Skip to main content

The Emerging Role of Multiscale Methods in Turbulent Combustion

  • Chapter

Part of the book series: Fluid Mechanics and Its Applications ((FMIA,volume 95))

Abstract

Turbulent combustion flows are governed by processes that span the range from atomistic scales to device (e.g. engine) scales and beyond (e.g. oil pool fires, thermo-nuclear flames in type Ia supernovae). The multiscale nature of turbulent combustion flows poses both challenges and opportunities. The challenges arise from the need to predict combustion phenomena that are governed by a broad range of scales. The opportunities arise because of the emergence of the multiscale science that permeates many fields, and which for turbulent combustion, has been motivated by the need to predict phenomena in new and evolving combustion technologies, advances in computational and applied mathematics, and the increasing availibility of computational resources. In this chapter, strategies and requirements for the multiscale modeling and simulation of turbulent combustion flows are discussed. The chapter serves as an introductory chapter to Part III of this book.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bell, J.B., Day, M.S., Grcar, J.F., Lijewski, M.J., Driscoll, J.F., Filatyev, S.A.: Numerical simulation of laboratory-scale turbulent slot flame. Proc. Combust. Inst. 31, 1299–1307 (2009)

    Article  Google Scholar 

  2. Berger, M., Oliger, J.: Adaptive mesh refinement for hyperbolic partial differential equations. J. Comput. Phys. 53, 484–512 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bilger, R.W., Pope, S.B., Bray, K.N.C., Driscoll, J.F.: Paradigms in turbulent combustion, Proc. Combust. Inst. 30, 21–42 (2005)

    Article  Google Scholar 

  4. Brown, P.N., Byrne, G.D., Hindmarsh, A.C.: VODE: A variable coefficient ODE solver. SIAM J. Sci. Stat. Comput. 10, 1038–1051 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  5. Correa, S.M.: Power generation and aeropropulsion gas turbines: From combustion science to combustion technology. Proc. Combust. Inst. 27, 1793–1807 (1998)

    Google Scholar 

  6. Christo, F.C., Masri, A.R., Nebot, E.M.: An integrated PDF/neural network approach for simulating turbulent reacting systems, Proc. Combust. Inst. 26, 43–48 (1996)

    Google Scholar 

  7. Dec, J.E.: Advanced compression-ignition engines – understanding the in-cylinder processes. Proc. Combust. Inst. 32, 2727–2742 (2009)

    Article  Google Scholar 

  8. Dubois, T., Jauberteau, F., Teman, R.: Dynamic Multilevel Methods and the Numerical Simulation of Turbulence. Cambridge University Press (1999)

    Google Scholar 

  9. E, W., Engquist, B.: The heterogeneous multiscale method. Comm. Math. Sci. 1, 1062–1070 (2003)

    MathSciNet  Google Scholar 

  10. E, W., Engquist, B.: Multiscale modeling and computation. Notices AMS 50, 1062–1070 (2003)

    MATH  MathSciNet  Google Scholar 

  11. E, W., Engquist, B., Huang, Z.: Heterogeneous multiscale method: A general methodology for multiscale modelign. Phys. Rev. B 67, 092101 (2003)

    Article  Google Scholar 

  12. Echekki, T.: Multiscale methods in turbulent combustion: strategies and computational challenges. Comput. Sci. Disc. 2, 013001 (2009)

    Article  Google Scholar 

  13. Fiorina, B., Baron, R., Gicquel, O., Thevenin, D., Carpentier, S., Darabiha, N.: Modelling non-adiabatic partially premixed flames using flame-prolongation of ILDM. Combust. Theory Model. 7, 449–470 (2003)

    Google Scholar 

  14. Fiorina, B., Vicquelin, R., Auzillon, P., Darabiha, N., Gicquel, O., Veynante, D.: A filtered tabulated chemistry model for LES of premixed combustion, Combust. Flame. 157, 465–475 (2010)

