MR, Browne JK, Adamson JW. Correction of the anemia of end-stage renal disease with recombinant human erythropoietin. Results of a combined phase I and II clinical trial [see comments]. N Engl J Med. 1987;316(2):73–8.

    Article  PubMed  CAS  Google Scholar 

  191. Kuriyama S, Hopp L, Yoshida H, Hikita M, Tomonari H, Hashimoto T, Sakai O. Evidence for amelioration of endothelial cell dysfunction by erythropoietin therapy in predialysis patients. Am J Hypertens. 1996;9(5):426–31.

    Article  PubMed  CAS  Google Scholar 

  192. Krmar RT, Gretz N, Klare B, Wuhl E, Scharer K. Renal function in predialysis children with chronic renal failure treated with erythropoietin. Pediatr Nephrol. 1997;11(1):69–73.

    Article  PubMed  CAS  Google Scholar 

  193. Albertazzi A, Di Liberato L, Daniele F, Battistel V, Colombi L. Efficacy and tolerability of recombinant human erythropoietin treatment in pre-dialysis patients: results of a multicenter study. Int J Artif Organs 1998;21(1):12–18.

    PubMed  CAS  Google Scholar 

  194. Yaqub MS, Leiser J, Molitoris BA. Erythropoietin requirements increase following hospitalization in end-stage renal disease patients. Am J Nephrol. 2001;21(5):390–6.

    Article  PubMed  CAS  Google Scholar 

  195. Vreugdenhil G, Wognum AW, van Eijk HG, Swaak AJ. Anaemia in rheumatoid arthritis: the role of iron, vitamin B12, and folic acid deficiency, and erythropoietin responsiveness. Ann Rheumat Dis. 1990;49(2):93–8.

    Article  PubMed  CAS  Google Scholar 

  196. Remacha AF, Rodriguez-de la Serna A, Garcia-Die F, Geli C, Diaz C, Gimferrer E. Erythroid abnormalities in rheumatoid arthritis: the role of erythropoietin. J Rheumatol. 1992; 19(11): 1687–91.

    PubMed  CAS  Google Scholar 

  197. Macdougall IC, Cooper A. The inflammatory response and epoetin sensitivity. Nephrol Dial Transplant. 2002;17(Suppl 1):48–52.

    Article  PubMed  Google Scholar 

  198. Pixley JS, MacKintosh FR, Smith EA, Zanjani ED. Anemia of inflammation: role of T lymphocyte activating factor. Pathobiology. 1992;60(6):309–15.

    Article  PubMed  CAS  Google Scholar 

  199. Souweine B, Serre AF, Philippe P, Conio N, Aumaitre O, Marcheix JC. Serum erythropoietin and reticulocyte counts in inflammatory process. Annales de Médecine Interne. 1995;146(1):8–12.

    PubMed  CAS  Google Scholar 

  200. Jelkmann WE, Fandrey J, Frede S, Pagel H. Inhibition of erythropoietin production by cytokines. Implications for the anemia involved in inflammatory states. Ann New York Aca Sci. 1994;718(300-309;discussion):309–11.

    Google Scholar 

  201. Faquin WC, Schneider TJ, Goldberg MA. Effect of inflammatory cytokines on hypoxia-induced erythropoietin production. Blood. 1992;79(8):1987–94.

    PubMed  CAS  Google Scholar 

  202. Fandrey J, Jelkmann WE. Interleukin-1 and tumor necrosis factor-alpha inhibit erythropoietin production in vitro. Ann New York Acad Sci. 1991;628:250–5.

    Article  CAS  Google Scholar 

  203. Winter SS, Howard T, Ware RE. Regulation of expression of the human erythropoietin receptor gene. Blood Cells Mol & Dis. 1996;22(3):214–224; discussion 224a.

    Article  CAS  Google Scholar 

  204. Lu L, Weite K, Gabrilove JL, Hangoc G, Bruno E, Hoffman R, Broxmeyer HE. Effects of recombinant human tumor necrosis factor alpha, recombinant human gamma-interferon, and prostaglandin E on colony formation of human hematopoietic progenitor cells stimulated by natural human pluripotent colony-stimulating factor, pluripoietin alpha, and recombinant erythropoietin in serum-free cultures. Cancer Res. 1986;46(9):4357–61.

    PubMed  CAS  Google Scholar 

  205. Yip R, Dallman PR. The roles of inflammation and iron deficiency as causes of anemia. Am J Clin Nutr. 1988;48(5):1295–300.

