Skip to main content

Pathogenic and Beneficial Microorganisms in Soilless Cultures

  • Chapter
  • First Online:
Sustainable Agriculture Volume 2

Abstract

Soilless cultures were originally developed to control soilborne diseases. Soilless cultures provide several advantages for growers such as greater production of crops, reduced energy consumption, better control of growth and independence of soil quality. However, diseases specific to hydroponics have been reported. For instance, zoospore-producing microorganisms such as Pythium and Phytophthora spp. are particularly well adapted to aquatic environments. Their growth in soilless substrates is favoured by the recirculation of the nutrient solution. These pathogenic microorganisms are usually controlled by disinfection methods but such methods are only effective as a preventive measure. Contrary to biofiltration, active treatments such as UV, heat and ozonisation have the disadvantage of eliminating not only the harmful microorganisms but also the beneficial indigenous microorganisms. Here, we review microbial populations that colonise ecological niches of hydroponic greenhouse systems. Three topics are discussed: (1) the general microflora; (2) the pathogenic microflora that are typical to hydroponic systems; and (3) the non-pathogenic and possibly beneficial microflora, and their use in the control of plant diseases in soilless greenhouse systems. Technical, economic and environmental concerns are forcing the adoption of new sustainable methods such as the use of microbial antagonists. Thus, increased attention is now focused on the role of natural microflora in suppressing certain diseases. Managing disease suppression in hydroponics represents a promising way of controlling pathogens. Three main strategies can be used: (1) increasing the level of suppressiveness by the addition of antagonistic microorganisms; (2) using a mix of microorganisms with complementary ecological ** traits and antagonistic abilities, combined with disinfection techniques; and (3) amending substrates to favour the development of a suppressive microflora. Increasing our knowledge on beneficial microflora, their ecology and treatments that influence their composition will help to commercialise new, ready-to-use substrates microbiologically optimised to protect plants in sustainable management systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alabouvette C., Lemanceau P. (1999) Joint action of microbials for disease control, in: Hall F.R., Menn J.J. (Eds.), Methods in biotechnology 5, Biopesticides: use and delivery, Humana Press Inc, pp. 117–135.

    Google Scholar 

  • Alabouvette C., Olivain C., Steinberg C. (2006) Biological control of plant diseases: the European situation, Eur. J. Plant Pathol. 114, 329–341.

    Google Scholar 

  • Alabouvette C., Rouxel F., Louvet J. (1979) Characteristics of Fusarium wilt-suppressive soils and prospects for their utilization in biological control, in: Schippers B., Gams W. (Eds.), Soil-borne Plant Pathogens. Academic Press, New-York, pp. 165–182.

    Google Scholar 

  • Benhamou N., Rey P., Chérif M., Hockenhull J., Tirilly Y. (1997) Treatment with the mycoparasite Pythium oligandrum triggers induction of defense-related reactions in tomato roots when challenged with Fusarium oxysporum f. sp. radicis-lycopersici, Phytopathology 87, 108–122.

    PubMed  CAS  Google Scholar 

  • Berger F., Li H., White D., Frazer R., Leifert C. (1996) Effect of pathogen inoculum, antagonist density, and plant species on biological control of Phytophthora and Pythium damping-off by Bacillus subtilis Cot 1 in high-humidity fogging glasshouses, Phytopathology 86, 428–433.

    Google Scholar 

  • Berkelmann B., Wohanka W., Wolf G.A. (1994) Characterization of the bacterial flora in circulating nutrient solutions of a hydroponic system with rockwool, Acta Hort. 361, 372–381.

    Google Scholar 

  • Bernal-Vicente A., Ros M., Tittarelli F., Intrigliolo F., Pascual J.A. (2008) Citrus compost and its water extract for cultivation of melon plants in greenhouse nurseries. Evaluation of nutriactive and biocontrol effects, Bioresource Technol. 99, 8722–8728.