    Article  Google Scholar 

  15. Fureby, C.: Homogenization based LES for turbulent combustion. Flow Turbul. Combust. 84, 459–480 (2010)

    Article  MATH  Google Scholar 

  16. Galpin, J., Naudin, A., Vervisch, L., Angelberger, C., Colin, O., Domingo, P.: Large-eddy simulation of a fuel-lean premixed turbulent swirl-burner. Combust. Flame 155, 247–266 (2008)

    Article  Google Scholar 

  17. Ghoniem, A.F., Chorin, A.J., Oppenheim, A.K.: Numerical modeling of turbulent combustion in premixed gases. Proc. Combust. Inst. 18, 1375–1385 (1981)

    Google Scholar 

  18. Gravemeier, V., Wall, W.A.: Residual-based variational multiscale methods for laminar, transitional and turbulent variable-density flow at low Mach number. Int. J. Num. Meth. Fluids, DOI:10.1002/fld.2242 (2009)

    MATH  Google Scholar 

  19. Huang, Y., Yang, V.: Dynamics and stability of lean-premixed swirl-stabilized combustion. Prog. Energy Combust. Sci. 35, 293–364 (2009)

    Article  Google Scholar 

  20. Hughes, T.J.R., Mazzei, L., Jansen, K.E.: Large eddy simulation and the variational multiscale method. Comput. Vis. Sci. 3, 47–59 (2000)

    Article  MATH  Google Scholar 

  21. Izvekov, S., Violi, A.: A coarse-grained molecular dynamics study of carbon nanoparticle aggregation. J. Chem. Theory Comput. 2, 504–512 (2006)

    Article  Google Scholar 

  22. Keller, J.J.L.: Thermoacoustic oscillations in combustion-chambers of gas-turbines. AIAA J. 33, 2280–2287 (1995)

    Article  MATH  Google Scholar 

  23. Kerstein, A.R.: Linear-eddy modeling of turbulent transport. II: Application to shear layer mixing. Combust. Flame 75, 397–413 (1989)

    Article  Google Scholar 

  24. Kerstein, A.R.: One-dimensional turbulence: Model formulation and application to homogeneous turbulence. J. Fluid Mech. 392, 277–334 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  25. Lam, S.H., Goussis, D.A.: Understanding complex chemical kinetics with the computational singular perturbations. Proc. Combust. Inst. 22, 931–941 (1988)

    Google Scholar 

  26. Law, C.K. Combustion at a crossroads: Status and prospects. Proc. Combust. Inst. 31, 1–29 (2006)

    Article  Google Scholar 

  27. Magnussen, B.F., Hjertager, B.H.: On mathematical modeling of turbulent combustion with special emphasis on soot formation and combustion. Proc. Combust. Inst. 16, 719–729 (1976)

    Google Scholar 

  28. McDonough, J.M., Huang, M.T.: A low-dimensional model of turbulence-chemical kinetics interactions. Proc. Third Int. Symp. Scale Model (10–13 September 2000, Nagoya, Japan) Paper ISSM3-E8 (2000)

    Google Scholar 

  29. McIlroy, A., McRae, G., Sick, V., Siebers, D.L., Westbrook, C.K., Smith, P.J., Taatjes, C., Trouvé, A., Wagner, A.E., Rohlfing, E., Manley, D., Tully, F., Hilderbrandt, R., Green, W., Marceau, D., O’Neal, J., Lyday, M., Cebulski, F., Garcia, T.R., Strong, D., Basic research needs for clean and efficient combustion of 21st century transportation fuels. Department of Energy Office of Science Report (2006)

    Google Scholar 

  30. Meyer, D.W., Jenny, P.: A mixing model for turbulent flows based on parameterized scalar profiles. Phys. Fluids 18, 035105 (2006)

    Article  MathSciNet  Google Scholar 

  31. Mukerji, S., McDonough, J.M., Mengu, M.P., Manickavasagam, S., Chung, S.: Chaotic map models of soot fluctuations in turbulent diffusion flames. Int. J. Heat Mass Transfer 41, 4095–4112 (1998)

    Article  MATH  Google Scholar 

  32. Perrier, P., Pironneau, O.: Coupling large with small turbulent structures by theory of homogenization. Comptes Rendus Hebd. Seances Acad. Sci. Ser. A. 286, 635–638 (1978)

    MATH  MathSciNet  Google Scholar 

  33. Perrier, P., Pironneau, O.: Subgrid turbulence modeling by homogenization. Math. Model. 2, 295–317 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  34. Peters, N.: Local quenching due to flame stretch and non-premixed turbulent combustion. Combust. Sci. Technol. 30, 1–17 (1983)

    Article  Google Scholar 

  35. Peters, N.: Turbulent Combustion, Cambridge University Press, 2000

    Book  MATH  Google Scholar 

  36. Peters, N.: Multiscale combustion and turbulence. Proc. Combust. Inst. 32, 1–25 (2009)

    Article  Google Scholar 

  37. Petzold, L.R., A description of dassl: A differential/algebraic system solver, SAND82-8637, Sandia National Laboratories (1982)

    Google Scholar 

  38. Pope, S.B., Maas, U.: Implementation of simplified chemical kinetics based on intrinsic low-dimensional manifolds. Proc. Combust. Inst. 24, 103–112(1992)

    Google Scholar 

  39. Pope, S.B.: Computationally efficient implementation of combustion chemistry using in situ adaptive tabulation, Combust. Theory Model. 1, 41–63 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  40. Prosser, R., Cant, R.S.: On the use of wavelets in computational combustion. J. Comput. Phys. 147, 337–61 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  41. Röpke, F.K., Bruckschen, R.: Thermonuclear supernovae: a multi-scale astrophysical problem challenging numerical simulation and visualization. New J. Phys. 10, 125009 (2008)

    Article  Google Scholar 

  42. Spalding, D.B.: Mixing and chemical reaction in steady confined turbulent flames. Proc. Combust. Inst. 13, 649–657 (1971)

    Google Scholar 

  43. Tonse, S.R., Moriary, N.W., Brown, N.J., Frenklach, M.: PRISM: piece reusable implementation of solution mapping. An economical strategy for chemical kinetics. Isr. J. Chem. 39, 97–106 (1999)

    Google Scholar 

  44. van Oijen, J.A., de Goey, L.P.H.: Modelling of premixed laminar flames using flamelet-generated manifolds. Combust. Sci. Technol. 161, 113–138 (2000)

    Article  Google Scholar 

  45. Yao, M., Zheng, Z., Liu, H.: Progress and recent trends in homogeneous charge compression ignition (HCCI) engines. Prog. Energy Combust. Sci. 35, 398–437 (2009)

    Article  Google Scholar 

  46. Veynante, D., Fiorina, B., Domingo, P., Vervisch, L.: Using self-similar properties of turbulent premixed flames to downsize chemical tables in high-performance numerical simulations, Combust. Theory Model. 12, 1055–1088 (2008)

    Article  MATH  Google Scholar 

  47. Vreman, A.W., van Oijen, J.A., de Goey, L.P.H., Bastiaans, R.J.M.: Subgrid scale modeling in large eddy simulation of turbulent combustion using premixed flamelet chemistry. Flow Turbul. Combust. 82, 511–535 (2009)

    Article  MATH  Google Scholar 

  48. Westbrook, C.K., Mizobuchi, Y., Poinsot, T.J., Smith, P.J., Warnatz, J.: Computational combustion. Proc. Combust. Inst. 30, 125–157 (2005)

    Article  Google Scholar 

  49. Woosley, S.E., Almgren, A., Bell, J.B., Glatzmaier, G., Kasen, D., Kerstein, A.R., Ma, H., Nugent, P., Röpke, F., Sankaran, V., Zingale, M.: Type Ia supernovae. J. Phys.: Conf. Ser. 78, 012081 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tarek Echekki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Echekki, T. (2011). The Emerging Role of Multiscale Methods in Turbulent Combustion. In: Echekki, T., Mastorakos, E. (eds) Turbulent Combustion Modeling. Fluid Mechanics and Its Applications, vol 95. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0412-1_8

Download citation

Publish with us

Policies and ethics