    PubMed  CAS  Google Scholar 

  206. Gunnell J, Yeun JY, Depner TA, Kaysen GA. Acute-phase response predicts erythropoietin resistance in hemodialysis and peritoneal dialysis patients. Am J Kidney Dis [Online]. 1999;33(1):63–72.

    Article  CAS  Google Scholar 

  207. Kim JK, Park BS, Park MJ, Choi W, Ma SK, Nah MY, Yeum CH, Jung K, Lee SC, Kim SW, Kim NH, Kang Y J, Choi KC. The predictive parameters of erythropoietin hyporesponsiveness in patients on continuous ambulatory peritoneal dialysis. Korean J Intern Med. 2001; 16(2): 110–17.

    PubMed  CAS  Google Scholar 

  208. Barany P, Divino Filho JC, Bergstrom J. High C-reactive protein is a strong predictor of resistance to erythropoietin in hemodialysis patients. Am J Kidney Dis. 1997;29(4):565–8.

    Article  PubMed  CAS  Google Scholar 

  209. Kooistra MP, Niemantsverdriet EC, van Es A, Mol-Beermann NM, Struyvenberg A, Marx JJ. Iron absorption in erythropoietin-treated haemodialysis patients: effects of iron availability, inflammation and aluminium. Nephrol Dial Transplant. 1998; 13(1):82–8.

    Article  PubMed  CAS  Google Scholar 

  210. Tonelli M, Blake PG, Muirhead N. Predictors of erythropoietin responsiveness in chronic hemodialysis patients. ASAIO J. 2001; 47(1):82–5.

    Article  PubMed  CAS  Google Scholar 

  211. Coen G, Calabria S, Bellinghieri G, Pecchini F, Conte F, Chiappini MG, Ferrannini M, Lagona C, Mallamace A, Manni M, DiLuca M, Sardella D, Taggi F. Parathyroidectomy in chronic renal failure: short-and long-term results on parathyroid function, blood pressure and anemia. Nephron. 2001;88(2):149–55.

    Article  PubMed  CAS  Google Scholar 

  212. Mandolfo S, Malberti F, Farina M, Villa G, Scanziani R, Surian M, Imbasciati E. Parathyroidectomy and response to erythropoietin therapy in anaemic patients with chronic renal failure. Nephrol Dial Transplant. 1998;13(10):2708–9.

    Article  PubMed  CAS  Google Scholar 

  213. Rault R, Magnone M. The effect of parathyroidectomy on hematocrit and erythropoietin dose in patients on hemodialysis. ASAIO J. 1996;42(5):M901–3.

    Article  PubMed  CAS  Google Scholar 

  214. Kcomt J, Sotelo C, Raja R. Influence of adynamic bone disease on responsiveness to recombinant human erythropoietin in peritoneal dialysis patients. Adv Perit Dial. 2000;16:294–6.

    PubMed  CAS  Google Scholar 

  215. Nazem AK, Mako J. The effect of calcitriol on renal anaemia in patients undergoing long-term dialysis. Int Urol & Nephrol. 1997;29(1):119–27.

    Article  CAS  Google Scholar 

  216. Goicoechea M, Vazquez MI, Ruiz MA, Gomez-Campdera F, Perez-Garcia R, Valderrabano F. Intravenous calcitriol improves anaemia and reduces the need for erythropoietin in haemodialysis patients. Nephron. 1998;78(1):23–7.

    Article  PubMed  CAS  Google Scholar 

  217. Grutzmacher P, Radtke HW, Fassbinder W, Koch KM, Schoeppe W. Effect of secondary hyperparathyroidism on the anaemia of end-stage renal failure: in vivo and in vitro studies. Proceedings of the European Dialysis & Transplant Association. 1983;20(739–45).

    CAS  Google Scholar 

  218. Massry SG. Pathogenesis of the anemia of uremia: role of secondary hyperparathyroidism. Kidney Int Suppl. 1983;16:S204–7.

    PubMed  CAS  Google Scholar 

  219. Gallieni M, Corsi C, Brancaccio D. Hyperparathyroidism and anemia in renal failure. Am J Nephrol. 2000;20(2):89–96.

    Article  PubMed  CAS  Google Scholar 

  220. Foulks CJ, Mills GM, Wright LF. Parathyroid hormone and anaemia-an erythrocyte osmotic fragility study in primary and secondary hyperparathyroidism. Postgrad Med J. 1989; 65(761):136–9.