    CAS  Google Scholar 

  • Blancard D., Rafin C., Chamont S., Tirilly Y., Jailloux F. (1992) Phénomène de perte de racines en culture hors-sol. Rôle des Pythiums spp., P. H. M. Rev. Hort. 329, 35–45.

    Google Scholar 

  • Borneman J., Becker J.O. (2007) Identifying microorganisms involved in specific pathogen suppression in soil, Annu. Rev. Phytopathol. 45, 153–172.

    PubMed  CAS  Google Scholar 

  • Borrero C., Ordovás J., Trillas M.I., Avilés M. (2006) Tomato Fusarium wilt suppressiveness. The relationship between the organic plant growth media and their microbial communities as characterised by Biolog, Soil Biol. Biochem. 38, 1631–1637.

    CAS  Google Scholar 

  • Brand T. (2000) Beurteilung der bakterienflora von langsamfiltern als biologishe filtrationskomponente in geschlossenen bewässerungssystemen des gartenbaus, Geisenheimer berichte 41, Ph.D. thesis, Technischen Universität München, Geisenheim, 112 p.

    Google Scholar 

  • Brand T., Wohanka W. (2001) Importance and characterization of the biological component in slow filters, Acta Hort. 554, 313–321.

    Google Scholar 

  • Burdon J.J., Thrall P.H., Ericson L. (2006) The current and future dynamics of disease in plant communities, Annu. Rev. Phytopathol. 44, 19–39.

    PubMed  CAS  Google Scholar 

  • Calvo-Bado L.A., Petch G., Parsons N.R., Morgan J.A.W., Pettitt T.R., Whipps J.M. (2006) Microbial community responses associated with the development of oomycete plant pathogens on tomato roots in soilless growing systems, J. Appl. Microbiol. 100, 1194–1207.

    PubMed  CAS  Google Scholar 

  • Calvo-Bado L.A., Pettit T.R., Parsons N., Petch G.M., Morgan J.A.W., Whipps J.M. (2003) Spatial and temporal analysis of the microbial community in slow sand filters used for treating horticultural irrigation water, Appl. Env. Microbiol. 69, 2116–2125.

    CAS  Google Scholar 

  • Carlile W.R., Wilson, D.P. (1991) Microbial activity in growing media – a brief review, Acta Hort. 294, 196–206.

    Google Scholar 

  • Chave M., Dabert P., Brun R., Godon J.J., Poncet C. (2008) Dynamics of rhizoplane bacterial communities subjected to physicochemical treatments in hydroponic crops, Crop Prot. 27, 418–426.

    CAS  Google Scholar 

  • Chen C., Bélanger R.R., Benhamou N., Paulitz T.C. (1998) Induced systemic resistance (ISR) by Pseudomonas spp. impairs pre- and post-infection development of Pythiumaphanidermatum on cucumber roots, Eur. J. Plant Pathol. 104, 877–886.

    Google Scholar 

  • Chérif M., Tirilly Y., Bélanger R.R. (1997) Effect of oxygen concentration on plant growth, lipidperoxidation, and receptivity of tomato roots to Pythium F under hydroponic conditions, Eur. J. Plant Pathol. 103, 255–264.

    Google Scholar 

  • Clematis F., Minuto A., Gullino M.L., Garibaldi A. (2008) Suppressiveness to Fusarium oxysporum f. sp. radicis lycopersici in re-used perlite and perlite-peat substrates in soilless tomatoes, Biological Control. 48, 108–114.

    Google Scholar 

  • Déniel F., Rey P., Chérif M., Guillou A., Tirilly Y. (2004) Indigenous bacteria with antagonistic and plant-growth-promoting activities improve slow-filtration efficiency in soilless cultivation, Can. J. Microbiol. 50, 499–508.

    PubMed  Google Scholar 

  • Déniel F., Renault D., Tirilly Y., Barbier G., Rey P. (2006) Dynamic biofiltration in tomato soilless greenhouse: evolution of microbial communities on filtering media and control of potentially suppressive and pathogenic microorganisms, Agron. Sustain. Dev. 26, 185–193.

