Skip to main content

Biofuels, Greenhouse Gases and Climate Change

  • Chapter
  • First Online:
Sustainable Agriculture Volume 2

Abstract

Biofuels are fuels produced from biomass, mostly in liquid form, within a time frame sufficiently short to consider that their feedstock (biomass) can be renewed, contrarily to fossil fuels. This paper reviews the current and future biofuel technologies, and their development impacts (including on the climate) within given policy and economic frameworks. Current technologies make it possible to provide first generation biodiesel, ethanol or biogas to the transport sector to be blended with fossil fuels. Still under-development 2nd generation biofuels from lignocellulose should be available on the market by 2020. Research is active on the improvement of their conversion efficiency. A ten-fold increase compared with current cost-effective capacities would make them highly competitive. Within bioenergy policies, emphasis has been put on biofuels for transportation as this sector is fast-growing and represents a major source of anthropogenic greenhouse gas emissions. Compared with fossil fuels, biofuel combustion can emit less greenhouse gases throughout their life cycle, considering that part of the emitted CO2 returns to the atmosphere where it was fixed from by photosynthesis in the first place. Life cycle assessment (LCA) is commonly used to assess the potential environmental impacts of biofuel chains, notably the impact on global warming. This tool, whose holistic nature is fundamental to avoid pollution trade-offs, is a standardised methodology that should make comparisons between biofuel and fossil fuel chains objective and thorough. However, it is a complex and time-consuming process, which requires lots of data, and whose methodology is still lacking harmonisation. Hence the life-cycle performances of biofuel chains vary widely in the** literature. Furthermore, LCA is a site- and time-independent tool that cannot take into account the spatial and temporal dimensions of emissions, and can hardly serve as a decision-making tool either at local or regional levels. Focusing on greenhouse gases, emission factors used in LCAs give a rough estimate of the potential average emissions on a national level. However, they do not take into account the types of crop, soil or management practices, for instance. Modelling the impact of local factors on the determinism of greenhouse gas emissions can provide better estimates for LCA on the local level, which would be the relevant scale and degree of reliability for decision-making purposes. Nevertheless, a deeper understanding of the processes involved, most notably N2O emissions, is still needed to definitely improve the accuracy of LCA. Perennial crops are a promising option for biofuels, due to their rapid and efficient use of nitrogen, and their limited farming operations. However, the main overall limiting factor to biofuel development will ultimately be land availability. Given the available land areas, population growth rate and consumption behaviours, it would be possible to reach by 2030 a global 10% biofuel share in the transport sector, contributing to lower global greenhouse gas emissions by up to 1 GtCO2 eq per year (IEA, 2006), provided that harmonised policies ensure that sustainability criteria for the production systems are respected worldwide. Furthermore, policies should also be more integrative across sectors, so that changes in energy efficiency, the automotive sector and global consumption patterns converge towards drastic reduction of the pressure on resources. Indeed, neither biofuels nor other energy source or carriers are likely to mitigate the impacts of anthropogenic pressure on resources in a range that would compensate for this pressure growth. Hence, the first step is to reduce this pressure by starting from the variable that drives it up, i.e. anthropic consumptions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Mtoe yr − 1: million ton oil equivalent: IEA conversion factor used throughout the article: \(1\ \mathrm{Mtoe}\ {\mathrm{yr}}^{-1} = 4.1868\, \times \, 1{0}^{4}\ \mathrm{TJ}\). Selected units for the article are Joules; however, conversions are indicated in brackets when quoted figures are given in other units.

  2. 2.

    Thus the prefix “bio” has nothing to do with the organic production label called “BIO” in France or Germany, for instance, which actually corresponds to specific management guidelines for agricultural production that aim at minimising the harmful impacts on the environment.

  3. 3.

    Other autotrophic processes than photosynthesis exist when enlacing the whole biosphere, but they are less relevant in quantitative terms when focusing on bioenergy.

  4. 4.

    Based on the pillars of sustainability concept in the Brundland report, 1987.

  5. 5.

    Sulphur oxides (SOx) contribute to acid rain and can be carcinogenic.

  6. 6.

    NOx are precursors to the formation of tropospheric ozone.

  7. 7.

    Gasoline high octane value indicates a smaller likelihood that the fuel combusts too soon (low auto-ignite tendency), provoking engine knock problems. A high tendency to auto-ignite, or low octane rating, is undesirable in a spark ignition engine (gasoline) but desirable in a diesel engine (high cetane number).

  8. 8.

    Brazilian Petroleum, Natural Gas and Biofuels Agency.

  9. 9.

    Comité Européen de Normalisation.

  10. 10.

    http://www.planete-energies.com (consulted on 10.03.2008).

  11. 11.

    Various data: 13.2% in energy terms according to IEA 2006; 40% according to Xavier (2007).

  12. 12.

    Biodiesel here does not take into consideration pure vegetable oils mostly directly consumed by farmers on the farm.

  13. 13.

    Christoph Berg is Managing Director at the commodity analysts F.O. Licht. F.O. Licht monitors the global soft commodity markets.

  14. 14.

    Speech at the Platts Cellulosic Ethanol Conference in Chicago on October 31, 2006.

  15. 15.

    By default examining greenhouse gas emissions includes “six” gases: CO2, CH4, N2O, SF6, PFCs and FCs.

  16. 16.

    Pre-industrial concentrations/in 2005: CO2 (280/379 ppm); N2O (270/319 ppb); CH4 (715/1774 ppb), IPCC, 2007.

  17. 17.

    SRES: special report on emission scenarios IPCC.

  18. 18.

    Sea ice melting does not directly cause sea level rise like ice on continents; however, it can lead to the extinction of species that rely on these relatively scarce habitats. It also contributes to ocean thermal expansion.

  19. 19.

    Model developed by the Japanese energy economist Yoichi Kaya in Environment, energy, and economy: strategies for sustainability, co-authored with Keiichi Yokobori as the output of the 1993 Tokyo Conference on Global Environment.

  20. 20.

    The transport sector presented here consists of road transportation, domestic civil aviation, railways, national navigation and other transportation. It excludes emissions from international aviation and maritime transport (which are not covered by the Kyoto Protocol or current EU policies and measures). Road transport is by far the biggest transport emission source.

  21. 21.

    Minimum indicative targets from the European Council Directive 2003/30/EC of 8 May 2003: 2% in 2005 and 5.75% in 2010 share of biofuels of all petrol and diesel for transport purposes placed on the market calculated on the basis of the energy content. (about 3% and 8.6% for ethanol; 2.2% and 6.4% for biodiesel when calculated on a volume basis).

  22. 22.

    Based on the low calorific values.

  23. 23.

    Methyl tertiary butyl ether: fossil oxigenate additive to gasoline.

  24. 24.

    Contamination of groundwater by MTBE due to leaking tanks is especially severe in the US. Despite the decision to phase it out, the quantities of MTBE used in the US have not decreased due to its technical advantages that actually help to produce a cleaner burning gasoline (http://www.acfa.org).

  25. 25.

    http://www.worldwatch.org (25/04/2008).

  26. 26.

    Online: http://www.ccchina.gov.cn/en/Public_Right.asp?class=17.

  27. 27.

    Mean annual foreign exchange rates from the US Board of Governors of the Federal Reserve System annual databases.

  28. 28.

    http://ec.europa.eu/agriculture/capreform/infosheets/energy_ http://en.pdf.

  29. 29.

    European Commission Press releases, IP/06/1243, Brussels, 22 September 2006.

  30. 30.

    URAA, Uruguay Round Agreement on Agriculture in Marrakech, 1994.

  31. 31.

    Communication of Charles E. Hanrahan, Senior Specialist at the Library of Congress in Washington, on 01/2008 at the Agroparistech.

  32. 32.

    By BUWAL, Bundesamt für Umwelt, Wald und Landschaft (Swiss federal office) and SETAC, Society of Environmental Toxicology and Chemistry (international scientific society).

  33. 33.

    ISO 14040:2006 and ISO 14044:2006 replace the previous standards (ISO 14040:1997, ISO 14041:1999, ISO 14042:2000 and ISO 14043:2000). The new editions have been updated to improve the readability, while leaving the requirements and technical content unaffected, except for errors and inconsistencies.

  34. 34.

     MJ of ETBE are produced from “1 MJ of ethanol and 2 MJ of isobutylene”.

  35. 35.

    Weighting and normalisation are two non-mandatory steps in LCA methodology.

  36. 36.

    These shares are followed in the report by the mention “medium agreement, medium evidence”, and the same for the balanced CO2 net flux by agricultural soils “low agreement, limited evidence”.

  37. 37.

    The remaining 6% of agricultural greenhouse gases by subsector are undifferentiated sources of CH4 and N2O.

  38. 38.

    As written by the authors Baumert et al., 2005, p. 91.

  39. 39.

    Nr means reactive nitrogen compounds, i.e. all inorganic and organic N compounds except N2, that is a non-reactive N compound.

  40. 40.

    The former GWP in the second IPCC assessment report was 310 eq CO2 per kg, 298 includes the indirect negative radiative forcing due to the destruction of stratospheric ozone.

  41. 41.

    Radiative forcing (W. m − 2), or global warming potential, refers to the change in the radiative balance on Earth’s surface that is normally ensured by the natural greenhouse effect whose dominant contributing gases are water vapour (60–70% in Duxbury and Mosier, 1993), CO2 (25% in Duxbury and Mosier, 1993) and O3. A positive radiative forcing (warming) occurs when the concentration of greenhouse gases increases; a negative radiative forcing (cooling) when precursors that lead to the destruction of greenhouse gases are released into the atmosphere. Halocarbons are also main contributors to radiative forcing to an extent similar to that of tropospheric ozone (Forster et al., 2007). They are not mentioned amongst the first single contributors though, because they encompass several gas contributors.

  42. 42.

    \({\mathrm{NO}}_{\mathrm{x}}\,=\,\mathrm{NO} +{ \mathrm{NO}}_{2}\) which are in photochemical equilibrium. NOx is mostly firstly emitted in the form of NO (Conrad, 1990). NOx is a common anthropogenic pollutant (Duxbury and Mosier, 1993).

  43. 43.

    Soil humidity favours denitrification up to N2O reduction, while NO3  −  is preferred as an electron acceptor over N2O (Granli and Bøckman, 1994).

  44. 44.

    Bange emphasised that estimates used in global budgets are out of date. Moreover, due to increased release of anthropogenic Nr into the ocean, N2O emissions by marine microorganisms could increase up to 1. 6 MtN{ -}N2O per year (in Galloway et al., 2008).

  45. 45.