    Article  PubMed  CAS  Google Scholar 

  221. Zachee P, Chew SL, Daelemans R, Lins RL. Erythropoietin resistance due to vitamin B12 deficiency. Case report and retrospective analysis of B12 levels after erythropoietin treatment. Am J Nephrol. 1992;12(3):188–91.

    Article  PubMed  CAS  Google Scholar 

  222. Sunder-Plassmann G, Horl WH. Novel aspects of erythropoietin response in renal failure patients. Nephrol Dial Transplant. 2001;16(Suppl 5):40–4.

    Article  PubMed  CAS  Google Scholar 

  223. Nemeth I, Turi S, Haszon I, Bereczki C. Vitamin E alleviates the oxidative stress of erythropoietin in uremic children on hemodialysis. Pediatr Nephrol. 2000; 14(1):13–17.

    Article  PubMed  CAS  Google Scholar 

  224. Graafland AD, Doorenbos CJ, van Saase JC. Enalapril-induced anemia in two kidney transplant recipients. Transpl Int. 1992;5(1):51–3.

    Article  PubMed  CAS  Google Scholar 

  225. Kuriyama R, Kogure H, Itoh S, Kikuchi K, Ichikawa N, Nomura Y, Degawa H, Meigata K, Watanabe K, Beck Y, Tomikawa S, Nagao T, Uchida H. Angiotensin converting enzyme inhibitor induced anemia in a kidney transplant recipient. Transplant Proc. 1996;28(3):1635.

    PubMed  CAS  Google Scholar 

  226. Le Meur Y, Lorgeot V, Comte L, Szelag JC, Aldigier JC, Leroux-Robert C, Praloran V. Plasma levels and metabolism of AcSDKP in patients with chronic renal failure: relationship with erythropoietin requirements. Am J Kidney Dis [Online]. 2001;38(3):510–17.

    Article  Google Scholar 

  227. Casadevall N, Nataf J, Viron B, Kolta A, Kiladjian JJ, Martin-Dupont P, Michaud P, Papo T, Ugo V, Teyssandier I, Varet B, Mayeux P. Pure red-cell aplasia and antierythropoietin antibodies in patients treated with recombinant erythropoietin. New England J Med. 2002;346(7):469–75.

    Article  CAS  Google Scholar 

  228. Eiselt J, Racek J, Opatrny K, Jr. The effect of hemodialysis and acetate-free biofiltration on anemia. Int J Artif Organs. 2000;23(3): 173–80.

    PubMed  CAS  Google Scholar 

  229. Geerlings W, Morris RW, Brunner FP, Brynger H, Ehrich JH, Fassbinder W, Rizzoni G, Selwood NH, Tufveson G, Wing AJ. Factors influencing anaemia in dialysis patients. A special survey by the EDTA-ERA Registry. Nephrol Dial Transplant. 1993;8(7):585–9.

    PubMed  CAS  Google Scholar 

  230. Losekann A, Urena P, Khiraoui F, Casadevall N, Zins B, Bererhi L, Zingraff J, Bourdon R, Drueke T. Aluminium intoxication in the rat induces partial resistance to the effect of recombinant human erythropoietin. Nephrol Dial Transplant. 1990;5(4):258–63.

    Article  PubMed  CAS  Google Scholar 

  231. Fulton B, Jeffery EH. Heme oxygenase induction. A possible factor in aluminum-associated anemia. Biol Trace Elem Res. 1994;40(1):9–19.

    Article  PubMed  CAS  Google Scholar 

  232. Shinaberger JH, Miller JH, Gardner PW. Erythropoietin alert: risks of high hematocrit hemodialysis. ASAIO Trans. 1988;34(3): 179–84.

    PubMed  CAS  Google Scholar 

  233. Madore F, Lowrie EG, Brugnara C, Lew NL, Lazarus JM, Bridges K, Owen WF. Anemia in hemodialysis patients: variables affecting this outcome predictor. J Am Soc Nephrol. 1997;8(12):1921–29.

    PubMed  CAS  Google Scholar 

  234. Bezwoda WR, Derman DP, Bothwell TH, MacPhail AP, Torrance JD, Milne FJ, Meyers AM, Levin J. Iron absorption in patients on regular dialysis therapy. Nephron. 1981;28(6):289–93.

    Article  PubMed  CAS  Google Scholar 

  235. Dunea G, Swagel MA, Bodiwala U, Arruda JA. Intra-dialytic oral iron therapy [see comments]. Int J Artif Organs. 1994;17(5):261–4.