    Google Scholar 

  • Déniel F., Rey P., Tirilly Y. (1999) Cultures hors-sol: désinfection des solutions recyclées, Fruits Leg. 172, 73–75.

    Google Scholar 

  • Déniel F., Vallance J., Barbier G., Le Quillec S., Benhamou N., Rey P. (2010) Control of Pythium spp. root colonization in tomato soilless culture through chlorination of water storage tank, Acta Hort, in press.

    Google Scholar 

  • Ehret D.L., Alsanius B., Wohanka W., Menzies J.G., Utkhede R. (2001) Disinfestation of recirculating nutrient solutions in greenhouse horticulture, Agronomy 21, 323–339.

    Google Scholar 

  • El-Gindy A. (1991) A new root disease of tomato in Egypt caused by Fusarium tabacinum, Zent. Bl. Mikrobiol. 146, 77–79.

    Google Scholar 

  • Ellis K.V. (1985) Slow sand filtration, Crit. Rev. Environ. Control. 15, 315–354.

    CAS  Google Scholar 

  • Eparvier A., Lemanceau P., Alabouvette C. (1991) Population dynamics of non-pathogenic Fusarium and fluorescent Pseudomonas strains in rockwool, a substratum for soilless culture, FEMS Microbiol. Ecol. 86, 177–184.

    Google Scholar 

  • Favrin R.J., Rahe J.E., Mauza B. (1988) Pythium spp. associated with crown rot of cucumbers in British Columbia greenhouses, Plant Dis. 72, 683–687.

    Google Scholar 

  • Foley M.F., Deacon J.W. (1986) Susceptibility of Pythium spp. and other fungi to antagonism by the mycoparasite Pythium oligandrum, Soil Biol. Biochem. 18, 91–95.

    Google Scholar 

  • Fravel D.R. (2005) Comercialization and implementation of biocontrol, Annu. Rev. Phytopathol. 43, 337–359.

    PubMed  CAS  Google Scholar 

  • Garbeva P., van Veen J.A., van Elsas J.D. (2004) Microbial diversity in soil: selection of microbial populations by plant and soil type and implications for disease suppression, Annu. Rev. Pythopathol. 42, 243–270.

    CAS  Google Scholar 

  • Garibaldi A., Guglielmone L., Gullino M.L. (1989) Rhizosphere competence of antagonistic Fusaria isolated from suppressive soils, Symbiosis 9, 401–404.

    Google Scholar 

  • Garibaldi A., Minuto A., Grasso V., Gullino M.L. (2003) Application of selected antagonistic strains against Phytophthora cryptogea on gerbera in closed soilless systems with disinfection by slow sand filtration, Crop Prot. 22, 1053–1061.

    Google Scholar 

  • Georgakopoulos D.G., Fiddaman P., Leifert C., Malathrakis N.E. (2002) Biological control of cucumber and sugar beet damping-off caused by Pythium ultimum with bacterial and fungal antagonists, J. Appl. Microbiol. 92, 1078–1086.

    PubMed  CAS  Google Scholar 

  • Gold S.E., Stanghellini M.E. (1985) Effects of temperature on Pythium root rot of spinach grown under hydroponic conditions, Phytopathology 75, 333–337.

    Google Scholar 

  • Goldberg N.P., Stanghellini M.E., Rasmussen S.L. (1992) Filtration as a method for controlling Pythium root rot of hydroponically grown cucumbers, Plant Dis. 76, 777–779.

    Google Scholar 

  • Graham N., Collins R. (1996) Advances in slow sand and alternative biological filtration, Wiley, Chischester, UK.

    Google Scholar 

  • Grasso V., Minuto A., Garibaldi A. (2003) Selected microbial strains suppress Phytophthora cryptogea in gerbera crops produced in open and closed soilless systems, Phytopathol. Mediterr. 42, 55–64.