    Climate, crop type, fertiliser type, application rate, mode and timing of application, soil organic C and N content, soil pH, soil texture and drainage, measurement technique, frequency of measurements, length of measurement period. This analysis does not include organic soils; neither did the one from Mosier et al. (1996). Organic soils are considered in the IPCC guidelines. They appear to be a great source of N2O, because of high soil organic content and low drainage, which implies reducing conditions (IPCC, 2006). Total areas of organic soils (histosols) ∼ 1. 2% of ice-free land area (online 03.02.2009: http://soils.ag.uidaho.edu/soilorders/histosols.htm).

  46. 46.

    Data for fertilisation IFA/IFDC/FAO (1999), land-use in FAO, 2001.

  47. 47.

    Symbiotic rhizobia in root nodules are able to denitrify. This can lead to N2O emissions, possibly 4 kg N. ha − 1 for improved pastures; legumes could increase N2O emission two- to three-fold compared with unfertilised fields in Mosier et al. (1996). This denitrification by rhizobia could also lead to net N2O consumption depending on local factors.

  48. 48.

    Concentrated animal feeding operations.

  49. 49.

    Mean value of the 4 straw restitution treatments (Thomsen and Christensen, 2004).

  50. 50.

    WRI: Guide to World Resources 2000–2001: People and Ecosystems: The Fraying Web of Life, Elsevier, New York, 2002.

  51. 51.

    Dr. Emily Boyd, 25/11/2005, http://www.scidev.net/en/opinions/emissions-trading-cannot-solve-amazon-deforestatio.html.

  52. 52.

    Mitigation potentials for CO2 represent the net change in soil carbon pools which were derived from about 200 studies; the emission ranges for CH4 and N2O were derived using the DAYCENT and DNDC simulation models. All estimated potentials are followed by the mention medium agreement, low evidence.

  53. 53.

    About 20% of 1990s global greenhouse gas emissions, or 5%, 9% and 14% for the three different economic potentials.

  54. 54.

    Notably from SOC sequestration due to restoration of organic soils; 9% CH4, 2% N2O.

  55. 55.

    Nitrogen efficiency measured as the percentage ratio of total nitrogen uptake by plants and forage (tonnes) over the total nitrogen available from fertiliser, livestock manure and other nitrogen inputs (tonnes).

  56. 56.

    Through mineralisation N is made available for the plants, through immobilisation/organisation N is consumed for the development of the microorganisms.

  57. 57.

    Easily mineralisable N is usually more abundant in fresh green material than in straw (Velthof et al., 2002).

  58. 58.

    Feed conversion efficiency is defined as the amount of animal product produced per amount of animal feed input.

  59. 59.

    EOF encompasses organic farming and high natural value farming (NHV).

  60. 60.

    Quoted as written in the study: related to the overall value judgements in the study that limit the available potential including strict environmental assumptions.

  61. 61.

    Environmentally-compatible” bioenergy potential  = the quantity of primary biomass that is technically available for energy generation based on the assumption that no additional pressures on biodiversity, soil and water resources are exerted compared with a development without increased bioenergy production (EEA, 2006b).

  62. 62.

    Assumed yield increases: 1% per year for conventional arable crops, 1–2.5% for dedicated energy crops. A lower yield increase of 1% for all crops would reduce the bioenergy potential by 2% in 2010, and by 13% in 2030.

  63. 63.

    In both studies here (OECD, 2006) and (Fulton et al., 2004) data concern the years 2000–2004, hence projections for the European Union encompass only the 15 Member States before the entrance of the other 12 members if not mentioned.

  64. 64.

    i.e. 20% around the annual mean price.

  65. 65.

    The Schumpeterian vision of technology advances that evolve by plateaus punctuated by radical breakthroughs.

  66. 66.

    Dr. Emily Boyd, 25/11/2005 http://www.scidev.net/en/opinions/emissions-trading-cannot-solve-amazon-deforestatio.html.

  67. 67.

    Personal communication by Dane Colbert, Director of Ethanol Union, 30/10/2008.

References

  • ADEME (2006) Programme national Bois-Énergie 2000-2006 (National Wood Energy Programme), Rapport d’activités 2000-2005 (Activities Report), Collection : Données et références, ©ADEME Editions, 5853, ISBN 978-2-86817-844-8, Paris, 114 p.

    Google Scholar 

  • ADEME/DIREM (2002) Bilans énergétiques et gaz à effet de serre des filières de production de biocarburants, Rapports techniques, Version définitive novembre 2002, Ecobilan, Pricewaterhouse Coopers, 132 p.

    Google Scholar 

  • Agard J., Alcamo J., Ash N., Arthurton R., Barker S., Barr J., Baste I., Chambers W.B., Dent D., Fazel A., Gitay H., Huber M., Jäger J., Kuylenstiema J.C.I., King P.N., Kok M.T.J., Levy M.A., Mafuta G., Martino D., Panwar T.S., Rast W., Rothman D.S., Varughese G.C., Zommers Z. (2007) Global Environment Outlook GEO4 Environment for Development, UNEP, ISBN: 978-92-807-2836-1, 572 p.

    Google Scholar 

  • Anton A., Castells F., Montero J.I. (2007) Land use indicators in life cycle assessment. Case study: The environmental impact of Mediterranean greenhouses, J. Cleaner Prod. 1, 432–438.

    Google Scholar 

  • Antoni V., Arrouays D. (2007) Le stock de carbone dans les sols agricoles, IFEN 121, 4 p.

    Google Scholar 

  • Arrouays D., Balesdent J., Germon J.C., Jayet P.A., Soussana J.F., Stengel P. (2002) Mitigation of the greenhouse effect Increasing carbon stocks in French agricultural soils? Scientific Assessment Unit for Expertise, Synthesis of an Assessment Report by the French Institute for Agriculture Research (INRA) on request of the French Ministry for Ecology and Sustainable Development, October 2002, 33 p.

    Google Scholar 

  • Arrouays D., Deslais W., Badeau V. (2001) The carbon content of topsoil and its geographical distribution in France, Soil Use Manage. 17, 7–11.

    Google Scholar 

  • ASPO (2008) Newsletter February 2008, online: http://www.peakoil.net.

  • Bai Z.G., Dent D.L., Olsson L., Schaepman M.E. (2007) Global Assessment of Land Degradation and Improvement, FAO LADA working paper, Food and Agriculture Organization of the United Nations, Rome.

    Google Scholar 

  • Bai Z.G., Dent D.L., Olsson L., Schaepman M.E. (2008) Global Assessment of Land Degradation and Improvement. 1 Identification by remote sensing, Report 2008/01(GLADA Report 5), ISRIC – World Soil Information, Wageningen, 70 p.

    Google Scholar 

  • Balat M, Balat H., Öz C. (2008) Progress in bioethanol processing, Progress in Energy Combustion Science, DOI: 10.1016/j.pecs.2007.11.001.

    Google Scholar 

  • Balesdent J., Chenu C., Balabane M. (2000) Relationship of soil organic matter dynamics to physical protection and tillage, Soil Till. Res. 53, 215–230.

    Google Scholar 

  • Ball B.C., Crichton I., Horgan G.W. (2008) Dynamics of upward and downward N2O and CO2 fluxes in ploughed or no-tilled soils in relation to water-filled pore space, compaction and crop presence, Soil Till. Res. 101, 20–30.

    Google Scholar 

  • Bange H.W. (2006) New directions: The importance of oceanic nitrous oxide emissions, Atmos. Environ. 40, 198–199.

    CAS  Google Scholar 

  • Barbier C., Baron R., Colombier M., Boemare C. (2004) Climate change policies; Analysis of sectoral changes in Europe, IDDRI/CIRED with the support of ADEME, Paris, 37 p.

    Google Scholar 

  • Bare J.C., Hofstetter P., Pennington D., Udo de Haes H.A. (2000) Life Cycle Impact Assessment Workshop Summary: Midpoints vs Endpoints – The Sacrifices and Benefits, Int. J. LCA 5, 319–326.

    Google Scholar 

  • Baserga U. (2000) Fermentation de déchets organiques dans les installations agricoles de biogaz, Station fédérale de recherches en économie et technologie agricoles (FAT) CH-8356 Tänikon, FAT Rapports n ∘  546, 12 p.

    Google Scholar 

  • Basset-Mens C., Anibar A., Durand P., van der Werf H. M.G. (2006a) Spatialised fate factors for nitrate in catchments: Modelling approach and implication for LCA results, Sci. Total Environ. 367, 367–382.

    CAS  Google Scholar 

  • Basset-Mens C., Van der Werf H.M.G., Durnad P., Leterme P. (2006b) Implications of Uncertainty and Variability in the Life Cycle Assessment of Pig Production Systems, Int. J. LCA 11, 298–304.

    CAS  Google Scholar 

  • Baumert K.A., Herzog T., Pershing J. (2005) Navigating the Numbers; Greenhouse Gas Data and International Climate Policy. © World Resources Institute, ISBN: 1-56973-599-9, USA, 132 p.

    Google Scholar 

  • Beheydt D., Boeckx P., Sleutel S., Li C., van Cleemput O. (2007) Validation of DNDC for 22 long-term N2O field emission measurements, Atmos. Environ. 41, 6196–6211.

    CAS  Google Scholar 

  • Berndes G., Hoogwijk M., Van den Broek R. (2003) The contribution of biomass in the future global energy supply: a review of 17 studies, Biomass Bioenerg. 25, 1–28.

    Google Scholar 

  • Bioenergy Business (2007) Markets and finance for biomass and biofuels, Volume 1, Issue 3, 23 p.

    Google Scholar 

  • BIOFRAC (2006) Biofuels in the European Union: a vision for 2030 and beyond, Final draft report of the BIOFRAC, European Biofuels Research Advisory Council, 30 p.

    Google Scholar 

  • Björklund A. (2002) Survey of approaches to improve reliability in LCA, Int. J. LCA 7, 64–72.

    Google Scholar 

  • Blottnitz von H., Curran M.A. (2007) A review of assessments conducted on bio-ethanol as a transportation fuel from a net energy, greenhouse gas, and environmental life cycle perspective, J. Cleaner Prod. 15, 607–619.

    Google Scholar 

  • Boer de I.J.M. (2003) Environmental impact assessment of conventional and organic milk production, Livest. Prod. Sci. 80, 69–77.

    Google Scholar 

  • Boeters S., Veenendaal P., van Leeuwen N., Rojas-Romagoza H. (2008) The potential for biofuels alongside the EU-ETS, Paper for presentation at the Eleventh Annual GTAP Conference ‘Future of Global Economy’, Helsinki, June 12–14 2008, 39 p.

    Google Scholar 

  • Boizard H., Richard G., Roger-Estrade J., Dürr C., Boiffin J. (2002) Cumulative effects of cropping systems on the structure of the tilled layer in northern France, Soil Till. Res. 64, 149–164.

    Google Scholar 

  • Bouwman A.F. (1994) Method to estimate direct nitrous oxide emissions from agricultural soils, Report 773004004, National Institute of Public Health and Environmental Protection, Bilthoven, the Netherlands, 28 p.