    PubMed  CAS  Google Scholar 

  236. Wingard RL, Parker RA, Ismail N, Hakim RM. Efficacy of oral iron therapy in patients receiving recombinant human erythropoietin. Am J Kidney Dis. 1995;25(3):433–9.

    Article  PubMed  CAS  Google Scholar 

  237. Markowitz GS, Kahn GA, Feingold RE, Coco M, Lynn RI. An evaluation of the effectiveness of oral iron therapy in hemodialysis patients receiving recombinant human erythropoietin. Clin Nephrol. 1997;48(1):34–40.

    PubMed  CAS  Google Scholar 

  238. Levy F, Anderson P, Ekren T. Absorption and side-effects after peroral administration of sustained release iron tablets. Ferro-Retard compared with Ferronicum and Duroferon Duretter. Acta Med Scandinavica. 1978;204(4):303–10.

    CAS  Google Scholar 

  239. Walker SE, Paton TW, Cowan DH, Manuel MA, Dranitsaris G. Bioavailability of iron in oral ferrous sulfate preparations in healthy volunteers. Can Med Assoc J (Canadian Medical Association Journal). 1989;141(6):543–7.

    CAS  Google Scholar 

  240. Aronstam A, Aston DL. A comparative trial of a controlled-release iron tablet preparation (“Ferrocontin” Continus) and ferrous fumarate tablets. Pharmatherapeutica. 1982;3(4):263–7.

    PubMed  CAS  Google Scholar 

  241. Brock C, Curry H, Hanna C, Knipfer M, Taylor L. Adverse effects of iron supplementation: a comparative trial of a wax-matrix iron preparation and conventional ferrous sulfate tablets. Clin Ther. 1985;7(5):568–73.

    PubMed  CAS  Google Scholar 

  242. Liguori L. Iron protein succinylate in the treatment of iron deficiency: controlled, double-blind, multicenter clinical trial on over 1,000 patients. Int J Clin Pharmacol Ther Toxicol. 1993; 31(3):103–23.

    PubMed  CAS  Google Scholar 

  243. Pru C, Eaton J, Kjellstrand C. Vitamin C intoxication and hyperoxalemia in chronic hemodialysis patients. Nephron. 1985;39(2):112–16.

    Article  PubMed  CAS  Google Scholar 

  244. Goch J, Birgegard G, Danielson BG, Wikstrom B. Iron absorption in patients with chronic uremia on maintenance hemodialysis and in healthy volunteers measured with a simple oral iron load test. Nephron. 1996;73(3):403–6.

    Article  PubMed  CAS  Google Scholar 

  245. Macdougall IC, Tucker B, Thompson J, Tomson CR, Baker LR, Raine AE. A randomized controlled study of iron supplementation in patients treated with erythropoietin. Kidney Int. 1996;50(5):1694–99.

    Article  PubMed  CAS  Google Scholar 

  246. Fudin R, Jaichenko J, Shostak A, Bennett M, Gotloib L. Correction of uremic iron deficiency anemia in hemodialyzed patients: a prospective study [see comments]. Nephron. 1998;79(3):299–305.

    Article  PubMed  CAS  Google Scholar 

  247. Ahsan N. Infusion of total dose iron versus oral iron supplementation in ambulatory peritoneal dialysis patients: a prospective, cross-over trial. Adv Perit Dial. 2000; 16(80-4).

    Google Scholar 

  248. Greenbaum LA, Pan CG, Caley C, Nelson T, Sheth KJ. Intravenous iron dextran and erythropoietin use in pediatric hemodialysis patients. Pediatr Nephrol. 2000; 14(10-11):908–11.

    Article  PubMed  CAS  Google Scholar 

  249. Mars RL, Moles K, Pope K, Hargrove P. Use of bolus intraperitoneal iron dextran in continuous ambulatory peritoneal dialysis or continuous cyclic peritoneal dialysis patients receiving recombinant human erythropoietin. Adv Perit Dial. 1999; 15(60-4).

    Google Scholar 

  250. Nissenson AR, Lindsay RM, Swan S, Seligman P, Strobos J. Sodium ferric gluconate complex in sucrose is safe and effective in hemodialysis patients: North American Clinical Trial. Am J Kidney Dis. 1999;33(3):471–82.

    Article  PubMed  CAS  Google Scholar 

  251. Faich G, Strobos J. Sodium ferric gluconate complex in sucrose: safer intravenous iron therapy than iron dextrans [see comments]. Am J Kidney Dis. 1999;33(3):464–70.