    Google Scholar 

  • Gruyter J., Van Kesteren H.A., Noordeloos M.E., Paternotte S.J., Veenbaas-Rijks J.W. (1992) The association of Humicola fuscoatra with corky root symptoms in wilted glasshouse tomatoes, Netherlands J. Plant Pathol. 98, 257–260.

    Google Scholar 

  • Gullino M.L., Garibaldi A. (2007) Critical aspects in management of fungal diseases of ornamental plants and directions in research, Phytopathol. Mediterr. 46, 135–149.

    Google Scholar 

  • Hagn A., Engel M., Kleikamp B., Munch J.C., Schloter M., Bruns C. (2008) Microbial community shifts in Pythium ultimum-inoculated suppressive substrates, Biol. Fertil. Soils. 44, 481–490.

    Google Scholar 

  • Herrero M.L., Hermansen A., Elen O.N. (2003) Occurrence of Pythium spp. and Phytophthora spp. in Norwegian greenhouses and their pathogenicity on cucumber seedlings, J. Phytopathol. 151, 36–41.

    Google Scholar 

  • Hoitink H.A.J., Boehm M.J. (1999) Biocontrol within the context of soil microbial communities: a substrate dependent phenomenon, Annu. Rev. Phytopathol. 37, 427–446.

    PubMed  CAS  Google Scholar 

  • Jager G., ten Hope A., Velvis H. (1979) Hyperparasites of Rhizoctonia solani in Dutch potato fields, Netherlands J. Plant Pathol. 14, 86–91.

    Google Scholar 

  • Jenkins S.F., Averre C.W. (1983) Root diseases of vegetables in hydroponic culture systems in North Carolina greenhouses, Plant Dis. 67, 968–970.

    Google Scholar 

  • Jones E.E., Deacon W. (1995) Comparative physiology and behaviour of the mycoparasites Pythium acanthophoron, P. oligandrum and P. mycoparasiticum, Biocontrol Sci. Technol. 5, 27–39.

    Google Scholar 

  • Khalil S., Alsanius B. (2001) Dynamics of the indigenous microflora inhabiting the root zone and the nutrient solution of tomato in a commercial closed greenhouse system, Gartenbauwissenschaft 66, 188–198.

    Google Scholar 

  • Khalil S., Alsanius B., Hultberg M., Jensén P., Sundin P. (2001a) Assessment of the microbial status in closed hydroponic system using phospholipid fatty acid analysis, Acta Hort. 548, 223–227.

    CAS  Google Scholar 

  • Khalil S., Bååth E., Alsanius B., Englund J.E., Sundin P., Gertsson U.E., Jensén P. (2001b) A comparison of sole carbon source utilization patterns and phospholipid fatty acid profiles to detect changes in the root microflora of hydroponically grown crops, Can. J. Microbiol. 47, 302–308.

    PubMed  CAS  Google Scholar 

  • Koohakan P., Ikeda H., Jeanaksorn T., Tojo M., Kusakari S.I., Okada K., Sato S. (2004) Evaluation of the indigenous microorganisms in soilless culture: occurrence and quantitative characteristics in the different growing systems, Scientia Hort. 101, 179–188.

    Google Scholar 

  • Le Floch G., Benhamou N., Mamaca E., Salerno M.I., Tirilly Y., Rey P. (2005) Characterisation of the early events in atypical tomato root colonisation by a biocontrol agent, Pythium oligandrum, Plant Physiol. Biochem. 43, 1–11.

    Google Scholar 

  • Le Floch G., Rey P., Déniel F., Benhamou N., Picard K., Tirilly Y. (2003) Enhancement of development and induction of resistance in tomato plants by the antagonist, Pythium oligandrum, Agronomie 23, 455–460.

    Google Scholar 

  • Le Floch G., Tambong J., Vallance J., Tirilly Y., Lévesque C.A., Rey P. (2007) Rhizosphere persistence of three Pythium oligandrum strains in tomato soilless culture assessed by DNA macroarray and real-time PCR, FEMS Microbiol. Ecol. 61, 317–326.

    Google Scholar 

  • Lemanceau P., Maurhofer M., Défago G. (2006) Contribution of studies on suppressive soils to the identification of bacterial biocontrol agents and to the knowledge of their modes of action, in: Gnanamanickam S.S. (Ed.), Plant-associated bacteria, Springer Netherlands, pp. 231–267.

    Google Scholar 

  • Lévesque C.A., De Cock A.W.A.M. (2004) Molecular phylogeny and taxonomy of the genus Pythium, Mycol. Res. 108, 1363–1383.

    Google Scholar 

  • Lifshitz R., Stanghellini M.E., Baker R. (1984) A new species of Pythium isolated from soil in Colorado, Mycotaxon 20, 373–379.

    Google Scholar 

  • Linde C., Kemp G.H., Wingfield M.J. (1994) Pythium irregulare associated with Pinus seedling death on previously cultivated lands, Plant Dis. 78, 1002–1005.

    Google Scholar 

  • Matta A. (1978) Fusarium tabacinum (Beyma) W. Gams, pathogen on basil and tomato in nature, Riv. Patol. Veg. 14, 119–125.

    Google Scholar 

  • McPherson G.M., Harriman M.R., Pattison D. (1995) The potential for spread of root diseases in recirculating hydroponic systems and their control with disinfection, Med. Fac. Landbouww. Univ. Gent. 60/2b, 371–379.

    Google Scholar 

  • Menzies J.A., Ehret D.L., Koch C., Bogdanoff C. (1998) Humicola fuscoatra infects tomato roots, but is not pathogenic, Eur. J. Plant Pathol. 104, 769–775.

    Google Scholar 

  • Minuto A., Clematis F., Gullino M.L., Garibaldi A. (2007) Induced suppressiveness to Fusarium oxysporum f. sp. Radicis lycopersici in rockwool substrate used in closed soilless systems, Phytoparasitica 35, 77–85.

    Google Scholar 

  • Minuto A., Garibaldi A., Gullino M.L. (1997) Basil an example of an approach to the protection of minor crop, Inf. Fitopatol. 47, 5–17.

    Google Scholar 

  • Mirza M. S., Aslam M., Ahmed Y. (1995) Sunflower wilt caused by Fusarium tabacinum in Pakistan, Helia 18, 91–94.

    Google Scholar 

  • Moorman G.W., Kang S., Geiser D.M. (2002) Identification and characterization of Pythium species associated with greenhouse floral crops in Pennsylvania, Plant Dis. 86, 1227–1231.

    Google Scholar 

  • Moulin F., Lemanceau P., Alabouvette C. (1994) Pathogenicity of Pythium species on cucumber in peat-sand, rockwool and hydroponics, Eur. J. Plant Pathol. 100, 3–7.

    Google Scholar 

  • Naseby D.C., Pascual J.A., Lynch J.M. (2000) Effect of biocontrol strains of Trichoderma on plant growth, Pythium ultimum populations, soil microbial communities and soil enzyme activities, J. Appl. Microbiol. 88, 161–169.

    PubMed  CAS  Google Scholar 

  • Pagliaccia D., Ferrin D., Stanghellini M.E. (2007) Chemo-biological suppression of root-infecting zoosporic pathogens in recirculating hydroponic systems, Plant Soil 299, 163–179.

    CAS  Google Scholar 

  • Pagliaccia D., Merhaut D., Colao M.C., Ruzzi M., Saccardo F., Stanghellini M.E. (2008) Selective enhancement of the fluorescent pseudomonad population after amending the recirculating nutrient solution of hydroponically grown plants with a nitrogen stabilizer, Microb. Ecol. 56, 538–554.

    CAS  Google Scholar 

  • Pascoe, I.G., Nancarrow R.J., Copes C.J. (1984) Fusarium tabacinum on tomato and other hosts in Australia, Trans. Br. Mycol. Soc. 82, 343–345.

    Google Scholar 

  • Paulitz T.C., Bélanger R.R. (2001) Biological control in greenhouse systems, Annu. Rev. Phytopathol. 39, 103–133.

    PubMed  CAS  Google Scholar 

  • Postma J. (2004) Suppressiveness of root pathogens in closed culture systems, Acta Hort. 644, 503–510.

    Google Scholar 

  • Postma J., Bonants P.J.M., van Os E.A. (2001) Population dynamics of Pythium aphanidermatum in cucumber grown in closed systems, Med. Fac. Landbouwuniv. Gent. 66, 47–59.

    CAS  Google Scholar 

  • Postma J., Geraats B.P.J., Pastoor R., van Elsas J.D. (2005) Characterization of the microbial community involved in the suppression of Pythium aphanidermatum in cucumber grown on rockwool, Phytopathology 95, 808–818.

    PubMed  CAS  Google Scholar 

  • Postma J., Stevens L.H., Wiegers G.L., Davelaar E., Nijhuis E.H. (2009) Biological control of Pythium aphanidermatum in cucumber with a combined application of Lysobacter enzymogenes strain 3.1T8 and chitosan, Biol. Control 48, 301–309.

    Google Scholar 

  • Postma J., van Os E.A., Kritzman G. (1999) Prevention of root diseases in closed soilless growing systems by microbial optimization, Acta Hort. 532, 97–102.

    Google Scholar 

  • Postma J., Willemsen-de Klein M.J.E.I.M., van Elsas J.D. (2000) Effect of the indigenous microflora on the development of root and crown rot caused by Pythium aphanidermatum in cucumber grown on rockwool, Phytopathology 90, 125–133.

    PubMed  CAS  Google Scholar 

  • Price D. (1980) Fungal flora of tomato roots in nutrient film culture, Acta Hort. 98, 269–275.

    Google Scholar 

  • Rafin C. (1993) Les Pythium spp. à sporanges filamenteux, agents de nécroses racinaires sur tomate (Lycopersicon esculentum) en culture hors-sol, Thèse de doctorat, Université de Bretagne Occidentale, 166 p.

    Google Scholar 

  • Rafin C., Tirilly Y. (1995) Characteristics and pathogenicity of Pythium spp. associated with root rot of tomatoes in soilless culture in Brittany, France, Plant Pathol. 44, 779–785.

    Google Scholar 

  • Renault D. (2007) Caractérisation des écosystèmes microbiens colonisant les biofiltres, les solutions nutritives et les racines de Lycopersicon esculentum en culture hors-sol, Thèse de doctorat, Université de Bretagne Occidentale, 195 p.

    Google Scholar 

  • Renault D., Déniel F., Maurice S., Barbier G., Rey P. (2008) Inoculation by antagonistic bacteria of slow-filtration unit for soilless cultures : consequences on microbial communities colonizing the nutrient solutions, Phytopathology 98, S132.

    Google Scholar 

  • Rey P., Benhamou N., Le Floch G., Salerno M.I., Thuillier E., Tirilly Y. (2005) Different interactions between the mycoparasite Pythium oligandrum and two sclerotia-forming plant pathogenic fungi: Botrytis cinerea and Sclerotinia minor, Mycol. Res. 109, 779–788.

    Google Scholar 

  • Rey P., Benhamou N., Tirilly Y. (1998) Ultrastructural and cytochemical investigation of asymptomatic infection by Pythium sp., Phytopathology 88, 234–244.

    PubMed  CAS  Google Scholar 

  • Rey P., Déniel F., Vasseur V., Benhamou N., Tirilly Y. (2001) Evolution of Pythium spp. populations in soilless cultures and their control by active disinfecting methods, Acta Hort. 554, 341–348.

    Google Scholar 

  • Rey P., Le Floch G., Benhamou N., Tirilly Y. (2008) Pythium oligandrum biocontrol: its relationships with fungi and plants, in: Ait Barka E., Clément C. (Eds.), Plant-microbe interactions, pp. 43–57.

    Google Scholar 

  • Rey P., Leucart S., Desilets H., Belanger R., Larue J.P., Tirilly Y. (2001) Production of auxin and tryptophol by Pythium ultimum and minor pathogen, Pythium group F. Possible role in pathogenesis, Eur. J. Plant Pathol. 107, 895–904.

    CAS  Google Scholar 

  • Rey P., Nodet P., Tirilly Y. (1997) Pythium F induces a minor but ubiquitous disease in tomato soiless cultures, J. Plant Pathol. 79, 173–180.

    Google Scholar 

  • Rey P., Picard K., Déniel F., Benhamou N., Tirilly Y. (1999) Development of an IPM system in soilless culture by using slow sand filtration and a biocontrol agent, Pythium oligandrum, in: van Leuteren J.C. (Ed.), Integrated control in glasshouses, IOBC wprs Bulletin 22, 205–208.

    Google Scholar 

  • Runia W.T. (1995) A review of possibilities for disinfection of recirculation water from soilless cultures, Acta Hort. 382, 221–229.

    Google Scholar 

  • Soran H., Ozel M. (1985) Light and electron microscopic investigation on roots of Cucumis melon plants inoculated with Fusarium species, J. Turkish Phytopathol. 14, 69–77.

    Google Scholar 

  • Spadaro D., Gullino M.L. (2005) Improving the efficacy of biocontrol agents against soilborne pathogens, Crop Prot. 24, 601–613.

    Google Scholar 

  • Stanghellini M.E., Kronland W. (1986) Yield loss in hydroponically grown lettuce attributed to subclinical infection of feeder rootlets by Pythium dissotocum, Plant Dis. 70, 1053–1056.

    Google Scholar 

  • Stanghellini M.E., Rasmussen S.L. (1994) Hydroponics – a solution for zoosporic pathogens, Plant Dis. 78, 1129–1138.

    Google Scholar 

  • Steinberg C., Moulin F., Gaillard P., Gautheron N., Stawiecki K., Bremeersch P., Alabouvette C. (1994) Disinfection of drain water in greenhouses using a wet condensation water, Agronomie 14, 627–635.

    Google Scholar 

  • Tambong J.T., De Cock A.W.A.M., Tinker N.A., Lévesque C.A. (2006) An oligonucleotide array for identification and detection of Pythium species, Appl. Environ. Microbiol. 72, 2691–2706.

    PubMed  CAS  Google Scholar 

  • Termorshuizen A.J., van Rijn E., van der Gaag D.J., Alabouvette C., Chen Y., Lagerlöl J., Malandrakis A.A., Paplomatas E.J., Rämert B., Ryckeboer J., Steinberg C., Zmora-Nahum S. (2006) Suppressiveness of 18 composts against 7 pathosystems : variability in pathogen response, Soil Biol. Biochem. 38, 2461–2477.

    CAS  Google Scholar 

  • Tirilly Y., Letard L. (1997) Maîtrise sanitaire des solutions nutritives en cultures hors sans sol, Infos-Ctifl. 132, 35–39.

    Google Scholar 

  • Tu J.C., Papadopoulos A.P., Hao X., Zheng J. (1999) The relationship of Pythium root rot and rhizosphere microorganisms in a closed circulating and an open system in rockwool culture of tomato, Acta Hort. 481, 577–583.

    Google Scholar 

  • Vallance J., Le Floch G., Déniel F., Barbier G., Lévesque C.A., Rey P. (2009) Pythium oligandrum biocontrol in the rhizosphere: influence on fungal and oomycete population dynamics, Appl. Env. Microbiol. 75, 4790–4800.

    CAS  Google Scholar 

  • van der Gaag D.J., Wever G. (2005) Conduciveness of different soilless growing media to Pythium root and crown rot of cucumber under near-commercial conditions, Eur. J. Plant Pathol. 112, 31–41.

    Google Scholar 

  • van Os E.A., Amsing J.J., van Kuik A.J., Willers H. (1999) Slow sand filtration: a potential method for the elimination of pathogens and nematodes in recirculating nutrient solutions from glasshouse-grown crops, Acta Hort. 481, 519–526.

    Google Scholar 

  • van Os E.A., Bruins M., Postma J., Willemsen-de Klein M.J.E.I.M. (2004) Investigations on crop developments and microbial suppressiveness of Pythium aphanidermatum after disinfection treatments of the circulating nutrient solution, Acta Hort. 644, 563–570.

    Google Scholar 

  • van der Plaats-Niterink J. A. (1981) Monograph of the genus Pythium, Studies in Mycology 21, 1–242.

    Google Scholar 

  • Vasseur V., Rey P., Bellanger E., Brygoo Y., Tirilly Y. (2005) Molecular characterization of Pythium group F isolates by ribosomal- and intermicrosatellite-DNA regions analysis, Eur. J. Plant Pathol. 112, 301–310.

    CAS  Google Scholar 

  • Waechter-Kristensen B., Gertsson U.E., Sundin P. (1994) Prospects for microbial stabilization in the hydroponic culture of tomato using circulating nutrient solution, Acta Hort. 361, 382–387.

    Google Scholar 

  • Waechter-Kristensen B., Khalil S., Sundin P., Englund J.E., Gertsson U.E., Jensén P. (1996) Study of the microbial dynamics in the root environment of closed, hydroponic cultivation systems for tomato using phospholipid fatty acid profiles, Acta Hort. 440, 193–198.

    CAS  Google Scholar 

  • Waechter-Kristensen B., Sundin P., Gertsson U.E., Hultberg M., Khalil S., Jensén P., Berkelmann-Loehnertz B., Wohanka W. (1997) Management of microbial factors in the rhizosphere and nutrient solution of hydroponically grown tomato, Acta Hort. 450, 335–339.

    Google Scholar 

  • Weber-Shirk M.L., Dirk R.I. (1997) Physical-chemical mechanisms in slow sand filters, Am. Water Works Assoc. J. 89, 87–100.

    CAS  Google Scholar 

  • Weller D.M., Raaijmakers J.M., MsSpadden Gardener B.B., Thomashow L.S. (2002) Microbial populations responsible for specific soil suppressiveness to plant pathogens, Annu. Rev. Phytopathol. 40, 309–348.

    PubMed  CAS  Google Scholar 

  • Whipps J.M., Lumsden R.D. (1991) Biological control of Pythium species, Biocontrol Sci. Technol. 1, 75–90.

    Google Scholar 

  • Wohanka W., Luedtke H., Ahlers H., Luebke M. (1999) Optimization of slow filtration as a mean for disinfecting nutrient solutions, Acta Hort. 481, 539–544.

    Google Scholar 

  • Wulff E.G., Pham A.T.H., Chérif M., Rey P., Tirilly Y., Hockenhull J. (1998). Inoculation of cucumber roots with zoospores of mycoparasitic and plant pathogenic Pythium species: differential zoospore accumulation, colonization ability and plant growth response, Eur. J. Plant Pathol. 104, 69–76.

    Google Scholar 

  • Zhang W., Tu J.C. (2000) Effect of ultraviolet disinfection of hydroponic solutions on Pythium root rot and non-target bacteria, Eur. J. Plant Pathol. 106, 415–421.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Rey .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Vallance, J., Déniel, F., Floch, G.L., Guérin-Dubrana, L., Blancard, D., Rey, P. (2011). Pathogenic and Beneficial Microorganisms in Soilless Cultures. In: Lichtfouse, E., Hamelin, M., Navarrete, M., Debaeke, P. (eds) Sustainable Agriculture Volume 2. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0394-0_31

Download citation

Publish with us

Policies and ethics