    Google Scholar 

  • BRDI (2006) Vision: for bioenergy and biobased products in the United States, Bioeconomy for a sustainable future, Biomass Research and Development Initiative, 27 p.

    Google Scholar 

  • Brentrup F., Küsters J., Kuhlmann H., Lammel J. (2004) Environmental impact assessment of agricultural production systems using the life cycle assessment methodology. I. Theoretical concept of a LCA method tailored to crop production, Eur. J. Agron. 20, 247–264.

    Google Scholar 

  • Cardona C.A., Sanchez O.J. (2007) Fuel ethanol production: Process design trends and integration opportunities, Bioresource Technol. 98, 2415–2457.

    CAS  Google Scholar 

  • CEA (2004) L’hydrogène, les nouvelles technologies de l’énergie, Commissariat de l’Énergie Atomique, Clefs n ∘  50/51, 156 p.

    Google Scholar 

  • CEC (1997) Commission of the European Communities, Energy for the Future: Renewable Sources of Energy, White Paper for a Community Strategy and Action Plan, COM(97) 599 final (26/11/1997) Brussels, 55 p.

    Google Scholar 

  • CEC (2005) Commission of the European Communities, Biomass Action Plan, COM(2005) 628 final, {SEC(2005) 1573} Brussels, 47 p.

    Google Scholar 

  • CEC (2006a) Commission of the European Communities, EU Strategy for Biofuels, COM(2006) 34 final, {SEC(2006) 142} Brussels, 30 p.

    Google Scholar 

  • CEC (2006b) Commission of the European Communities, a European Strategy for Sustainable, Competitive and Secure Energy, Green Paper COM(2006) 105 final, {SEC(2006) 317} Brussels, 20 p.

    Google Scholar 

  • CEC (2008) Commission of the European Communities, Proposal for a Directive of the European Parliament and of the Council on the promotion of the use of energy from renewable sources; (presented by the Commission) {COM(2008) 19 final} 2008/2016 (COD), Brussels, 61 p.

    Google Scholar 

  • Chapple C., Ladisch M., Meilan R. (2007) Loosening lignin’s grip on biofuel production, Nat. Biotechnol. 25, 746–748.

    CAS  Google Scholar 

  • Chapuis-Lardy L., Wrage N., Metay A., Chottes J.L., Bernoux M. (2007) Soils, a sink for N2O? A review, Global Change Biol. 13, 1–17.

    Google Scholar 

  • Chatskikh D., Olesen J. (2007) Soil tillage enhanced CO2 and N2O emissions from loamy sand soil under spring barley, Soil Till. Res. 97, 5–18.

    Google Scholar 

  • Chenu C., Le Bissonnais Y., Arrouays D. (2000) Organic Matter Influence on Clay Wettability and Soil Aggregate Stability, Soil Sci. Soc. Am. J. 64, 1479–1486.

    CAS  Google Scholar 

  • Clem A. (1985) Commodity price volatility: trends during 1975–1984, Monthly Labor Review, 5 p.

    Google Scholar 

  • Clifton-Brown J.C., Breuer J., Jones M.B. (2007) Carbon mitigation by the energy crop, Miscanthus, Global Change Biol. 13, 2296–2307.

    Google Scholar 

  • Conen F., Dobbie K.E., Smith K.A., (2000) Predicting N2O emissions from agricultural land through related soil parameters, Global Change Biol. 6, 417–426.

    Google Scholar 

  • Conrad R. (1990) Flux of NOx between soil and atmosphere: importance and soil microbial metabolism, in: Revsbech N.P., Sörensen J. (Eds.), Denitrification in soil and sediment, Plenum Press, New York, 1990.

    Google Scholar 

  • Conrad R. (1996) Soil microorganisms as controllers of atmospheric trace gases (H2, CO, CH4, OCS, N2O, and NO), Microbiol. Rev. 60, 609–640.

    CAS  Google Scholar 

  • Cowie A.L., Smith P., Johnson D. (2006) Does soil carbon loss in biomass production systems negate the greenhouse benefits of bioenergy? Mitigation and Adaptation Strategies for Global Change 11, 979–1002.

    Google Scholar 

  • Croezen H., Kampman B., Van de Vreede G., Sevenster M. (2007) ETBE and ethanol: a comparison of CO2 savings, Delft, CE, 63 p.

    Google Scholar 

  • Crutzen P.J., Mosier A.R., Smith K.A., Winiwarter W. (2008) N2O release from agro-biofuel production negates global warming reduction by replacing fossil fuels, Atmos. Chem. Phys. 8, 389–395.

    CAS  Google Scholar 

  • Del Grosso S.J., Parton W.J., Mosier A.R., Hartman M.D., Brenner J., Ojima D.S., Schimel D.S. (2001) Simulated interaction of carbon dynamics and nitrogen trace gas fluxes using the DAYCENT model, in: Schaffer M., Ma L., Hansen S. (Eds.), Modeling Carbon and Nitrogen Dynamics for Soil Management, CRC Press, Boca Raton, Florida, pp. 303–332.

    Google Scholar 

  • Delucchi M.A. (2004) Conceptual and methodological issues in life cycle analyses of transportation fuels, Does Research and Research Scientist Institute of transportation Studies University of California, prepared for the U.S. Environmental Protection Agency Office of Transportation and Air Quality, p. 22.

    Google Scholar 

  • Demirbas A. (2007) Progress and recent trends in biofuels, Prog. Energ. Combust. 33, 1–18.

    CAS  Google Scholar 

  • Denman K.L., Brasseur G., Chidthaisong A., Ciais P., Cox P.M., Dickinson R.E., Hauglustaine D., Heinze C., Holland E., Jacob D., Lohmann U., Ramachandran S., da Silva Dias P.L., Wofsy S.C., Zhang X. (2007) Couplings Between Changes in the Climate System and Biogeochemistry, Climate Change 2007: The Physical Science Basis, Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, in: Solomon S., Qin D., Manning M., Chen Z., Marquis M., Averyt K.B., Tignor M., Miller H.L. (Eds.), Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.

    Google Scholar 

  • Dornburg V., van Dam J., Faaij A. (2007) Estimating GHG emission mitigation supply curves of large-scale biomass use on a country level, Biomass Bioenerg. 31, 46–65.

    Google Scholar 

  • Duxbury J.M., Mosier A.R. (1993) Status and issues concerning agricultural emissions of greenhouse gases, in: Agricultural Dimension of Global Climate Change, Chap. 12, Sainte Lucie Press, pp. 229–258.

    Google Scholar 

  • EEA (2006a) Greenhouse gas emission trends and projections in Europe 2006, Environmental Energy Agency, Report 9, ISBN 92–9167–885-6 © EEA, Copenhagen, 63 p.

    Google Scholar 

  • EEA (2006b) How much bioenergy can Europe produce without harming the environment? Environmental Energy Agency, Report 7, ISBN 92–9167–849-X © EEA, Copenhagen, 72 p.

    Google Scholar 

  • EEA (2008) Climate for a transport change, TERM 2007: indicators tracking transport and environment in the European Union, EEA Report No. 1, ISSN 1725-9177, DOI 10.2800/3320 © EEA, Copenhagen, 56 p.

    Google Scholar 

  • ENERS (2009) Biofuels Platform, Online: http://www.eners.ch.

  • Engel Th., Priesack E. (1993) Expert-N, a building block system of nitrogen models as a resource for advice, research, water management and policy, Integral Soil and Sediment Research: a Basis for Proper Protection, in: Eijsackers H.J.P., Hamers T (Eds.), Kluwer, Dordrecht, pp. 503–507.

    Google Scholar 

  • EU (2001) Directive 2001/77/EC of the European Parliament and of the Council, 27 September 2001, on the promotion of electricity produced from renewable energy sources in the internal electricity market, Official Journal of the European Union 27.10.2001, L 283/33, 8 p.

    Google Scholar 

  • EU (2003) Directive 2003/30/EC of the European Parliament and of the Council, 8 May 2003, on the promotion of the use of biofuels or other renewable fuels for transport, Official Journal of the European Union 17.5.2003, L 123/42, 5 p.

    Google Scholar 

  • EU (2007a) Brussels European Council 8/9 March 2007, Presidency conclusions.

    Google Scholar 

  • EU DG-TREN (2005) European Commission, Directorate-General for Energy and Transport, 20% energy savings by 2020, Green Paper on energy efficiency, Memo, 7 p.

    Google Scholar 

  • EU DG-TREN (2006a) European Commission, Directorate-General for Energy and Transport Fact sheet: EU-25, Energy Fiches, TREN C1, Online: http://ec.europa.eu/energy/green-paper-energy/doc/2006_03_08_gp_factsheet_en.pdf.

  • EU DG-TREN (2006b) European Commission, Directorate-General for Energy and Transport, Fuelling our future, Green Paper for a European strategy for sustainable, competitive and secure energy, Memo, 6 p.

    Google Scholar 

  • EU DG-TREN (2007) Energy and transport in figures: statistical pocket book. Online: http://ec.europa.eu/dgs/energy_transport/figures/pocketbook/2007_en.htm.

  • Eurobarometer (2007) Attitudes on issues related to EU Transport Policy: Analytical report, The Gallup Organization, European Commission, 82 p.

    Google Scholar 

  • EurObserv’ER (2006) Biofuels Barometer, in: Systèmes Solaires n ∘  173, pp. 57–66.

    Google Scholar 

  • EuroCare (2004) Outlooks on selected agriculture variables for the 2005 State of the Environment and the Outlook Report, EEA/RNC/03/016.

    Google Scholar 

  • European Commission (2007) Report on the hearing of the Biofuels European Technology Platform, Joint Research Center Directorate-General, Institute for Energy, Energy Systems Evaluation Unit. Petten, 5 p.

    Google Scholar 

  • Fagernäs L., Johansson A.N, Wilen C., Sipilä K., Mäkinen T., Satu H., Daugherty E., Den Uil H., Vehlow J., Kåberger T.S., Rogulska M. (2006) Bioenergy in Europe: Opportunities and Barriers, Bioenergy NoE, VTT Research Notes 2352, Espoo 2006, ISBN 951-38-6815-X, Valopaino Oy, Helsinki 2006, 122 p.

    Google Scholar 

  • FAO (2001) Global estimates of gaseous emissions of NH3, NO and N2O from agricultural land, ISBN 92-5-104698-1, International Fertilizer Industry Association, Food and Agriculture Organization of the United Nations, Rome.

    Google Scholar 

  • FAO (2002) World agriculture: toward 2015/2030, Summary report, ISBN 92-5-104761-8, Rome, 95 p.

    Google Scholar 

  • FAO (2003) FAO stat database on http://apps.fao.org/page/ collections, Food and Agriculture Organization of the United Nations: Rome.

  • FAO (2007) Food Outlook, Global market analysis, GIEWS Global Information and Early Warning System on Food and Agriculture, 91 p.

    Google Scholar 

  • FAO (2008a) The state of food and agriculture. Biofuels: prospects, risks and opportunities, ISBN 978-92-5-105980-7, Rome, 138 p.

    Google Scholar 

  • FAO (2008b) Current world fertilizer trends and outlook to 2012, Rome, 34 p.

    Google Scholar 

  • Fargione J., Hill J., Tilman D., Polasky S., Hawthorne P. (2008) Land clearing and the biofuel carbon debt, Science 319, 1235–1238.

    PubMed  CAS  Google Scholar 

  • Farquharson R., Baldock J. (2008) Concepts in modelling N2O emissions from land use, Plant Soil 309, 147–167.

    CAS  Google Scholar 

  • Farrell A.E., Plevin R.J., Turner B.T., Jones A.D., O’Hare M., Kammen D.M. (2006) Ethanol can contribute to energy and environmental goals, Science 311, 506–508.

    PubMed  CAS  Google Scholar 

  • Firestone M.K., Davidson E.A. (1989) Microbiological basis of NO and N2O production and consumption in soil, in: Exchange of trace gases between terrestrial ecosystems and the atmosphere, ISBN 0-471-92551-9, pp. 7–21.

    Google Scholar 

  • Fischedick M., Esken A., Luhmann H.-J., Schüwer D., Supersberger N. (2007) CO2-Capture and Geological Storage as a Climate Policy Option: technologies, Concepts, Perspectives, Wuppertal Spezial 35, 34 p.

    Google Scholar 

  • Fischer G., Schrattenholzer L. (2001) Global bioenergy potentials through 2050, Biomass Bioenerg. 20, 151–159.

    Google Scholar 

  • Fisher M.J., Rai I.M., Ayarza M.A., Lascano C.E., Sanz J.I., Thomas R.J., Vera R.E. (1994) Carbon storage by introduced deep-rooted grasses in the South American savannas, Nature 371, 236–238.

    Google Scholar 

  • FNR (2007) Biokraftstoffe, Pflanzen, Rohstoffe, Produkte, Stand: März 2008, Fachagentur Nachwachsende Rohstoffe e.v. (FNR) nachwachsende-rohstoffe.de, 22 p.

    Google Scholar 

  • FNR (2008) Biogas Basisdaten Deutschland. Stand: Oktober 2008, Fachagentur Nachwachsende Rohstoffe e.v. (FNR) nachwachsende-rohstoffe.de, 7 p.

    Google Scholar 

  • Forster P., Ramaswamy V., Artaxo P., Berntsen T., Betts R., Fahey D.W., Haywood J., Lean J., Lowe D.C., Myhre G., Nganga J., Prinn R., Raga G., Schulz M. Van Dorland R. (2007) Changes in Atmospheric Constituents and in Radiative Forcing, in: Solomon S., Qin D., Manning M., Chen Z., Marquis M., Averyt K.B., Tignor M., Miller H.L. (Eds.), Climate Change 2007: The Physical Science Basis, Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.

    Google Scholar 

  • France Betteraves/Passion Céréales (2007) La filière bioéthanol, États des lieux et perspectives, 36 p.

    Google Scholar 

  • Frank A.B., Berdahl J.D., Hanson J.D., Liebig M.A., Johnson H.A. (2004) Biomass and carbon partitioning in switchgrass, Crop Sci. 44, 1391–1396.

    CAS  Google Scholar 

  • Fritsche U.R., Hünecke K., Hermann A., Schulze F., Wiegmann K., Adolphe M. (2006) Sustainability Standards for Bioenergy, in: Lübbeke I. (Ed.), Published by WWF Germany, Frankfurt am Main and Öko-Institut e.V., Darmstadt, 80 p.

    Google Scholar 

  • Frolking S.E., Mosier A.R., Ojima D.S., Li C., Parton W.J., Potter C.S., Priesack E., Stenger R., Haberbosch C., Dörsch P., Flessa H., Smith K.A. (1998) Comparison of N2O emissions from soils at three temperate agricultural sites: simulation of year-round measurements by four models, Nutr. Cycl. Agroecosys. 52, 77–105.

    CAS  Google Scholar 

  • Fulton L., Howes T., Hardy J. (2004) Biofuels for transport, an international perspective, IEA study undertaken by the Office of Energy Efficiency, Technology and RandD, Paris, 210 p.

    Google Scholar 

  • Gabrielle B., Gagnaire N. (2008) Life-cycle assessment of straw use in bio-ethanol production: a case-study based on deterministic modelling, Biomass Bioenerg. 32, 431–441.

    CAS  Google Scholar 

  • Gabrielle B., Da-Silveira J., Houot S., Michelin J. (2005) Field-scale modelling of carbon and nitrogen dynamics in soils amended with urban waste composts, Agr. Ecosys. Environ. 110, 289–299.

    Google Scholar 

  • Gabrielle B., Laville P., Hénault C., Nicoullaud B., Germon J.C. (2006) Simulation of nitrous oxide emissions from wheat-cropped soils using CERES, Nutr. Cycl. Agroecosys. 74, 133–146.

    Google Scholar 

  • Galloway J.N., Aber J.D., Erisman J.W., Seitzinger S.P., Howarth R.W., Cowling E.B., Cosby B.J. (2003) The nitrogen cascade, BioScience, 53, 341–356.

    Google Scholar 

  • Galloway J.N., Townsend A.R., Erisman J.W., Bekunda M., Cai Z., Freney J.R., Martinelli L.A., Seitzinger S.P., Sutton M.A. (2008) Transformation of the Nitrogen Cycle: Recent Trends, Questions, and Potential Solutions, Science 320, 889–892.

    CAS  Google Scholar 

  • Garten C.T., Wullschleger S.D. (1999) Soil carbon inventories under a bioenergy crop (switchgrass): Measurement limitations, J. Environ. Qual. 28, 1359–1365.

    CAS  Google Scholar 

  • Germon J.C., Arrouays D., Deseau S., Félix I., Gabrielle B., Ganteil A., Gallienne J., Lellahi A., Lecorre N., Martin M., Mary B., Métay A., Nicolardot B., Quéré L., Reau R. (2007) Évaluation des impacts environnementaux des Techniques Culturales Sans Labour en France, Synthèse du groupe de travail sur le “ bilan effet de serre ”, ADEME-ARVALIS Institut du végétal-INRA-APCA-AREAS-ITB-CETION-IFVV, 400 p.

    Google Scholar 

  • Goedkoop M. (1995) NOH report 9523, The Eco-Indicator 95, Final Report, Pre’ Consultants, Amersfoort.

    Google Scholar 

  • Goedkoop M., Spriensma R. (2000) The Eco-indicator 99: a damage oriented method for life cycle assessment, methodology report, second edition, Amersfoort, Netherlands: Pré Consultants, 132 p, online: http://www.pre.nl/ecoindicator99/ei99-reports.htm.

  • Goldberg S.D., Gebauer G. (2008) Drought turns a Central European Norway spruce forest soil from an N2O source to a transient N2O sink, Glob. Change Biol., DOI:10.1111/j.1365-2486.2008. 01752.x.

    Google Scholar 

  • Goodrum J.W., Geller D.P. (2005) Influence of fatty acid methyl esters frm hydoxylated vegetable oils on diesel fuel lubricity, Bioresource Technol. 96, 851–855.

    CAS  Google Scholar 

  • Graboski M.S. (2002) Fossil Energy Use in the Manufacture of Corn Ethanol, Colorado School of Mines, prepared for the National Corn Growers Association, 122 p.

    Google Scholar 

  • Graboski M.S, McCormick R.L. (1998) Combustion of fat and vegetable oil derived fuels in diesel engines, Prog. Energ. Combust. 24, 125–164.

    CAS  Google Scholar 

  • Grainger A. (1988) Estimating areas of degraded tropical lands requiring replenishment of forest cover, Int. Tree Crops J. 5, 31–61.

    Google Scholar 

  • Grainger A. (1991) Constraints on Increasing Tropical Forest Area to Combat Global Climate Change, in: Howlett D., Sargent C. (Eds.), Proceedings of the Technical Workshop to Explore Options for Global Forestry Management, Bangkok, 20–30 April, International Institute for Environment and Development, London, pp. 196–208.

    Google Scholar 

  • Granli T., Bøckman O.C. (1994) Nitrous oxide from Agriculture, Norwegian J. Agric. Sci. Suppl. 12, 1–128.

    Google Scholar 

  • Grant B., Smith W.N., Desjardins R., Lemke R., Li C.S. (2004) Estimated N2O and CO2 emissions as influenced by agricultural practices in Canada, Climatic Change 65, 315–332.

    CAS  Google Scholar 

  • Gregorich E.G., Rochette P., Hopkins D.W., McKim U.F., St-Georges P. (2006) Tillage-induced environmental conditions in soil and substrate limitation determine biogenic gas production, Soil Biol. Biochem. 38, 2614–2628.

    CAS  Google Scholar 

  • Guinée J.B. (2002) Handbook on LCA; Operational Guide to the ISO Standards, ISBN 1-4020-0228-9, Kluwer Academic Publishers, Dordrecht, The Netherlands, 692 p.

    Google Scholar 

  • Guo L.B., Gifford R.M. (2002) Soil carbon stocks and land use change: a meta analysis, Global Change Biol. 8, 345–360.

    Google Scholar 

  • Hahn-Hägerdal B., Galbe M., Gorwa-Grauslund M.F., Lidén G., Zacchi G. (2006) Bio-ethanol – the fuel of tomorrow from the residues of today, Review Trends Biotechnol. 24, 549–556.

    Google Scholar 

  • Hansen E.M., Christensen B.T., Jensen L.S, Kristensen K. (2004) Carbon sequestration in soil beneath long-term Miscanthus plantations as determined by C-13 abundance, Biomass Bioenerg. 26, 97–105.

    CAS  Google Scholar 

  • Hansen J.E. (2006) Declaration of James E. Hansen, the Director of NASA Goddard Institute for Space Studies, The Earth Institute at Columbia University, on the 14th of August 2006 in front of the United States District Court for the District of Vermont Case Nos. 2:05-CV-302, and 2:05-CV-304 (Consolidated) retrieved (05/2007) from the web page: http://www.columbia.edu.

  • Hansen J.E. (2007) Scientific reticence and sea level rise, Environ. Res. Lett. 2, 1–6. online: http://www.stacks.iop.org/ERL/2/024002.

  • Harijan K., Memon M., Uqaili M.A., Mirza U.K. (2009) Potential contribution of ethanol fuel to the transport sector of Pakistan, Renew. Sust. Energ. Rev. 13, 291–295.

    Google Scholar 

  • Heaton E.A. Clifton-Brown J. Voigt T.B. Jones M.B., Long S.P. (2004) Miscanthus for renewable energy generation: European union experience and projections for Illinois. Review, Mitigation and Adaptation Strategies for Global Change 9, 433–451.

    Google Scholar 

  • Hector R., Hughes S., Liang-Li X. (2008) Developing yeast strain for biomass-to-ethanol production, Ethanol Producer Magazine, June 2008 Issue, online: http://www.ethanolproducer.com.

  • Heijungs R., Goedkoop M., Struijs J., Effting S., Sevenster M., Huppes G. (2003) Towards a life cycle impact assessment method which comprises category indicators at the midpoint and the endpoint level, Report of the first project phase: Design of the new method VROM report, online: http://www.leidenuniv.nl/cml/ssp/publications/recipe_phase1.pdf.

  • Heijungs R., Guinée J.B., Huppes G., Lnakreijer R.M., Udo de Haes H.A., Wegener Sleeswijk A., Ansems A.M.M., Eggels P.G., van Duin R., de Goede H.P. (1992) Environmental Life Cycle Assessment of Products, Center of Environmental Science (CML), Leiden University, The Netherlands.

    Google Scholar 

  • Heinen M. (2006a) Simplified denitrification models: Overview and properties, Geoderma 133, 444–463.

    CAS  Google Scholar 

  • Heinen M. (2006b) Application of a widely used denitrification model to Dutch data sets, Geoderma 133, 464–473.

    CAS  Google Scholar 

  • Henao J., Baanante C. (2006) Agricultural Production and Soil Nutrient Mining in Africa – Implications for Resource Conservation and Policy Development, IFDC, Muscle Shoals, AL.

    Google Scholar 

  • Hénault C., Germon J.C. (2000) NEMIS, a predictive model of denitrification on the field scale, Eur. J. Soil Sci. 51, 257–270.

    Google Scholar 

  • Hénault C., Bizouard F., Laville P., Gabrielle B., Nicoullaud B., Germon J.C., Cellier P. (2005) Predicting in situ soil N2O emission using NOE algorithm and soil database, Global Change Biol. 11, 115–127.

    Google Scholar 

  • Higgins T. (2007) Study on relative CO2 savings comparins ethanol and EtBE as a gasoline component, Final report, Hart Energy Consulting, 31 p.

    Google Scholar 

  • Himmel M.E., Ding S.-Y., Johnson D.K., Adney W.S., Nimlos M.R., Brady J.W., Foust T.D. (2007) Biomass Recalcitrance: Engineering Plants and Enzymes for Biofuels Production, Science 315, 804–807.

    PubMed  CAS  Google Scholar 

  • Holmgren P. (2006) Global Land Use Area Change Matrix: Input to the Fourth Global Enviromental Outlook (Geo- 4), Forest Resources Assessment, Working Paper 134, FAO, Rome, p. 9.

    Google Scholar 

  • Hoogwijk M., Faaij A., Eickhout B., de Vries B., Turkenburg W. (2005) Potential of biomass energy out to 2100, for four IPCC SRES land-use scenarios, Biomass Bioenerg. 29, 225–257.

    Google Scholar 

  • Hoogwijk M., Faaij A., Van den Broek R., Berndes G., Gielen D., Turkenburg W. (2003). Exploration of the ranges of the global potential of biomass for energy, Biomass Bioenerg. 25, 119–133.

    Google Scholar 

  • Houghton R.A. (2003) Revised estimates of the annual net flux of carbon to the atmosphere from changes in land use and land management 1850–2000, Tellus 55B, 378–390.

    CAS  Google Scholar 

  • Houghton R.A. (2008) Carbon Flux to the Atmosphere from Land-Use Changes: 1850–2005, in: TRENDS: A Compendium of Data on Global Change, Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tenn., U.S.A., online: http://cdiac.ornl.gov/trends/landuse/houghton/houghton.html.

  • Houghton R.A, Unruh J., Lefebvre P.A. (1991) Current land use in the tropics and its potential for sequestering carbon, in: Howlett D., Sargent C. (Eds.), Proc. Tech. Workshop to Explore Options for Global Forest Management, Bangkok, Thailand, London, IIED.

    Google Scholar 

  • Huijbregts M.A., Seppälä J. (2000) Towards region-specific, European fate Factors for airborne nitrogen compounds causing aquatic eutrophication, Int. J. LCA 5, 65–67.

    CAS  Google Scholar 

  • IEA (2005) World Energy Outlook 2005, Middle East and North Africa Insights, © OECD/IEA, IEA Publications (61 2005 26 1P1), ISBN 92-64-1094-98, Paris, 634 p.

    Google Scholar 

  • IEA (2006) World Energy Outlook 2006, © OECD/IEA, IEA Publications (61 2006 231P1), ISBN 92-64-10989-7-2006, Paris, 601 p.

    Google Scholar 

  • IEA (2007a) Key World Energy Statistics 2007, © OECD/IEA, 2007, IEA Publications, Paris, 82 p.

    Google Scholar 

  • IEA (2007b) Good practice guidelines, Bioenergy Project Development and Biomass Supply, © OECD/IEA, Paris, 62 p.

    Google Scholar 

  • IEA Bioenergy (2007) Potential Contribution of Bioenergy to the World’s Future Energy Demand, IEA Bioenergy: ExCo, 12 p.

    Google Scholar 

  • IPCC (2006) IPCC Guidelines for National Greenhouse Gas Inventories, prepared by the National Greenhouse Gas Inventories Programme, in: Eggleston H.S., Buendia L., Miwa K., Ngara T., Tanabe K. (Eds.), IGES, Japan.

    Google Scholar 

  • IPCC (2007) Summary for Policymakers, Climate Change 2007: The Physical Science Basis, Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, in: Solomon S., Qin D., Manning M., Chen Z., Marquis M., Averyt K.B., Tignor M., Miller H.L. (Eds.), Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 18 p.

    Google Scholar 

  • ITDG (2000) Biogas and Biofuels: Technical Brief, http://www.itdg.org/html/technical_enquiries/docs/biogas_liquid_fuels.pdf.

  • Jimenez-Gonzalez C., Overcash M. (2000) Life cycle assessment of refineryproducts: review and comparison of commercially available databases, Environ. Sci. Technol. 34, 4789–4796.

    CAS  Google Scholar 

  • Jolliet O., Müller-Wenk R., Bare J., Brent A., Goedkoop M., Heijungs R., Itsubo N., Peña C., Pennington D., Potting J., Rebitzer G., Stewart M., Udo De Haes H., Weidema B. (2004) The LCIA Midpoint-damage Framework of the UNEP/SETAC Life Cycle Initiative, Int. J. LCA 9, 394–404.

    Google Scholar 

  • Jørgensen R., Jørgensen B.J., Nielsen N.E., Maag M., Lind A.M. (1997) N2O emission from energy crop fields of Miscanthus giganteus and winter rye, Atmos. Environ. 31–18, 2899–2904.

    Google Scholar 

  • JRC/EUCAR/CONCAWE (2006) JEC Well-to-Wheels study Version 2b, May 2006, http://ies.jrc.eceuropa.eu/our-activities/support-to-eu-policies/well-to-wheels-analysis/WTW.html.

  • JRC/EUCAR/CONCAWE (2008) JEC Well-to-Wheels study Version 3, year 2008, http://ies.jrc.ec.europa.eu/our-activities/support-to-eu-policies/well-to-wheels-analysis/WTW.html.

  • Jug A., Makeschin F., Rehfuess K.E., Hofmann-Schielle C. (1999) Short-rotation plantations of balsam poplars, aspen and willows on former arable land in the Federal Republic of Germany. III. Soil ecological effects, Forest Ecol. Manag. 121, 85–99.

    Google Scholar 

  • Kadam K.L. (2000) Environmental life cycle implications of using bagasse-derived ethanol as a gasoline oxygenate in Mumbai (Bombay), NREL/TP-580-28705, 89 p.

    Google Scholar 

  • Kahle P., Beuch S., Boelcke B., Leinweber P., Schulten H.R. (2001) Cropping of Miscanthus in Central Europe: biomass production and influence on nutrients and soil organic matter, Eur. J. Agron. 15, 171–184.

    CAS  Google Scholar 

  • Kaiser E.A., Kohrs K., Kucke M., Schnug E., Heinemeyer O., Munch C. (1998) Nitrous oxide release from arable soil: importance of N fertilization, crops and temporal variation, Soil Biol. Biochem. 30, 1553–1563.

    CAS  Google Scholar 

  • Kaylen M., Van Dyne D.L., Choi Y.-S., Blase M. (2000) Economis feasbility of producing ethanol from lignocellulosic feedstock, Bioresource Technol. 72, 19–32.

    CAS  Google Scholar 

  • Khalifa K. (1999) Analyse du Cycle de Vie. Problématique de l’évaluation des impacts, in: Techniques de l’ingénieur, G 5610, 1999.

    Google Scholar 

  • Kim S., Dale B.E. (2002) Allocation procedure in ethanol production system from corn grain. I. System expansion, Int. J. LCA 7, 237–243.

    CAS  Google Scholar 

  • Kodera K. (2007) Analysis of allocation methods of bioethanol LCA, Internship report, Faculty of Earth and Life Science, MSc in Environmental Resource and Management, Amsterdam, 54 p.

    Google Scholar 

  • Kojima M., Johnson T. (2005) Potential for biofuels for transport in developing countries, Energy Sector Management Assistance Programme (ESMAP), The World Bank Group, USA, 182 p.

    Google Scholar 

  • Köllner T. (2001) Land use in product life cycles and its consequences for ecosystem quality, PhD thesis.

    Google Scholar 

  • Kram J.W. (2007) Waste management commits to landfill gas expansion, in: Biomass Magazine 9/2007, Volume I issue 4: Back to basics, BBI International, 54 p.

    Google Scholar 

  • Lal R. (2004a) Soil carbon sequestration to mitigate climate change, Geoderma 123, 1–22.

    CAS  Google Scholar 

  • Lal R. (2004b) Soil carbon sequestration impacts on global climate change and food security, Science 304, 1623–1627.

    PubMed  CAS  Google Scholar 

  • Lal R. (2004c) Agricultural activities and the global carbon cycle, Nutr. Cycl. Agroecosys. 70, 103–116.

    CAS  Google Scholar 

  • Lang X., Dalai A.K., Bakhshi N.N., Reaney M.J., Hertz P.B. (2001) Preparation and characterization of bio-diesels from various bio-oils, Bioresource Technol. 80, 53–62.

    CAS  Google Scholar 

  • Larson E.D. (2006) A review of life-cycle analysis studies on lisuid biofuel systems for the transport sector, Energy for Sustainable Development X, 109–126.

    Google Scholar 

  • Larsson L., Ferm M., Kasimir-Klemedtsson A., Klemedtsson L. (1998) Ammonia and nitrous oxide emissions from grass and alfalfa mulches, Nutr. Cycl. Agroecosys. 51, 41–46.

    CAS  Google Scholar 

  • Latner K., O’Kray C., Jiang J. (2006) China, Peoples Republic of Bio-Fuels An Alternative Future for Agriculture 2006, USDA Foreign Agriculture Service, Global Agriculture Information Network (GAIN), Report number: CH6049, 29 p.

    Google Scholar 

  • Latner K., Wagner O., Jiang J. (2007) China, Peoples Republic of Bio-Fuels An Alternative Future for Agriculture 2006, USDA Foreign Agriculture Service, Global Agriculture Information Network (GAIN), Report number: CH7039, 14 p.

    Google Scholar 

  • Laville P., Hénault C., Renault P., Cellier P., Oriol A., Devis X., Flura D., Germon J.C. (1997) Field comparison of N2O measurements using micrometeorological and chamber methods, Agronomie 17, 375–388.

    Google Scholar 

  • Lemus R., Lal R. (2005) Bioenergy crops and carbon sequestration, Crit. Rev. Plant Sci. 24, 1–21.

    CAS  Google Scholar 

  • Levelton (1999) Alternative and Future Fuels and Energy Sources for Road Vehicles, Levelton Engineering Ltd, prepared for Canadian Transportation Issue Table, National Climate Change Process.

    Google Scholar 

  • Lewandowski I. Scurlock J.M.O. Lindvall E., Christou M. (2003) The development and current status of perennial rhizomatous grasses as energy crops in the US and Europe, Biomass Bioenerg. 25, 335–361.

    Google Scholar 

  • Li C.S. (2000) Modelling trace gas emissions from agricultural ecosystems, Nutr. Cycl. Agroecosys. 58, 259–276.

    CAS  Google Scholar 

  • Li C.S. (2007) Quantifying greenhouse gas emissions from soils: scientific basis and modeling approach, Soil Sci. Plant Nutr. 53, 344–352.

    CAS  Google Scholar 

  • Li C.S, Frolking S., Frolking T.A. (1992) A model of nitrous oxide evolution from soil driven by rainfall events: 1. Model structure and sensitivity, J. Geophys. Res. 97, 9759–9776.

    CAS  Google Scholar 

  • Lo S.C., Ma H.W., Lo S.L. (2005) Quantifying and reducing uncertainty in life cycle assessment using the Bayesian Monte Carlo method, Sci. Total Environ. 340, 1–3; 23–33.

    CAS  Google Scholar 

  • Luneau G., Fayet S. (2007) Les biocarburants, présentation des principales filières et impacts environnementaux-qualité de l’air, Synthèse bibliographique pour AtmoPACA, Qualité de l’Air, France, mars 2007, 23 p.

    Google Scholar 

  • Ma F., Hanna M.A. (1999) Biodiesel production: a review, Bioresource Technol. 70, 1–15.

    CAS  Google Scholar 

  • Ma Z., Wood C.W., Bransby D.I. (2000a) Soil management impacts on soil carbon sequestration by switchgrass, Biomass Bioenerg. 18, 469–477.

    Google Scholar 

  • Ma Z., Wood C.W., Bransby D.I. (2000b) Carbon dynamics subsequent to establishment of switchgrass, Biomass Bioenerg. 18, 93–104.

    CAS  Google Scholar 

  • MacDonald T., Perez P., Mizutani C., Therkelsen R. (2004) Ethanol Fuel Incentives Applied in the US. Reviewed from California’s Perspective, California Energy Commission, Staff report, USDOE, P600-04-001, 36 p.

    Google Scholar 

  • Malça J., Freire F. (2006) Renewability and life-cycle energy efficiency of bioethanol and bio-ethyl ertiary butyl ether (bioETBE): Assessing the implications of allocation, Energy 31, 3362–3380.

    Google Scholar 

  • Mattsson B., Cederberg C., Blix L. (2000) Agricultural land use in LCA: case studies of three vegetable oil crops, J. Cleaner Prod. 8, 283–292.

    Google Scholar 

  • Milà I Canals L., Müller-Wenk R., Bauer C., Depestele J., Dubreuil A., Freiermuth K.R., Gaillard G., Michelsen O. Rydgren B. (2007) Key Elements in a Framework for Land Use Impact Assessment Within LCA, Int. J. LCA 12–1, 5–15.

    Google Scholar 

  • Möller R., Pauly M., Hake S. (2006) Cell wall saccharification, Outputs from the EPOBIO project, CPLpress Science Publishers © CNAP, University of York, ISBN 10: 1-872691-04-8, ISBN 13: 978-1-872691-04-6, 67 p.

    Google Scholar 

  • Möller R., Pauly M., Hake S., Bowles D. (2007) Crop platforms for cell wall saccharification: lignocellulose feedstock, Outputs from the EPOBIO project, CPLpress Science Publishers © CNAP, University of York, ISBN 10: 1-872691-13-7, ISBN 13: 978-1-872691-13-8, 176 p.

    Google Scholar 

  • Moras S. (2007) Analyse comparée du cycle de vie des filières de production d’énergie renouvelable issue de la biomasse, Thèse de doctorat, Gemblou, Faculté universitaire des Sciences agronomiques, 344 p., 80 tabl., 100 fig.

    Google Scholar 

  • Moreira J.S. (2000) Sugarcane for energy – recent results and progress in Brazil, Energy for Sustainable Development 6, 43–54.

    Google Scholar 

  • Mosier A.R., Duxbury J.M., Freney J.R., Heinemeyer O., Minami K. (1996) Nitrous oxide emissions from agricultural fields: Assessment, measurement and mitigation, Plant Soil 181, 95–108.

    CAS  Google Scholar 

  • Mosier A.R., Kroeze C., Nevison C., Oenema O., Seitzinger S., van Cleemput O. (1998) Closing the global N2O budget: nitrous oxide emissions through the Agricultural nitrogen cycle, Nutr. Cycl. Agroecosys. 52, 225–248.

    CAS  Google Scholar 

  • Murugesan A., Umarani C., Subramanian R., Nedunchezhian N. (2009) Bio-diesel as an alternative fuel for diesel engines - A review, Renew. Sust. Energ. Rev. 13, 653–662.

    CAS  Google Scholar 

  • Naylor R., Liska A.J., Burke M.B., Falcon W.P., Gaskell J.C., Rozelle S.D., Cassman K.G. (2007) The ripple effect: biofuels, food security, and the environment, Environment 49, 31–43.

    Google Scholar 

  • NDRC (2007) China’s National Climate Change Programme, prepared under the Auspices of National Development and Reform Commission (NDRC), People’s Republic of China, 63 p.

    Google Scholar 

  • Nguyen T.L.T., Gheewala S.H. (2008) Fuel ethanol from cane molasses in Thailand: Environmental and cost performance, Energy Policy 36, 1589–1599.

    Google Scholar 

  • Nguyen T.L.T., Gheewala S.H., Garivait S. (2007) Energy balance and GHG-abatement cost of cassava utilization for fuel ethanol in Thailand, Energy Policy 35, 4585–4596.

    Google Scholar 

  • OECD (2005) Agricultural Policies in OECD Countries: Monitoring and Evaluation 2005, Catalogue n ∘  512005021P, Paris, DEFRA, UK, 314 p.

    Google Scholar 

  • OECD (2006) Agricultural market impacts of future growth in the production of biofuels, Working party on Agricultural Policies and Markets, OECD Directorate for Food, Agriculture and Fisheries Committee for Agriculture, AGR/CA/APM(2005)24/final, 55 p.

    Google Scholar 

  • OECD (2008) Environmental performances of agriculture in OECD countries since 1990, ISBN 978-92-64-04092-2, 62 p.

    Google Scholar 

  • OECD/FAO (2007) Agricultural Outlook 2007–2016, © OECD/FAO, 88 p.

    Google Scholar 

  • Oenema O., Wrage N., Velthof G.L., Van Groenigen J.W., Dolfing J., Kuikman P.J. (2005) Trends in global nitrous oxide emissions from animal production systems, Nutr. Cycl. Agroecosys. 72, 51–65.

    CAS  Google Scholar 

  • Öhgren K., Bura R., Lesnicki G., Saddler J., Zacchi G. (2007) A comparison between simultaneous saccharification and fermentation and separate hydrolysis and fermentation using steam-pretreated corn stover, Process Biochem. 42, 834–839.

    Google Scholar 

  • Öko-Institut (2004) Stoffstromanalyse zur nachhaltigen energetischen Nutzung von Biomasse, Uwe R. Fritsche u.a., Öko-Institut (Projektleitung) in Kooperation mit FhI-UMSICHT, IE, IFEU, IZES, TU Braunschweig, TU München; Endbericht zum Verbundforschungsvorhaben, gefördert vom BMU, Darmstadt usw. (Bezug als pdf unter http://www.oeko.de/service/bio.)

  • Oorts K., Merckx R., Gréhan E., Germon J.C., Nicolardot N. (2007) Determinants of annual fluxes of CO2 and N2O in long-term no-tillage systems in northern France, Soil Till. Res. 95, 133–148.

    Google Scholar 

  • Parikka M. (2004) Global biomass fuel resource, Biomass Bioenerg. 27, 613–620.

    Google Scholar 

  • Parkin T.B. (1987) Soil microsites as a source of denitrification variability, Soil Sci. Soc. Am. J. 51, 1194–1199.

    CAS  Google Scholar 

  • Parton W.J., Holland E.A., Del Grosso S.J., Hartman M.D., Martin R.E., Mosier A.R., Ojima D.S., Schimel D.S. (2001) Generalized model for NOx and N2O emissions from soils, J. Geophys. Res.-Atmos. 106, 17403–17419.

    CAS  Google Scholar 

  • Parton W.J., Mosier A.R., Ojima D.S., Valentine D.W., Schimel D.S., Weier K., Kulmala A.E. (1996) Generalized model for N2 and N2O production from nitrification and denitrification, Global Biogeochem. Cycles 10, 401–412.

    CAS  Google Scholar 

  • Pattey E., Edwards G.C., Desjardins R.L., Pennock D.J., Smith W., Grant B., MacPherson J.I. (2007) Tools for quantifying N2O emissions from agroecosystems, Agr. Forest Meteorol. 142, 103–119.

    Google Scholar 

  • Pelkmans L. Portouli E. Papageorgiou A., Georgopoulos P. (2006) Impact assessment of measures towards the introduction of biofuels in the European Union, PREMIA WP4 report, 133 p.

    Google Scholar 

  • Pennington D.W., Potting J., Finnveden G., Lindeijer E., Jolliet O., Rydberg T., Rebitzer G. (2004) Life cycle assessment Part 2: Current impact assessment practice, Environ. Int. 30, 721–739.

    CAS  Google Scholar 

  • Perlack R.D., Wright L.L., Turhollow A.F., Graham R.L., Stokes B.J., Erbach D.C. (2005) Biomass as Feedstock for a Bioenergy and Bioproducts Inductry: The Technical Feasability of a Bilion-Ton Annual Supply, prepared by Oak Ridge National Laboratory, Tennessee, USDOE/USDA, 78 p.

    Google Scholar 

  • Plassat G. (2005), TOME 1 Les technologies des moteurs de véhicules lourds et leurs carburants, Collection : Données et références, ©ADEME Editions, Paris, 216 p.

    Google Scholar 

  • Poiret M. (1996) Evolution des cultures et impacts sur l’environnement, Eurostat. http://ec.europa.eu/agriculture/envir/report/fr/evo_cu_fr/report_fr.htm. 01/01/2009.

  • Pons E. (2008) Sustainable biofuels certification: compatibility of the European Directive on biofuels with WTO trade rules, Ministère de l’Écologie, de l’Énergie, du Développement Durable et de l’Aménagement du Territoire, MPRA, Munich Personal RePEc Archive, Paper No. 16015 posted 01. July 2009, online: http://mpra.ub.uni-muenchen.de/16015.

  • Potter C.S., Riley R.H., Klooster S.A. (1997) Simulation modelling of nitrogen trace gas emissions along an age gradient of tropical forest soils, Ecol. Model. 97, 179–196.

    CAS  Google Scholar 

  • Potting J., Hauschild M. (2005) Background for spatial differentiation in LCA impact assessment – The EDIP2003 methodology, Danish Ministry of the Environment, Environmental Project No. 996 2005, 293 p.

    Google Scholar 

  • Potting J., Schöpp W., Blok K., Hauschild M. (1998) Site-dependent life-cycle impact assessment of acidification, J. Ind. Ecol. 2, 63–87.

    CAS  Google Scholar 

  • Powlson D.S., Riche A.B., Shield I. (2005) Biofuels and other approaches for decreasing fossil fuel emissions from agriculture, Ann. Appl. Biol. 146, 193–201.

    CAS  Google Scholar 

  • Prasertsri P. (2006) Thailand sugar annual 2006, USDA Foreign Agricultural Service, Gain Report, Global Agriculture Information Network, http://www.fas.usda.gov/gainfiles/200604/146187503.docS.

  • Prieur A., Bouvart F. (2006) IFP, Rapport de projet ANABIO, PNRB, Tâche 2 : définition du cadre d’étude, Working paper not published, Paris, 29 p.

    Google Scholar 

  • Quirin M., Gärtner S.O., Pehnt M., Reinhardt G. (2004) CO2 Mitigation through Biofuels in the Transport Sector, Status and Perspectives, Main report, IFEU, Heidelberg, Germany, 66 p.

    Google Scholar 

  • Rabl A., Benoist A., Dron D., Peuportier B., Spadaro J.V., Zoughaib A. (2007) How to Account for CO2 Emissions from Biomass in an LCA, Int. J. LCA 12, 281.

    Google Scholar 

  • Radich A. (2004) Biodiesel Performance, Costs, and Use, Analysis report, Energy Information Administration, USDOE.

    Google Scholar 

  • Ragauskas A.J., Williams C.K., Davison B.H., Britovsek G., Cairney J., Eckert C.A., Frederick W.J. Jr., Hallett J.P., Leak D.J., Liotta C.L., Mielenz J.R., Murphy R., Templer R., Tschaplinski T. (2006) The Path Forward for Biofuels and Biomaterial, Science 311, 484–489.

    PubMed  CAS  Google Scholar 

  • Rajagopal D., Sexton S.E., Roland-Host D., Zilberman D. (2007) Challenge of biofuel: filling the tank without emptying the stomach? Environ. Res. Lett. 2, 1–9.

    Google Scholar 

  • Reap J., Roman F., Duncan S., Bras B. (2008) A survey of unresolved problems in life cycle assessment. Part 2: impact assessment and interpretation, Int. J. LCA 13, 374–388.

    Google Scholar 

  • Rebitzer G., Ekvall T., Frischknecht R., Hunkeler D., Norris G., Rydberg T., Schmidt W.-P., Suh S., Weidema B.P., Pennington D.W. (2004) Life cycle assessment Part 1: Framework, goal and scope definition, inventory analysis, and applications, Environ. Int. 30, 701–720.

    CAS  Google Scholar 

  • Recous S. (2001) Dynamics of soil and fertilizer nitrogen in arable systems, paper presented at the International Fertilizer Society at a Symposium in Lisbon, 4 March 2001, Proceedings - International Fertilizer Society, Issue: 463, pp. 1–16.

    CAS  Google Scholar 

  • Recous S., Machet J.M., Mary B. (1988) The fate of labelled 15N urea and ammonium nitrate applied to a winter wheat crop. II Plant uptale and N efficiency, Plant Soil 112, 215–224.

    Google Scholar 

  • REFUEL (2008) Eyes on the track, mind on the horizon. From inconvenient rapeseed to clean wood: a European roadmap for biofuels, Intelligent Energy Europe, 52 p.

    Google Scholar 

  • Reinhardt G., Gärtner S., Retenmaier N., Münch J., Falkenstein E. v. (2007) Screening Life Cycle Assessment of Jatropha Biodiesel, IFEU Commissioned by Daimler AG Stuttgart, 62 p.

    Google Scholar 

  • REN21 (2008) Renewables 2007 Global Status Report (Paris: REN21 Secretariat and Washington, DC:Worldwatch Institute), Copyright © 2008 Deutsche Gesellschaft für Technische Zusammenarbeit (GTZ) GmbH.

    Google Scholar 

  • Ribeiro K.S., Kobayashi S., Beuthe M., Gasca J., Greene D., Lee D.S., Muromachi Y., Newton P.J., Plotkin S., Sperling D., Wit R., Zhou P.J. (2007) Transport and its infrastructure, Climate Change 2007: Mitigation, Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, in: Metz B., Davidson O.R., Bosch P.R., Dave R., Meyer L.A. (Eds.), Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.

    Google Scholar 

  • Richard G., Cellier P. (1998) Effect of tillage on bare soil energy balances and thermal regime: an experimental study, Agronomie 18, 163–180.

    Google Scholar 

  • Robertson G.P., Paul E.A., Harwood R.R. (2000) Greenhouse Gases in Intensive Agriculture: Contributions of Individual Gases to the Radiative Forcing of the Atmosphere, Sciences 289, 1922–1925.

    CAS  Google Scholar 

  • Roby F. (2006) Vers la voiture sans pétrole ? Collection Bulles de Sciences, EDP Sciences, ISBN: 2-86883-874-X.

    Google Scholar 

  • Rosegrant M.W. (2008) Biofuels and Grain Prices: Impacts and Policy Responses, Testimony for the U.S. Senate Committee on Homeland Security and Governmental Affairs, 4 p., http://www.ifpri.org.

  • Roy R.N., Misra R.V., Lesschen J.P., Smaling E.M. (2003) Assessment of soil nutrient balance, Approaches and Methodologies, FAO Fertilizer and plant nutrition bulletin 14, ISBN 92-5-105038-4, Rome, 101 p.

    Google Scholar 

  • Russi D. (2008) An integrated assessment of a large-scale biodiesel production in Italy: Killing several birds with one stone? Energy Policy 36, 1169–1180.

    Google Scholar 

  • Saffih-Hdadi K., Mary B. (2008). Modeling consequences of straw residues export on soil organic carbon, Soil Biol. Biochem. 40, 594–607.

    CAS  Google Scholar 

  • Schenck R.C., Vickerman S. (2001) Developing a Land Use/Biodiversity Indicator for Agricultural Products LCA’s, oral presentation at the International Conference on LCA in Foods, Gothenburg, Sweden, 26–27 April 2001, 6 p.

    Google Scholar 

  • SCIO (2007) China’s Energy Conditions and Policies; White Paper. Information Office of the State Council of the People’s Republic of China, 46 p.

    Google Scholar 

  • Seguin B., Arrouays D., Balesdent J., Soussana J.F., Bondeau A., Smith P., Zaehle S., de Noblet N., Viovy N. (2007) Moderating the impact of agriculture on climate, Agr. Forest Meteorol. 142, 278–287.

    Google Scholar 

  • Shahid E.M., Jamal Y. (2008) A review of biodiesel as vehicular fuel, Renew. Sust. Energ. Rev. 12, 2484–2494.

    CAS  Google Scholar 

  • Six J., Ogle S.M., Breidt F.J., Conant R.T., Mosier A.R., Paustian K. (2004) The potential to mitigate global warming with no-tillage management is only realized when practised in the long term, Global Change Biol. 10, 155–160.

    Google Scholar 

  • Skiba U.M., Mctaggart I.P., Smith K.A., Hargreaves K.J., Fowler D. (1996) Estimates of nitrous oxide emissions from soil in the UK, Energ. Convers. Manage. 37, 1303–1308.

    CAS  Google Scholar 

  • Smeets E.M.W., Faaij A.P.C., Lewandowski I., Turkenburg W.C. (2007) A bottom-up assessment and review of global bio-energy potentials to 2050, Prog. Energ. Combust. 33-1, 56–106.

    Google Scholar 

  • Smil V. (1999) Long-range perspectives on inorganic fertilizers in global agriculture, Travis P. Hignett Lecture, International Fertilizer Development Center, Lecture Series LS-2, 3C, 40 p.

    Google Scholar 

  • Smith P. (2004) Carbon sequestration in croplands: the potential in Europe and the global context, Eur. J. Agron. 20, 229–236.

    CAS  Google Scholar 

  • Smith P., Martino D., Cai Z., Gwary D., Janzen H., Kumar P., McCarl B., Ogle S., O’Mara F., Rice C., Scholes B., Sirotenko O. (2007) Agriculture, Climate Change 2007: Mitigation. Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, in: Metz B., Davidson O.R., Bosch P.R., Dave R., Meyer L.A. (Eds.), Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.

    Google Scholar 

  • Smith P., Martino D., Zucong C., Gwary D., Janzen H., Kumar P., McCarl B., Ogle S., O’Mara F., Rice C., Scholes B., Sirotenko O., Howden M., McAllister T., Pan G., Romanenkov V., Schneider U., Towprayoon S., Wattenbach M., Smith J. (2008) Greenhouse gas mitigation in agriculture, Philos. T. Roy. Soc. B 363, 789–813.

    CAS  Google Scholar 

  • Solomon B.D., Barnes J.R., Halvorsen K.E. (2007) Grain and cellulosic ethanol: History, economics, and energy policy, Biomass Bioerneg. 31, 416–425.

    Google Scholar 

  • Sourie J.-C., Tréguer D., Rozakis S. (2005), Ambivalence of biofuel chains in France, in: INRA Sciences Sociales: Research in economics and rural sociology, INRA Social Sciences, Agriculture and Food, Space and Environment, ISSN 1778–4379, Grignon, France, 5 p.

    Google Scholar 

  • Soussana J.F., Loiseau P., Vuichard N., Ceschia E., Balesdent J., Chevallier T., Arrouays A. (2004) Carbon cycling and sequestration opportunities in temperate grasslands, Soil Use Manage. 20, 219–230.

    Google Scholar 

  • Stanway D. (2008) China needs new policies to kickstart biofuel sector – expert, in: Thomson Financial News, online http://www.forbes.com/afxnewslimited/feeds/afx/2008/06/03/afx5073275.html (06.03.08).

  • Stead D. (2007) Transport energy efficiency in Europe: Temporal and geographical trends and prospects, J. Transport Geography 15, 343–353.

    Google Scholar 

  • Steen B. (1999) A Systematic Approach to Environmental Priority Strategies in Product Development (EPS). Version 2000 – a) General System Characteristics. b) – Models and Data, Chalmers University of Technology, Centre for Environmental Assessment of Products and material Systems (CPM), Report 1999:4 and 5, Gothenburg, online: http://eps.esa.chalmers.se/download.htm.

  • Stehfest E., Bouwman L. (2006) N2O and NO emissions from agricultural fields and soils under natural vegetation: summarizing available measurement data and modeling of global annual emissions, Nutr. Cycl. Agroecosys. 74, 207–228.

    CAS  Google Scholar 

  • Stern N. (2006) Stern Review on the Economics of Climate Change, online: http://www.hm-treasury.gov.uk/stern_review_report.htm.

  • Sticklen M. (2007) Spartans tailor maize for cellulosic ethanol, in: Biomass magazine 7/2007: Volume I issue 2: Powering up with poultry litter, BBI International, 50 p.

    Google Scholar 

  • Strege J.R. - EERC (2007) A road Map for Biofuels Research-part II, in Biomass Magazine 9/2007, Volume I issue 4: Back to basics, BBI International, 54 p.

    Google Scholar 

  • Sutton M.A., Nemitz E., Erisman J.W., Beier C., Butterbach Bahl K., Cellier P., de Vries W., Cotrufo F., Skiba U., Di Marco C., Jones S., Laville P., Soussana J.F., Loubet B., Twigg M., Famulari D., Whitehead J., Gallagher M.W., Neftel A., Flechard C.R., Herrmann B., Calanca P.L., Schjoerring J.K., Daemmgen U., Horvath L., Tang Y.S., Emmett B.A., Tietema A., Peñuelas J., Kesik M., Brueggemann N., Pilegaard K., Vesala T., Campbell C.L., Olesen J.E., Dragosits U., Theobald M.R., Levy P., Mobbs D.C., Milne R., Viovy N., Vuichard N., Smith J.U., Smith P., Bergamaschi P., Fowler D., Reis S. (2007) Challenges in quantifying biosphere-atmosphere exchange of nitrogen species, Environ. Pollut. 150, 125–139.

    CAS  Google Scholar 

  • Thomsen I.K., Christensen B.T. (2004) Yields of wheat and soil carbon and nitrogen contents following long-term incorporation of barley straw and ryegrass catch crops, Soil Use Manage. 20, 432–438.

    Google Scholar 

  • Tolan J.S. (2006) Iogen’s demonstration process for producing ethanol from cellulosic biomass, in: Biorefineries-Industrial Processes and Products, Vol. 1, in: Kamm B., Gruber P.R., Kamm M. (Eds.), Wiley-VCH Weinheim, Germany, pp. 193–208.

    Google Scholar 

  • Tripartite Task Force (2007) White paper on internationally compatible biofuel standards, Tripartite Task Force Brazil, European Union & United State of America, 94 p.

    Google Scholar 

  • Trossero M.A. (2002) Wood energy: the way ahead, Unasylva 211–53, 10 p.

    Google Scholar 

  • Tubiello F., Fischer G. (2007) Reducing climate change impacts on agriculture: Global and regional effects of mitigation, 2000–2080, Technol. Forecasting Soc. Change 74, 1030–1056.

    Google Scholar 

  • Udo de Haes H.A., Lindeijer E. (2001) The conceptual structure of Life Cycle Impact Assessment. Final draft for the Second Working Group on Impact Assessment of SETAC-Europe (WIA-2), Brussels.

    Google Scholar 

  • Udo de Haes H.A, Jolliet O., Finnveden G., Hauschild M., Krewitt W., Müller-Wenk (1999) Best Available Practice Regarding Impact Categories and Category Indicators in Life Cycle Assessment, SETAC-Europe: Second Working Group on LCIA (WIA-2), Int. J. LCA 4, 66–74.

    Google Scholar 

  • UN (2006) World population prospects: The 2006 revision, Population database, online: http://esa.un.org/unpp/p2k0data.asp (26.02.2008).

  • UNDP (2000) World Energy Assessment: Energy and the challenge of sustainability, World Energy Assessment of the United Nations, UNDP, UNDESA/WEC, New York, 506 p.

    Google Scholar 

  • UNEP (2003) Evaluation of Environment Impacts in Life Cycle Assessment, Meeting report, Brussels 29–30 November 1998 and Brighton 25–26 May 2000, UN Publication, ISBN: 92-807-2144-5, 108 p.

    Google Scholar 

  • UNFCCC (2006) CDM Executive Board, EB 23 Report, Annex 18, p. 1.

    Google Scholar 

  • Ugarte D., Walsh M. (2002) Synergism between Agricultural and Energy Policy: The Case of Dedicated Bioenergy Crops, Agricultural Policy Analysis Center, University of Tennessee, 18 p. online: http://agpolicy.org/ppap/pdf/02/biocrop.pdf.

  • US DOE (2006a) Breaking the biological barriers to cellulosic ethanol: a joint research agenda, DOE/SC-0095, US Department of Energy Office of Science and Offie of Energy Efficiency and Renewable Energy, 216 p.

    Google Scholar 

  • US DOE (2006b) On the Road to Energy Security, Implementing a Comprehensive Energy Strategy: A Status Report, A message from the Secretary of Energy, USA, 12 p.

    Google Scholar 

  • US GAO (2000) Tax Incentives for Petroleum and Ethanol Fuels, GAO/RCED-00-301R. B-286311, United States General Accounting Office/Resources, Community, and Economic Development Division, Washington, DC 20548, September 25, 25 p.

    Google Scholar 

  • US Government (2008) figures retrieved from the webpage http://www.whitehouse.gov on the 25/04/2008.

  • Van Camp L., Bujarrabal B., Gentile A.-R., Jones R.J.A., Montanarella L., Olazabal C., Selvaradjou S.-K. (2004) Reports of the Technical Working Groups Established under the Thematic Strategy for Soil Protection, EUR 21319 EN/3, 872 p., Office for Official Publications of the European Communities, Luxembourg.

    Google Scholar 

  • Van der Drift A., Boerrigter H. (2006) Synthesis gas from biomass for fuels and chemicals, ECN-C—06-001, Report following the workshop “Hydrogen and synthesis gas for fuels and chemicals” organized by IEA bioenergy Task 33 in conjunction with the SYNBIOS conference held in May 2005 in Stockholm, 30 p.

    Google Scholar 

  • Velthof G.L., Kuikman P.J., Oenema O. (2002) Nitrous oxide emission from soils amended with crop residues, Nutr. Cycl. Agroecosys. 62, 249–261.

    CAS  Google Scholar 

  • Von Braun J. (2007) The World Food Situation: New Driving Fores and Required Actions, IFPRI’s Bi-Annual Overview of the World Food Situation presented to the CGIAR Annual General Meeting, Beijing, December 3, 2007, 25 p., online: http://www.ifpri.org.

  • Wagner-Riddle C., Furon A., Mclaughlin N.L., Lee I., Barbeau J., Jayasundara S., Parkin G., Bertold P. von, Warland J. (2007) Intensive measurement of nitrous oxide emissions from a corn-soybean-wheat rotation under two contrasting management systems over 5 years, Global Change Biol. 13, 1722–1736.

    Google Scholar 

  • Weidema B.P., Lindeijer E. (2001) Physical impacts of land use in product life cycle assessment, Technical University of Denmark, 2001.

    Google Scholar 

  • Weidema B.P., Wesnaes M.S. (1996) Data quality management for life cycle inventories-an example of using data quality indicators, J. Cleaner Prod. 4, 167–174.

    Google Scholar 

  • Wenzel H., Hauschild M., Alting L. (1997): Environmental assessment of products, Volume 1, Methodology, tools and case studies in product development, Chapman and Hall.

    Google Scholar 

  • Wiesenthal T., Schade B., Chritidis P., Leduc G., Pelkmans L. (2007) Analysis of biofuel support policies, Proceedings of the 15th Biomass Conference and Exhibition, 7–11 May 2007, Berlin, Germany.

    Google Scholar 

  • Worldwatch Institute (2007) Biofuels for Transport: Global Potential and Implications for Energy and Agriculture, prepared by Worldwatch Institute for the German Ministry of Food, Agriculture and Consumer Protection (BMELV) in coordination with the German Agency for Technical Cooperation (GTZ) and the German Agency of Renewable Resources (FNR), ISBN: 1844074226, Earthscan, London, 452 p.

    Google Scholar 

  • Wrage N., Velthof G.L., van Beusichem M.L., Oenema O. (2001) Role of nitrifier denitrification in the production of nitrous oxide, Soil Biol. Biochem. 33, 1723–1732.

    CAS  Google Scholar 

  • WRI (2007) http://earthtrends.wri.org/maps_spatial/watersheds/index.php.

  • Wu M., Wang M., Huo H. (2006) Fuel-Cycle Assessment of Selected Bioethanol Production Pathways in the United States, Energy Systems division, Argonne National Laboratory, 65 p.

    Google Scholar 

  • Xavier M.R. (2007) The Brazilian sugarcane ethanol experience, Competitive Enterprise Institute CEI Issue Analysis, Advancing Liberty from the Economy to Ecology 3, 13 p.

    Google Scholar 

  • Yi I., Itsubo N., Inaba A., Matsumoto K. (2007) Development of the interregional I/O based LCA method considering Region-specifics of indirect effects in regional evaluation, Input-output and hybrid LCA, Int. J. LCA 12, 353–364.

    Google Scholar 

  • Zan C.S., Fyles J.W., Girouard P., Samson R.A. (2001) Carbon sequestration in perennial bioenergy, annual corn and uncultivated systems in southern Quebec, Agr. Ecosys. Environ. 86, 135–144.

    Google Scholar 

  • Zeman N. (2007) Shell partner to make hydrogen from glycerine, in: Biomass Magazine 8/2007, Volume I issue 3: Learning from first-generation biomass power producers, BBI International, 50 p.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cécile Bessou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Bessou, C., Ferchaud, F., Gabrielle, B., Mary, B. (2011). Biofuels, Greenhouse Gases and Climate Change. In: Lichtfouse, E., Hamelin, M., Navarrete, M., Debaeke, P. (eds) Sustainable Agriculture Volume 2. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0394-0_20

Download citation

Publish with us

Policies and ethics