    Article  PubMed  CAS  Google Scholar 

  252. Tenbrock K, Muller-Berghaus J, Michalk D, Querfeld U. Intravenous iron treatment of renal anemia in children on hemodialysis. Pediatr Nephrol. 1999;13(7):580–2.

    Article  PubMed  CAS  Google Scholar 

  253. Yorgin PD, Belson A, Sarwal M, Alexander SR. Sodium ferric gluconate therapy in renal transplant and renal failure patients. Pediatr Nephrol. 2000; 15(3-4): 171–5.

    Article  PubMed  CAS  Google Scholar 

  254. Jones CH, Richardson D, Ayers S, Newstead CG, Will EJ, Davison AM. Percentage hypochromic red cells and the response to intravenous iron therapy in anaemic haemodialysis patients. Nephrol Dial Transplant. 1998;13(11):2873–6.

    Article  PubMed  CAS  Google Scholar 

  255. Silverberg DS, Blum M, Peer G, Kaplan E, Iaina A. Intravenous ferric saccharate as an iron supplement in dialysis patients. Nephron. 1996;72(3):413–7.

    Article  PubMed  CAS  Google Scholar 

  256. Sunder-Plassmann G, Horl WH. Safety of intravenous injection of iron saccharate in haemodialysis patients. Nephrol Dial Transplant. 1996; 11(9): 1797–802.

    Article  PubMed  CAS  Google Scholar 

  257. Anonymous. European best practice guidelines for the management of anaemia in patients with chronic renal failure. Working Party for European Best Practice Guidelines for the Management of Anaemia in Patients with Chronic Renal Failure. Nephrol Dial Transplant. 1999;14(Suppl 5):1–50.

    Google Scholar 

  258. Silverberg DS, Iaina A, Peer G, Kaplan E, Levi BA, Frank N, Steinbruch S, Blum M. Intravenous iron supplementation for the treatment of the anemia of moderate to severe chronic renal failure patients not receiving dialysis. Am J Kidney Dis. 1996;27(2):234–8.

    Article  PubMed  CAS  Google Scholar 

  259. Van Damme-Lombaerts R, Herman J. Erythropoietin treatment in children with renal failure [see comments]. Pediatr Nephrol. 1999;13(2):148–52.

    Article  PubMed  Google Scholar 

  260. Morgan HE, Gautam M, Geary DF. Maintenance intravenous iron therapy in pediatric hemodialysis patients. Pediatr Nephrol. 2001;16(10):779–83.

    Article  PubMed  CAS  Google Scholar 

  261. Roe DJ, Harford AM, Zager PG, Wiltbank TB, Kirlin L, Delia Valle AM, Van Wyck DB. Iron utilization after iron dextran administration for iron deficiency in patients with dialysis-associated anemia: a prospective analysis and comparison of two agents. Am J Kidney Dis. 1996; 28(6):855–60.

    Article  PubMed  Google Scholar 

  262. Zanen AL, Adriaansen HJ, van Bommel EF, Posthuma R, Th de Jong GM. “Oversaturation” of transferrin after intravenous ferric gluconate (Ferrlecit(R)) in haemodialysis patients. Nephrol Dial Transplant. 1996; 11(5):820–4.

    Article  PubMed  CAS  Google Scholar 

  263. Patruta SI, Edlinger R, Sunder-Plassmann G, Horl WH. Neutrophil impairment associated with iron therapy in hemodialysis patients with functional iron deficiency. J Am Soc Nephrol. 1998;9(4):655–63.

    PubMed  CAS  Google Scholar 

  264. Fracanzani AL, Conte D, Fraquelli M, Taioli E, Mattioli M, Losco A, Fargion S. Increased cancer risk in a cohort of 230 patients with hereditary hemochromatosis in comparison to matched control patients with non-iron-related chronic liver disease. Hepatology. 2001; 33(3):647–51.

    Article  PubMed  CAS  Google Scholar 

  265. Carmel R, Denson TA, Mussell B. Anemia. Textbook vs. practice. Jama. 1979;242(21):2295–7.

    CAS  Google Scholar 

  266. Abernathy KA, Meuleman JR. Appropriateness of iron prescribing: a retrospective study. Pharmacotherapy. 1996; 16(3):473–6.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Yorgin, P.D., Al-Uzri, A. (2004). Management of renal anemia. In: Warady, B.A., Schaefer, F.S., Fine, R.N., Alexander, S.R. (eds) Pediatric Dialysis. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1031-3_19

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-1031-3_19

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-3770-9

  • Online ISBN: 978-94-007-1031-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics